Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation.:
"Energy harvesting is the procedure for deriving, capturing and storing energy from external sources. Power is a very important part of any system, and for Internet of Things and WPAN, managing power is the biggest challenge. This book aims to explore the methods and systems to generate energy...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Science Publishers, Inc.,
2020.
|
Schriftenreihe: | Renewable energy : research, development and policies
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Energy harvesting is the procedure for deriving, capturing and storing energy from external sources. Power is a very important part of any system, and for Internet of Things and WPAN, managing power is the biggest challenge. This book aims to explore the methods and systems to generate energy and use it efficiently for IoT applications to upgrade the Industries. The book comprises of ten chapters. Chapter 1 describes the low power renewable power supply through thermo electric generators. The main aim of this chapter is to familiarize the energy harvesting among the various sources of renewable energy (Solar light, Vibration, Heat, RFID, Wind and Hybrid energy) and to provide electrical output in the range of 1 [mu]W to few Watts for low power devices (Wireless Networks/ IoTs). Chapter 2 describes the concept of distributed generation as a part of the smart grid that is proposed at IKG Punjab Technical University. The proposed smart micro grid includes the Distributed Generation based on renewable resources like solar PV and biogas as an individual and hybrid energy system. Chapter 3 proposed the energy harvesting types for end sensor nodes for pipeline monitoring in remote areas and addressed challenges for future advanced energy harvesting for sensor nodes. Chapter 4 described the fundamental concept, latest developments and applications addressing the related theoretical and practical aspects on wireless communication. In Chapter 5 different renewable energy harvesting technique has been discussed. Solar power optimization has been done to make more efficient harvesting techniques. Chapter 6 gives a review on energy harvesting and storage. In Chapter 7 the design and development of energy harvesting system is reviewed. Chapter 8 proposed an idea to implement a street light management system which can work on self power generation method based on piezoelectric techniques and communication module for analysing and transferring of data to the cloud or the web server for real time application. Chapter 9 proposed an architecture where in the bins XBee network is used to connect nearby control unit of local municipal authority and from the control authority, LoRa network is used to communicate to long range and also these bins are assisted with solar panel for providing the power supply to devices that are existed in the architecture. Chapter 10 presented the study to optimize the process parameters for biofuel production by transesterification of algal oil using KOH as catalyst"-- |
Beschreibung: | 1 online resource. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781536169447 1536169447 |
Internformat
MARC
LEADER | 00000cam a22000008i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1135914047 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 200109s2020 nyu ob 001 0 eng | ||
010 | |a 2019056866 | ||
040 | |a DLC |b eng |e rda |c DLC |d OCLCO |d OCLCF |d OCLCQ |d YDX |d N$T |d EBLCP |d OCLCO |d OCLCQ |d OCLCO | ||
020 | |a 9781536169447 |q (electronic bk.) | ||
020 | |a 1536169447 |q (electronic bk.) | ||
020 | |z 9781536169430 |q (paperback) | ||
035 | |a (OCoLC)1135914047 | ||
042 | |a pcc | ||
050 | 0 | 0 | |a TK2896 |
082 | 7 | |a 621.042 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. |
263 | |a 2003 | ||
264 | 1 | |a New York : |b Nova Science Publishers, Inc., |c 2020. | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b n |2 rdamedia | ||
338 | |a online resource |b nc |2 rdacarrier | ||
490 | 0 | |a Renewable energy : research, development and policies | |
504 | |a Includes bibliographical references and index. | ||
520 | |a "Energy harvesting is the procedure for deriving, capturing and storing energy from external sources. Power is a very important part of any system, and for Internet of Things and WPAN, managing power is the biggest challenge. This book aims to explore the methods and systems to generate energy and use it efficiently for IoT applications to upgrade the Industries. The book comprises of ten chapters. Chapter 1 describes the low power renewable power supply through thermo electric generators. The main aim of this chapter is to familiarize the energy harvesting among the various sources of renewable energy (Solar light, Vibration, Heat, RFID, Wind and Hybrid energy) and to provide electrical output in the range of 1 [mu]W to few Watts for low power devices (Wireless Networks/ IoTs). Chapter 2 describes the concept of distributed generation as a part of the smart grid that is proposed at IKG Punjab Technical University. The proposed smart micro grid includes the Distributed Generation based on renewable resources like solar PV and biogas as an individual and hybrid energy system. Chapter 3 proposed the energy harvesting types for end sensor nodes for pipeline monitoring in remote areas and addressed challenges for future advanced energy harvesting for sensor nodes. Chapter 4 described the fundamental concept, latest developments and applications addressing the related theoretical and practical aspects on wireless communication. In Chapter 5 different renewable energy harvesting technique has been discussed. Solar power optimization has been done to make more efficient harvesting techniques. Chapter 6 gives a review on energy harvesting and storage. In Chapter 7 the design and development of energy harvesting system is reviewed. Chapter 8 proposed an idea to implement a street light management system which can work on self power generation method based on piezoelectric techniques and communication module for analysing and transferring of data to the cloud or the web server for real time application. Chapter 9 proposed an architecture where in the bins XBee network is used to connect nearby control unit of local municipal authority and from the control authority, LoRa network is used to communicate to long range and also these bins are assisted with solar panel for providing the power supply to devices that are existed in the architecture. Chapter 10 presented the study to optimize the process parameters for biofuel production by transesterification of algal oil using KOH as catalyst"-- |c Provided by publisher. | ||
588 | |a Description based on print version record and CIP data provided by publisher; resource not viewed. | ||
505 | 0 | |a Intro -- Contents -- Preface -- Acknowledgments -- Chapter 1 -- Low Power Renewable Power Supply through Thermo Electric Generators -- Abstract -- Nomenclature -- Introduction -- Types of Renewable Energy Systems -- Solar Energy -- Vibration Energy -- Heat Energy -- Radio Frequency (RF) Energy -- Wind Energy -- Hybrid Energy -- Autonomous Power Supply System -- Description of Thermo Electric Generators -- Types of Thermo Electric Materials for Electrical Energy -- Working Principal -- Performance Evaluation -- Conclusion -- References -- Chapter 2 | |
505 | 8 | |a Techno-Economic Analysis of Hybrid Optimization Model: A Case Study -- Abstract -- List of Abbreviations -- 1. Introduction -- 2. Hybrid Renewable Energy System -- 2.1. Solar Energy System -- 2.2. Biomass Energy System -- 2.3. Energy Storage Energy System -- 3. HOMER Software -- Power Sources -- Storage -- 4. Case Study -- 4.1. Methodology -- 4.2. Case 1: Solar Energy System -- 4.3. Case 2: Biomass Energy System -- 4.4. Case 3: Hybrid Energy System -- 5. Results and Discussion -- 5.1. Case 1 Solar Energy System -- 5.1.1. Optimization Analysis -- 5.1.2. Sensitivity Analysis | |
505 | 8 | |a 5.2. Case 2: Biomass Energy System -- 5.2.1. Optimization Analysis -- 5.2.2. Sensitivity Analysis -- 5.3. Case 3: Hybrid Energy System -- 5.3.1. HOMER Optimization Results -- 5.3.2. HOMER Sensitivity Analysis -- 5.4. Comparison of Individual and Hybrid Models -- Conclusion -- References -- Chapter 3 -- Development of Solar Energy Harvesting Mechanism to Power Up Sensor Node to Monitor the Parameters of Pipeline Using XBee Technology -- Abstract -- 1. Introduction -- 2. Review of Literature -- 2.1. Energy Harvesting Sources -- 2.1.1. Solar Energy -- 2.1.2. Radiant Energy | |
505 | 8 | |a 2.1.3. Radio Frequency Energy -- 2.1.4. Mechanical Energy -- 2.1.5. Thermal Energy -- 2.2. Hybrid Energy-Harvesting Systems -- 2.2.1. Solar/Thermal Systems -- 2.2.2. Solar/Thermal/Electromagnetic Systems -- 3. Proposed Architecture of Solar Energy System for Pipeline Monitoring -- 3.1.1. Monitoring Section -- 3.1.2. Safety Operation Controller -- 3.1.3. LoRa and Zigbee Protocols -- 4. Research Challenges -- 4.1. Hybrid Harvester -- 4.2. Miniaturization of Systems -- 4.3. Efficient Prediction Techniques -- 4.4. Self-Healing Sensor Nodes -- 4.5. Energy Storage -- 4.6. Theft Control -- Conclusion | |
650 | 0 | |a Energy harvesting. |0 http://id.loc.gov/authorities/subjects/sh2010001757 | |
650 | 0 | |a Internet of things |x Power supply. | |
650 | 0 | |a Wireless LANs |x Power supply. | |
650 | 6 | |a Récupération d'énergie. | |
650 | 6 | |a Internet des objets |x Alimentation en énergie. | |
650 | 6 | |a Réseaux locaux sans fil |x Alimentation en énergie. | |
650 | 7 | |a Energy harvesting |2 fast | |
700 | 1 | |a Dhass, A. D., |e author. | |
710 | 2 | |a Nova Science Publishers, |e publisher. |0 http://id.loc.gov/authorities/names/no2004008473 | |
776 | 0 | 8 | |i Print version: |t Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradatio |d New York : Nova Science Publishers, Inc., 2020. |z 9781536169430 |w (DLC) 2019056865 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2295309 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL6368894 | ||
938 | |a YBP Library Services |b YANK |n 301577750 | ||
938 | |a EBSCOhost |b EBSC |n 2295309 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1135914047 |
---|---|
_version_ | 1816882509113196544 |
adam_text | |
any_adam_object | |
author | Dhass, A. D. |
author_facet | Dhass, A. D. |
author_role | aut |
author_sort | Dhass, A. D. |
author_variant | a d d ad add |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK2896 |
callnumber-raw | TK2896 |
callnumber-search | TK2896 |
callnumber-sort | TK 42896 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | Intro -- Contents -- Preface -- Acknowledgments -- Chapter 1 -- Low Power Renewable Power Supply through Thermo Electric Generators -- Abstract -- Nomenclature -- Introduction -- Types of Renewable Energy Systems -- Solar Energy -- Vibration Energy -- Heat Energy -- Radio Frequency (RF) Energy -- Wind Energy -- Hybrid Energy -- Autonomous Power Supply System -- Description of Thermo Electric Generators -- Types of Thermo Electric Materials for Electrical Energy -- Working Principal -- Performance Evaluation -- Conclusion -- References -- Chapter 2 Techno-Economic Analysis of Hybrid Optimization Model: A Case Study -- Abstract -- List of Abbreviations -- 1. Introduction -- 2. Hybrid Renewable Energy System -- 2.1. Solar Energy System -- 2.2. Biomass Energy System -- 2.3. Energy Storage Energy System -- 3. HOMER Software -- Power Sources -- Storage -- 4. Case Study -- 4.1. Methodology -- 4.2. Case 1: Solar Energy System -- 4.3. Case 2: Biomass Energy System -- 4.4. Case 3: Hybrid Energy System -- 5. Results and Discussion -- 5.1. Case 1 Solar Energy System -- 5.1.1. Optimization Analysis -- 5.1.2. Sensitivity Analysis 5.2. Case 2: Biomass Energy System -- 5.2.1. Optimization Analysis -- 5.2.2. Sensitivity Analysis -- 5.3. Case 3: Hybrid Energy System -- 5.3.1. HOMER Optimization Results -- 5.3.2. HOMER Sensitivity Analysis -- 5.4. Comparison of Individual and Hybrid Models -- Conclusion -- References -- Chapter 3 -- Development of Solar Energy Harvesting Mechanism to Power Up Sensor Node to Monitor the Parameters of Pipeline Using XBee Technology -- Abstract -- 1. Introduction -- 2. Review of Literature -- 2.1. Energy Harvesting Sources -- 2.1.1. Solar Energy -- 2.1.2. Radiant Energy 2.1.3. Radio Frequency Energy -- 2.1.4. Mechanical Energy -- 2.1.5. Thermal Energy -- 2.2. Hybrid Energy-Harvesting Systems -- 2.2.1. Solar/Thermal Systems -- 2.2.2. Solar/Thermal/Electromagnetic Systems -- 3. Proposed Architecture of Solar Energy System for Pipeline Monitoring -- 3.1.1. Monitoring Section -- 3.1.2. Safety Operation Controller -- 3.1.3. LoRa and Zigbee Protocols -- 4. Research Challenges -- 4.1. Hybrid Harvester -- 4.2. Miniaturization of Systems -- 4.3. Efficient Prediction Techniques -- 4.4. Self-Healing Sensor Nodes -- 4.5. Energy Storage -- 4.6. Theft Control -- Conclusion |
ctrlnum | (OCoLC)1135914047 |
dewey-full | 621.042 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.042 |
dewey-search | 621.042 |
dewey-sort | 3621.042 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Energietechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07172cam a22005778i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1135914047</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">200109s2020 nyu ob 001 0 eng </controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2019056866</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DLC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">DLC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781536169447</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1536169447</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781536169430</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1135914047</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">pcc</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">TK2896</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.042</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation.</subfield></datafield><datafield tag="263" ind1=" " ind2=" "><subfield code="a">2003</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Nova Science Publishers, Inc.,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Renewable energy : research, development and policies</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Energy harvesting is the procedure for deriving, capturing and storing energy from external sources. Power is a very important part of any system, and for Internet of Things and WPAN, managing power is the biggest challenge. This book aims to explore the methods and systems to generate energy and use it efficiently for IoT applications to upgrade the Industries. The book comprises of ten chapters. Chapter 1 describes the low power renewable power supply through thermo electric generators. The main aim of this chapter is to familiarize the energy harvesting among the various sources of renewable energy (Solar light, Vibration, Heat, RFID, Wind and Hybrid energy) and to provide electrical output in the range of 1 [mu]W to few Watts for low power devices (Wireless Networks/ IoTs). Chapter 2 describes the concept of distributed generation as a part of the smart grid that is proposed at IKG Punjab Technical University. The proposed smart micro grid includes the Distributed Generation based on renewable resources like solar PV and biogas as an individual and hybrid energy system. Chapter 3 proposed the energy harvesting types for end sensor nodes for pipeline monitoring in remote areas and addressed challenges for future advanced energy harvesting for sensor nodes. Chapter 4 described the fundamental concept, latest developments and applications addressing the related theoretical and practical aspects on wireless communication. In Chapter 5 different renewable energy harvesting technique has been discussed. Solar power optimization has been done to make more efficient harvesting techniques. Chapter 6 gives a review on energy harvesting and storage. In Chapter 7 the design and development of energy harvesting system is reviewed. Chapter 8 proposed an idea to implement a street light management system which can work on self power generation method based on piezoelectric techniques and communication module for analysing and transferring of data to the cloud or the web server for real time application. Chapter 9 proposed an architecture where in the bins XBee network is used to connect nearby control unit of local municipal authority and from the control authority, LoRa network is used to communicate to long range and also these bins are assisted with solar panel for providing the power supply to devices that are existed in the architecture. Chapter 10 presented the study to optimize the process parameters for biofuel production by transesterification of algal oil using KOH as catalyst"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on print version record and CIP data provided by publisher; resource not viewed.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Contents -- Preface -- Acknowledgments -- Chapter 1 -- Low Power Renewable Power Supply through Thermo Electric Generators -- Abstract -- Nomenclature -- Introduction -- Types of Renewable Energy Systems -- Solar Energy -- Vibration Energy -- Heat Energy -- Radio Frequency (RF) Energy -- Wind Energy -- Hybrid Energy -- Autonomous Power Supply System -- Description of Thermo Electric Generators -- Types of Thermo Electric Materials for Electrical Energy -- Working Principal -- Performance Evaluation -- Conclusion -- References -- Chapter 2</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Techno-Economic Analysis of Hybrid Optimization Model: A Case Study -- Abstract -- List of Abbreviations -- 1. Introduction -- 2. Hybrid Renewable Energy System -- 2.1. Solar Energy System -- 2.2. Biomass Energy System -- 2.3. Energy Storage Energy System -- 3. HOMER Software -- Power Sources -- Storage -- 4. Case Study -- 4.1. Methodology -- 4.2. Case 1: Solar Energy System -- 4.3. Case 2: Biomass Energy System -- 4.4. Case 3: Hybrid Energy System -- 5. Results and Discussion -- 5.1. Case 1 Solar Energy System -- 5.1.1. Optimization Analysis -- 5.1.2. Sensitivity Analysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2. Case 2: Biomass Energy System -- 5.2.1. Optimization Analysis -- 5.2.2. Sensitivity Analysis -- 5.3. Case 3: Hybrid Energy System -- 5.3.1. HOMER Optimization Results -- 5.3.2. HOMER Sensitivity Analysis -- 5.4. Comparison of Individual and Hybrid Models -- Conclusion -- References -- Chapter 3 -- Development of Solar Energy Harvesting Mechanism to Power Up Sensor Node to Monitor the Parameters of Pipeline Using XBee Technology -- Abstract -- 1. Introduction -- 2. Review of Literature -- 2.1. Energy Harvesting Sources -- 2.1.1. Solar Energy -- 2.1.2. Radiant Energy</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.3. Radio Frequency Energy -- 2.1.4. Mechanical Energy -- 2.1.5. Thermal Energy -- 2.2. Hybrid Energy-Harvesting Systems -- 2.2.1. Solar/Thermal Systems -- 2.2.2. Solar/Thermal/Electromagnetic Systems -- 3. Proposed Architecture of Solar Energy System for Pipeline Monitoring -- 3.1.1. Monitoring Section -- 3.1.2. Safety Operation Controller -- 3.1.3. LoRa and Zigbee Protocols -- 4. Research Challenges -- 4.1. Hybrid Harvester -- 4.2. Miniaturization of Systems -- 4.3. Efficient Prediction Techniques -- 4.4. Self-Healing Sensor Nodes -- 4.5. Energy Storage -- 4.6. Theft Control -- Conclusion</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Energy harvesting.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2010001757</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Internet of things</subfield><subfield code="x">Power supply.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Wireless LANs</subfield><subfield code="x">Power supply.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Récupération d'énergie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Internet des objets</subfield><subfield code="x">Alimentation en énergie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux locaux sans fil</subfield><subfield code="x">Alimentation en énergie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy harvesting</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhass, A. D.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Nova Science Publishers,</subfield><subfield code="e">publisher.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2004008473</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradatio</subfield><subfield code="d">New York : Nova Science Publishers, Inc., 2020.</subfield><subfield code="z">9781536169430</subfield><subfield code="w">(DLC) 2019056865</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2295309</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6368894</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">301577750</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2295309</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1135914047 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:44Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2004008473 |
isbn | 9781536169447 1536169447 |
language | English |
lccn | 2019056866 |
oclc_num | 1135914047 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource. |
psigel | ZDB-4-EBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Nova Science Publishers, Inc., |
record_format | marc |
series2 | Renewable energy : research, development and policies |
spelling | Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. 2003 New York : Nova Science Publishers, Inc., 2020. 1 online resource. text txt rdacontent computer n rdamedia online resource nc rdacarrier Renewable energy : research, development and policies Includes bibliographical references and index. "Energy harvesting is the procedure for deriving, capturing and storing energy from external sources. Power is a very important part of any system, and for Internet of Things and WPAN, managing power is the biggest challenge. This book aims to explore the methods and systems to generate energy and use it efficiently for IoT applications to upgrade the Industries. The book comprises of ten chapters. Chapter 1 describes the low power renewable power supply through thermo electric generators. The main aim of this chapter is to familiarize the energy harvesting among the various sources of renewable energy (Solar light, Vibration, Heat, RFID, Wind and Hybrid energy) and to provide electrical output in the range of 1 [mu]W to few Watts for low power devices (Wireless Networks/ IoTs). Chapter 2 describes the concept of distributed generation as a part of the smart grid that is proposed at IKG Punjab Technical University. The proposed smart micro grid includes the Distributed Generation based on renewable resources like solar PV and biogas as an individual and hybrid energy system. Chapter 3 proposed the energy harvesting types for end sensor nodes for pipeline monitoring in remote areas and addressed challenges for future advanced energy harvesting for sensor nodes. Chapter 4 described the fundamental concept, latest developments and applications addressing the related theoretical and practical aspects on wireless communication. In Chapter 5 different renewable energy harvesting technique has been discussed. Solar power optimization has been done to make more efficient harvesting techniques. Chapter 6 gives a review on energy harvesting and storage. In Chapter 7 the design and development of energy harvesting system is reviewed. Chapter 8 proposed an idea to implement a street light management system which can work on self power generation method based on piezoelectric techniques and communication module for analysing and transferring of data to the cloud or the web server for real time application. Chapter 9 proposed an architecture where in the bins XBee network is used to connect nearby control unit of local municipal authority and from the control authority, LoRa network is used to communicate to long range and also these bins are assisted with solar panel for providing the power supply to devices that are existed in the architecture. Chapter 10 presented the study to optimize the process parameters for biofuel production by transesterification of algal oil using KOH as catalyst"-- Provided by publisher. Description based on print version record and CIP data provided by publisher; resource not viewed. Intro -- Contents -- Preface -- Acknowledgments -- Chapter 1 -- Low Power Renewable Power Supply through Thermo Electric Generators -- Abstract -- Nomenclature -- Introduction -- Types of Renewable Energy Systems -- Solar Energy -- Vibration Energy -- Heat Energy -- Radio Frequency (RF) Energy -- Wind Energy -- Hybrid Energy -- Autonomous Power Supply System -- Description of Thermo Electric Generators -- Types of Thermo Electric Materials for Electrical Energy -- Working Principal -- Performance Evaluation -- Conclusion -- References -- Chapter 2 Techno-Economic Analysis of Hybrid Optimization Model: A Case Study -- Abstract -- List of Abbreviations -- 1. Introduction -- 2. Hybrid Renewable Energy System -- 2.1. Solar Energy System -- 2.2. Biomass Energy System -- 2.3. Energy Storage Energy System -- 3. HOMER Software -- Power Sources -- Storage -- 4. Case Study -- 4.1. Methodology -- 4.2. Case 1: Solar Energy System -- 4.3. Case 2: Biomass Energy System -- 4.4. Case 3: Hybrid Energy System -- 5. Results and Discussion -- 5.1. Case 1 Solar Energy System -- 5.1.1. Optimization Analysis -- 5.1.2. Sensitivity Analysis 5.2. Case 2: Biomass Energy System -- 5.2.1. Optimization Analysis -- 5.2.2. Sensitivity Analysis -- 5.3. Case 3: Hybrid Energy System -- 5.3.1. HOMER Optimization Results -- 5.3.2. HOMER Sensitivity Analysis -- 5.4. Comparison of Individual and Hybrid Models -- Conclusion -- References -- Chapter 3 -- Development of Solar Energy Harvesting Mechanism to Power Up Sensor Node to Monitor the Parameters of Pipeline Using XBee Technology -- Abstract -- 1. Introduction -- 2. Review of Literature -- 2.1. Energy Harvesting Sources -- 2.1.1. Solar Energy -- 2.1.2. Radiant Energy 2.1.3. Radio Frequency Energy -- 2.1.4. Mechanical Energy -- 2.1.5. Thermal Energy -- 2.2. Hybrid Energy-Harvesting Systems -- 2.2.1. Solar/Thermal Systems -- 2.2.2. Solar/Thermal/Electromagnetic Systems -- 3. Proposed Architecture of Solar Energy System for Pipeline Monitoring -- 3.1.1. Monitoring Section -- 3.1.2. Safety Operation Controller -- 3.1.3. LoRa and Zigbee Protocols -- 4. Research Challenges -- 4.1. Hybrid Harvester -- 4.2. Miniaturization of Systems -- 4.3. Efficient Prediction Techniques -- 4.4. Self-Healing Sensor Nodes -- 4.5. Energy Storage -- 4.6. Theft Control -- Conclusion Energy harvesting. http://id.loc.gov/authorities/subjects/sh2010001757 Internet of things Power supply. Wireless LANs Power supply. Récupération d'énergie. Internet des objets Alimentation en énergie. Réseaux locaux sans fil Alimentation en énergie. Energy harvesting fast Dhass, A. D., author. Nova Science Publishers, publisher. http://id.loc.gov/authorities/names/no2004008473 Print version: Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradatio New York : Nova Science Publishers, Inc., 2020. 9781536169430 (DLC) 2019056865 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2295309 Volltext |
spellingShingle | Dhass, A. D. Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. Intro -- Contents -- Preface -- Acknowledgments -- Chapter 1 -- Low Power Renewable Power Supply through Thermo Electric Generators -- Abstract -- Nomenclature -- Introduction -- Types of Renewable Energy Systems -- Solar Energy -- Vibration Energy -- Heat Energy -- Radio Frequency (RF) Energy -- Wind Energy -- Hybrid Energy -- Autonomous Power Supply System -- Description of Thermo Electric Generators -- Types of Thermo Electric Materials for Electrical Energy -- Working Principal -- Performance Evaluation -- Conclusion -- References -- Chapter 2 Techno-Economic Analysis of Hybrid Optimization Model: A Case Study -- Abstract -- List of Abbreviations -- 1. Introduction -- 2. Hybrid Renewable Energy System -- 2.1. Solar Energy System -- 2.2. Biomass Energy System -- 2.3. Energy Storage Energy System -- 3. HOMER Software -- Power Sources -- Storage -- 4. Case Study -- 4.1. Methodology -- 4.2. Case 1: Solar Energy System -- 4.3. Case 2: Biomass Energy System -- 4.4. Case 3: Hybrid Energy System -- 5. Results and Discussion -- 5.1. Case 1 Solar Energy System -- 5.1.1. Optimization Analysis -- 5.1.2. Sensitivity Analysis 5.2. Case 2: Biomass Energy System -- 5.2.1. Optimization Analysis -- 5.2.2. Sensitivity Analysis -- 5.3. Case 3: Hybrid Energy System -- 5.3.1. HOMER Optimization Results -- 5.3.2. HOMER Sensitivity Analysis -- 5.4. Comparison of Individual and Hybrid Models -- Conclusion -- References -- Chapter 3 -- Development of Solar Energy Harvesting Mechanism to Power Up Sensor Node to Monitor the Parameters of Pipeline Using XBee Technology -- Abstract -- 1. Introduction -- 2. Review of Literature -- 2.1. Energy Harvesting Sources -- 2.1.1. Solar Energy -- 2.1.2. Radiant Energy 2.1.3. Radio Frequency Energy -- 2.1.4. Mechanical Energy -- 2.1.5. Thermal Energy -- 2.2. Hybrid Energy-Harvesting Systems -- 2.2.1. Solar/Thermal Systems -- 2.2.2. Solar/Thermal/Electromagnetic Systems -- 3. Proposed Architecture of Solar Energy System for Pipeline Monitoring -- 3.1.1. Monitoring Section -- 3.1.2. Safety Operation Controller -- 3.1.3. LoRa and Zigbee Protocols -- 4. Research Challenges -- 4.1. Hybrid Harvester -- 4.2. Miniaturization of Systems -- 4.3. Efficient Prediction Techniques -- 4.4. Self-Healing Sensor Nodes -- 4.5. Energy Storage -- 4.6. Theft Control -- Conclusion Energy harvesting. http://id.loc.gov/authorities/subjects/sh2010001757 Internet of things Power supply. Wireless LANs Power supply. Récupération d'énergie. Internet des objets Alimentation en énergie. Réseaux locaux sans fil Alimentation en énergie. Energy harvesting fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2010001757 |
title | Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. |
title_auth | Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. |
title_exact_search | Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. |
title_full | Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. |
title_fullStr | Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. |
title_full_unstemmed | Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. |
title_short | Energy harvesting technologies for powering WPAN and IoT devices for industry 4.0 up-gradation. |
title_sort | energy harvesting technologies for powering wpan and iot devices for industry 4 0 up gradation |
topic | Energy harvesting. http://id.loc.gov/authorities/subjects/sh2010001757 Internet of things Power supply. Wireless LANs Power supply. Récupération d'énergie. Internet des objets Alimentation en énergie. Réseaux locaux sans fil Alimentation en énergie. Energy harvesting fast |
topic_facet | Energy harvesting. Internet of things Power supply. Wireless LANs Power supply. Récupération d'énergie. Internet des objets Alimentation en énergie. Réseaux locaux sans fil Alimentation en énergie. Energy harvesting |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2295309 |
work_keys_str_mv | AT dhassad energyharvestingtechnologiesforpoweringwpanandiotdevicesforindustry40upgradation AT novasciencepublishers energyharvestingtechnologiesforpoweringwpanandiotdevicesforindustry40upgradation |