Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python:
This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x li...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Place of publication not identified]
PACKT Publishing,
2019.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x library. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 1838553231 9781838553234 1838551964 9781838551964 |
Internformat
MARC
LEADER | 00000cam a2200000M 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1126310113 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 191107s2019 xx o 000 0 eng d | ||
040 | |a YDX |b eng |e pn |c YDX |d TEFOD |d EBLCP |d OCLCF |d OCLCQ |d UKAHL |d UMI |d OCLCQ |d N$T |d ESU |d VT2 |d BRF |d NLW |d OCLCO |d NZAUC |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 1127212232 |a 1139751070 |a 1153011210 |a 1267406795 | ||
020 | |a 1838553231 |q (electronic bk.) | ||
020 | |a 9781838553234 |q (electronic bk.) | ||
020 | |z 9781838551964 | ||
020 | |a 1838551964 |q (Trade Paper) | ||
020 | |a 9781838551964 | ||
024 | 3 | |a 9781838551964 | |
035 | |a (OCoLC)1126310113 |z (OCoLC)1127212232 |z (OCoLC)1139751070 |z (OCoLC)1153011210 |z (OCoLC)1267406795 | ||
037 | |a 07514D42-45D7-4C16-ADA1-F38127250A82 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.73.P98 | |
082 | 7 | |a 005.133 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Liu, Yuxi (Hayden) | |
245 | 1 | 0 | |a Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python |
260 | |a [Place of publication not identified] |b PACKT Publishing, |c 2019. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x library. | ||
505 | 0 | |a PyTorch 1.x Reinforcement Learning Cookbook: over 60 recipes to design, develop, and deploy self-learning AI models using Python -- Contributors -- Table of Contents -- Preface -- 1. Getting Started with Reinforcement Learning and PyTorch -- 2. Markov Decision Processes and Dynamic Programming -- 3. Monte Carlo Methods for Making Numerical Estimations -- 4. Temporal Difference and Q-Learning -- 5. Solving Multi-armed Bandit Problems -- 6. Scaling Up Learning with Function Approximation -- 7. Deep Q-Networks in Action -- 8. Implementing Policy Gradients and Policy Optimization -- 9. Capstone Project -- Playing Flappy Bird with DQN -- Other Books You May Enjoy -- Index. | |
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 0 | |a Natural language processing (Computer science) |0 http://id.loc.gov/authorities/subjects/sh88002425 | |
650 | 2 | |a Natural Language Processing |0 https://id.nlm.nih.gov/mesh/D009323 | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Traitement automatique des langues naturelles. | |
650 | 7 | |a Mathematical theory of computation. |2 bicssc | |
650 | 7 | |a Machine learning. |2 bicssc | |
650 | 7 | |a Neural networks & fuzzy systems. |2 bicssc | |
650 | 7 | |a Programming & scripting languages: general. |2 bicssc | |
650 | 7 | |a Computers |x Machine Theory. |2 bisacsh | |
650 | 7 | |a Computers |x Neural Networks. |2 bisacsh | |
650 | 7 | |a Computers |x Programming Languages |x Python. |2 bisacsh | |
650 | 7 | |a Natural language processing (Computer science) |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
758 | |i has work: |a PyTorch 1.x reinforcement learning cookbook (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJFQgVwRprPxxHjtMCd43 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Liu, Yuxi (Hayden). |t PyTorch 1. x Reinforcement Learning Cookbook : Over 60 Recipes to Design, Develop, and Deploy Self-Learning AI Models Using Python. |d Birmingham : Packt Publishing, Limited, ©2019 |z 9781838551964 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2285791 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2285791 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH36843090 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5970664 | ||
938 | |a YBP Library Services |b YANK |n 300928890 | ||
938 | |a EBSCOhost |b EBSC |n 2285791 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1126310113 |
---|---|
_version_ | 1826942301801283584 |
adam_text | |
any_adam_object | |
author | Liu, Yuxi (Hayden) |
author_facet | Liu, Yuxi (Hayden) |
author_role | |
author_sort | Liu, Yuxi (Hayden) |
author_variant | y h l yh yhl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 |
callnumber-search | QA76.73.P98 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | PyTorch 1.x Reinforcement Learning Cookbook: over 60 recipes to design, develop, and deploy self-learning AI models using Python -- Contributors -- Table of Contents -- Preface -- 1. Getting Started with Reinforcement Learning and PyTorch -- 2. Markov Decision Processes and Dynamic Programming -- 3. Monte Carlo Methods for Making Numerical Estimations -- 4. Temporal Difference and Q-Learning -- 5. Solving Multi-armed Bandit Problems -- 6. Scaling Up Learning with Function Approximation -- 7. Deep Q-Networks in Action -- 8. Implementing Policy Gradients and Policy Optimization -- 9. Capstone Project -- Playing Flappy Bird with DQN -- Other Books You May Enjoy -- Index. |
ctrlnum | (OCoLC)1126310113 |
dewey-full | 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.133 |
dewey-search | 005.133 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04134cam a2200637M 4500</leader><controlfield tag="001">ZDB-4-EBA-on1126310113</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">191107s2019 xx o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">TEFOD</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UMI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">ESU</subfield><subfield code="d">VT2</subfield><subfield code="d">BRF</subfield><subfield code="d">NLW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NZAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1127212232</subfield><subfield code="a">1139751070</subfield><subfield code="a">1153011210</subfield><subfield code="a">1267406795</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838553231</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838553234</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781838551964</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838551964</subfield><subfield code="q">(Trade Paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838551964</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781838551964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1126310113</subfield><subfield code="z">(OCoLC)1127212232</subfield><subfield code="z">(OCoLC)1139751070</subfield><subfield code="z">(OCoLC)1153011210</subfield><subfield code="z">(OCoLC)1267406795</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">07514D42-45D7-4C16-ADA1-F38127250A82</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuxi (Hayden)</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">PACKT Publishing,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x library.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">PyTorch 1.x Reinforcement Learning Cookbook: over 60 recipes to design, develop, and deploy self-learning AI models using Python -- Contributors -- Table of Contents -- Preface -- 1. Getting Started with Reinforcement Learning and PyTorch -- 2. Markov Decision Processes and Dynamic Programming -- 3. Monte Carlo Methods for Making Numerical Estimations -- 4. Temporal Difference and Q-Learning -- 5. Solving Multi-armed Bandit Problems -- 6. Scaling Up Learning with Function Approximation -- 7. Deep Q-Networks in Action -- 8. Implementing Policy Gradients and Policy Optimization -- 9. Capstone Project -- Playing Flappy Bird with DQN -- Other Books You May Enjoy -- Index.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88002425</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Natural Language Processing</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D009323</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Traitement automatique des langues naturelles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical theory of computation.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks & fuzzy systems.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programming & scripting languages: general.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Machine Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Neural Networks.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Programming Languages</subfield><subfield code="x">Python.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">PyTorch 1.x reinforcement learning cookbook (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJFQgVwRprPxxHjtMCd43</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Liu, Yuxi (Hayden).</subfield><subfield code="t">PyTorch 1. x Reinforcement Learning Cookbook : Over 60 Recipes to Design, Develop, and Deploy Self-Learning AI Models Using Python.</subfield><subfield code="d">Birmingham : Packt Publishing, Limited, ©2019</subfield><subfield code="z">9781838551964</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2285791</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2285791</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36843090</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5970664</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">300928890</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2285791</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1126310113 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:25:50Z |
institution | BVB |
isbn | 1838553231 9781838553234 1838551964 9781838551964 |
language | English |
oclc_num | 1126310113 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | PACKT Publishing, |
record_format | marc |
spelling | Liu, Yuxi (Hayden) Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python [Place of publication not identified] PACKT Publishing, 2019. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x library. PyTorch 1.x Reinforcement Learning Cookbook: over 60 recipes to design, develop, and deploy self-learning AI models using Python -- Contributors -- Table of Contents -- Preface -- 1. Getting Started with Reinforcement Learning and PyTorch -- 2. Markov Decision Processes and Dynamic Programming -- 3. Monte Carlo Methods for Making Numerical Estimations -- 4. Temporal Difference and Q-Learning -- 5. Solving Multi-armed Bandit Problems -- 6. Scaling Up Learning with Function Approximation -- 7. Deep Q-Networks in Action -- 8. Implementing Policy Gradients and Policy Optimization -- 9. Capstone Project -- Playing Flappy Bird with DQN -- Other Books You May Enjoy -- Index. Includes bibliographical references and index. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Natural language processing (Computer science) http://id.loc.gov/authorities/subjects/sh88002425 Natural Language Processing https://id.nlm.nih.gov/mesh/D009323 Python (Langage de programmation) Traitement automatique des langues naturelles. Mathematical theory of computation. bicssc Machine learning. bicssc Neural networks & fuzzy systems. bicssc Programming & scripting languages: general. bicssc Computers Machine Theory. bisacsh Computers Neural Networks. bisacsh Computers Programming Languages Python. bisacsh Natural language processing (Computer science) fast Python (Computer program language) fast has work: PyTorch 1.x reinforcement learning cookbook (Text) https://id.oclc.org/worldcat/entity/E39PCGJFQgVwRprPxxHjtMCd43 https://id.oclc.org/worldcat/ontology/hasWork Print version: Liu, Yuxi (Hayden). PyTorch 1. x Reinforcement Learning Cookbook : Over 60 Recipes to Design, Develop, and Deploy Self-Learning AI Models Using Python. Birmingham : Packt Publishing, Limited, ©2019 9781838551964 |
spellingShingle | Liu, Yuxi (Hayden) Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python PyTorch 1.x Reinforcement Learning Cookbook: over 60 recipes to design, develop, and deploy self-learning AI models using Python -- Contributors -- Table of Contents -- Preface -- 1. Getting Started with Reinforcement Learning and PyTorch -- 2. Markov Decision Processes and Dynamic Programming -- 3. Monte Carlo Methods for Making Numerical Estimations -- 4. Temporal Difference and Q-Learning -- 5. Solving Multi-armed Bandit Problems -- 6. Scaling Up Learning with Function Approximation -- 7. Deep Q-Networks in Action -- 8. Implementing Policy Gradients and Policy Optimization -- 9. Capstone Project -- Playing Flappy Bird with DQN -- Other Books You May Enjoy -- Index. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Natural language processing (Computer science) http://id.loc.gov/authorities/subjects/sh88002425 Natural Language Processing https://id.nlm.nih.gov/mesh/D009323 Python (Langage de programmation) Traitement automatique des langues naturelles. Mathematical theory of computation. bicssc Machine learning. bicssc Neural networks & fuzzy systems. bicssc Programming & scripting languages: general. bicssc Computers Machine Theory. bisacsh Computers Neural Networks. bisacsh Computers Programming Languages Python. bisacsh Natural language processing (Computer science) fast Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh96008834 http://id.loc.gov/authorities/subjects/sh88002425 https://id.nlm.nih.gov/mesh/D009323 |
title | Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python |
title_auth | Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python |
title_exact_search | Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python |
title_full | Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python |
title_fullStr | Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python |
title_full_unstemmed | Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python |
title_short | Pytorch 1.x reinforcement learning cookbook;over 60 recipes to design, develop, and deploy self-learning ai models using python |
title_sort | pytorch 1 x reinforcement learning cookbook over 60 recipes to design develop and deploy self learning ai models using python |
topic | Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Natural language processing (Computer science) http://id.loc.gov/authorities/subjects/sh88002425 Natural Language Processing https://id.nlm.nih.gov/mesh/D009323 Python (Langage de programmation) Traitement automatique des langues naturelles. Mathematical theory of computation. bicssc Machine learning. bicssc Neural networks & fuzzy systems. bicssc Programming & scripting languages: general. bicssc Computers Machine Theory. bisacsh Computers Neural Networks. bisacsh Computers Programming Languages Python. bisacsh Natural language processing (Computer science) fast Python (Computer program language) fast |
topic_facet | Python (Computer program language) Natural language processing (Computer science) Natural Language Processing Python (Langage de programmation) Traitement automatique des langues naturelles. Mathematical theory of computation. Machine learning. Neural networks & fuzzy systems. Programming & scripting languages: general. Computers Machine Theory. Computers Neural Networks. Computers Programming Languages Python. |
work_keys_str_mv | AT liuyuxihayden pytorch1xreinforcementlearningcookbookover60recipestodesigndevelopanddeployselflearningaimodelsusingpython |