Hands-on deep learning algorithms with Python :: master deep learning algorithms with extensive math by implementing them using TensorFlow /
This book introduces basic-to-advanced deep learning algorithms used in a production environment by AI researchers and principal data scientists; it explains algorithms intuitively, including the underlying math, and shows how to implement them using popular Python-based deep learning libraries such...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing Ltd,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book introduces basic-to-advanced deep learning algorithms used in a production environment by AI researchers and principal data scientists; it explains algorithms intuitively, including the underlying math, and shows how to implement them using popular Python-based deep learning libraries such as TensorFlow. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781789344516 1789344514 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1110716984 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 190803s2019 enk ob 001 0 eng d | ||
040 | |a YDX |b eng |e rda |e pn |c YDX |d UKMGB |d OCLCO |d UKAHL |d OCLCF |d N$T |d TEFOD |d NJT |d STF |d EBLCP |d YDXIT |d UMI |d UAB |d OCLCQ |d OCL |d OCLCO |d OCLCQ |d OCLCO |d NZAUC |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
015 | |a GBB9B4157 |2 bnb | ||
016 | 7 | |a 019446102 |2 Uk | |
019 | |a 1111433895 |a 1114455518 |a 1126570352 |a 1131897942 | ||
020 | |a 9781789344516 |q (electronic bk.) | ||
020 | |a 1789344514 |q (electronic bk.) | ||
020 | |z 1789344158 | ||
020 | |z 9781789344158 | ||
035 | |a (OCoLC)1110716984 |z (OCoLC)1111433895 |z (OCoLC)1114455518 |z (OCoLC)1126570352 |z (OCoLC)1131897942 | ||
037 | |a 9781789344516 |b Packt Publishing | ||
037 | |a BE91522B-7B10-48DE-80F7-9A89351EA7A8 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.73.P98 | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Ravichandiran, Sudharsan, |e author. | |
245 | 1 | 0 | |a Hands-on deep learning algorithms with Python : |b master deep learning algorithms with extensive math by implementing them using TensorFlow / |c Sudharsan Ravichandiran. |
264 | 1 | |a Birmingham : |b Packt Publishing Ltd, |c 2019. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a This book introduces basic-to-advanced deep learning algorithms used in a production environment by AI researchers and principal data scientists; it explains algorithms intuitively, including the underlying math, and shows how to implement them using popular Python-based deep learning libraries such as TensorFlow. | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: Getting Started with Deep Learning; Chapter 1: Introduction to Deep Learning; What is deep learning?; Biological and artificial neurons; ANN and its layers; Input layer; Hidden layer; Output layer; Exploring activation functions; The sigmoid function; The tanh function; The Rectified Linear Unit function; The leaky ReLU function; The Exponential linear unit function; The Swish function; The softmax function; Forward propagation in ANN; How does ANN learn? | |
505 | 8 | |a Debugging gradient descent with gradient checkingPutting it all together; Building a neural network from scratch; Summary; Questions; Further reading; Chapter 2: Getting to Know TensorFlow; What is TensorFlow?; Understanding computational graphs and sessions; Sessions; Variables, constants, and placeholders; Variables; Constants; Placeholders and feed dictionaries; Introducing TensorBoard; Creating a name scope; Handwritten digit classification using TensorFlow; Importing the required libraries; Loading the dataset; Defining the number of neurons in each layer; Defining placeholders | |
505 | 8 | |a Forward propagationComputing loss and backpropagation; Computing accuracy; Creating summary; Training the model; Visualizing graphs in TensorBoard; Introducing eager execution; Math operations in TensorFlow; TensorFlow 2.0 and Keras; Bonjour Keras; Defining the model; Defining a sequential model; Defining a functional model; Compiling the model; Training the model; Evaluating the model; MNIST digit classification using TensorFlow 2.0; Should we use Keras or TensorFlow?; Summary; Questions; Further reading; Section 2: Fundamental Deep Learning Algorithms | |
505 | 8 | |a Chapter 3: Gradient Descent and Its VariantsDemystifying gradient descent; Performing gradient descent in regression; Importing the libraries; Preparing the dataset; Defining the loss function; Computing the gradients of the loss function; Updating the model parameters; Gradient descent versus stochastic gradient descent; Momentum-based gradient descent; Gradient descent with momentum; Nesterov accelerated gradient; Adaptive methods of gradient descent; Setting a learning rate adaptively using Adagrad; Doing away with the learning rate using Adadelta | |
505 | 8 | |a Overcoming the limitations of Adagrad using RMSPropAdaptive moment estimation; Adamax -- Adam based on infinity-norm; Adaptive moment estimation with AMSGrad; Nadam -- adding NAG to ADAM; Summary; Questions; Further reading; Chapter 4: Generating Song Lyrics Using RNN; Introducing RNNs; The difference between feedforward networks and RNNs; Forward propagation in RNNs; Backpropagating through time; Gradients with respect to the hidden to output weight, V; Gradients with respect to hidden to hidden layer weights, W; Gradients with respect to input to the hidden layer weight, U | |
630 | 0 | 0 | |a TensorFlow. |0 http://id.loc.gov/authorities/names/n2019020612 |
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 0 | |a Application software |x Development. |0 http://id.loc.gov/authorities/subjects/sh95009362 | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Logiciels d'application |x Développement. | |
650 | 7 | |a Application software |x Development |2 fast | |
650 | 7 | |a Computer algorithms |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
655 | 4 | |a Electronic book. | |
758 | |i has work: |a Hands-On Deep Learning Algorithms with Python (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYMDxRGGxWJc8xKC44xrC3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 1789344158 |z 9781789344158 |w (OCoLC)1083564019 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2207102 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH36385287 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5841215 | ||
938 | |a EBSCOhost |b EBSC |n 2207102 | ||
938 | |a YBP Library Services |b YANK |n 16379065 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1110716984 |
---|---|
_version_ | 1816882497619755008 |
adam_text | |
any_adam_object | |
author | Ravichandiran, Sudharsan |
author_facet | Ravichandiran, Sudharsan |
author_role | aut |
author_sort | Ravichandiran, Sudharsan |
author_variant | s r sr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 |
callnumber-search | QA76.73.P98 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: Getting Started with Deep Learning; Chapter 1: Introduction to Deep Learning; What is deep learning?; Biological and artificial neurons; ANN and its layers; Input layer; Hidden layer; Output layer; Exploring activation functions; The sigmoid function; The tanh function; The Rectified Linear Unit function; The leaky ReLU function; The Exponential linear unit function; The Swish function; The softmax function; Forward propagation in ANN; How does ANN learn? Debugging gradient descent with gradient checkingPutting it all together; Building a neural network from scratch; Summary; Questions; Further reading; Chapter 2: Getting to Know TensorFlow; What is TensorFlow?; Understanding computational graphs and sessions; Sessions; Variables, constants, and placeholders; Variables; Constants; Placeholders and feed dictionaries; Introducing TensorBoard; Creating a name scope; Handwritten digit classification using TensorFlow; Importing the required libraries; Loading the dataset; Defining the number of neurons in each layer; Defining placeholders Forward propagationComputing loss and backpropagation; Computing accuracy; Creating summary; Training the model; Visualizing graphs in TensorBoard; Introducing eager execution; Math operations in TensorFlow; TensorFlow 2.0 and Keras; Bonjour Keras; Defining the model; Defining a sequential model; Defining a functional model; Compiling the model; Training the model; Evaluating the model; MNIST digit classification using TensorFlow 2.0; Should we use Keras or TensorFlow?; Summary; Questions; Further reading; Section 2: Fundamental Deep Learning Algorithms Chapter 3: Gradient Descent and Its VariantsDemystifying gradient descent; Performing gradient descent in regression; Importing the libraries; Preparing the dataset; Defining the loss function; Computing the gradients of the loss function; Updating the model parameters; Gradient descent versus stochastic gradient descent; Momentum-based gradient descent; Gradient descent with momentum; Nesterov accelerated gradient; Adaptive methods of gradient descent; Setting a learning rate adaptively using Adagrad; Doing away with the learning rate using Adadelta Overcoming the limitations of Adagrad using RMSPropAdaptive moment estimation; Adamax -- Adam based on infinity-norm; Adaptive moment estimation with AMSGrad; Nadam -- adding NAG to ADAM; Summary; Questions; Further reading; Chapter 4: Generating Song Lyrics Using RNN; Introducing RNNs; The difference between feedforward networks and RNNs; Forward propagation in RNNs; Backpropagating through time; Gradients with respect to the hidden to output weight, V; Gradients with respect to hidden to hidden layer weights, W; Gradients with respect to input to the hidden layer weight, U |
ctrlnum | (OCoLC)1110716984 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06015cam a2200649 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1110716984</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">190803s2019 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">TEFOD</subfield><subfield code="d">NJT</subfield><subfield code="d">STF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDXIT</subfield><subfield code="d">UMI</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NZAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB9B4157</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019446102</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1111433895</subfield><subfield code="a">1114455518</subfield><subfield code="a">1126570352</subfield><subfield code="a">1131897942</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789344516</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789344514</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1789344158</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781789344158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1110716984</subfield><subfield code="z">(OCoLC)1111433895</subfield><subfield code="z">(OCoLC)1114455518</subfield><subfield code="z">(OCoLC)1126570352</subfield><subfield code="z">(OCoLC)1131897942</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781789344516</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">BE91522B-7B10-48DE-80F7-9A89351EA7A8</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ravichandiran, Sudharsan,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-on deep learning algorithms with Python :</subfield><subfield code="b">master deep learning algorithms with extensive math by implementing them using TensorFlow /</subfield><subfield code="c">Sudharsan Ravichandiran.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing Ltd,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces basic-to-advanced deep learning algorithms used in a production environment by AI researchers and principal data scientists; it explains algorithms intuitively, including the underlying math, and shows how to implement them using popular Python-based deep learning libraries such as TensorFlow.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: Getting Started with Deep Learning; Chapter 1: Introduction to Deep Learning; What is deep learning?; Biological and artificial neurons; ANN and its layers; Input layer; Hidden layer; Output layer; Exploring activation functions; The sigmoid function; The tanh function; The Rectified Linear Unit function; The leaky ReLU function; The Exponential linear unit function; The Swish function; The softmax function; Forward propagation in ANN; How does ANN learn?</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Debugging gradient descent with gradient checkingPutting it all together; Building a neural network from scratch; Summary; Questions; Further reading; Chapter 2: Getting to Know TensorFlow; What is TensorFlow?; Understanding computational graphs and sessions; Sessions; Variables, constants, and placeholders; Variables; Constants; Placeholders and feed dictionaries; Introducing TensorBoard; Creating a name scope; Handwritten digit classification using TensorFlow; Importing the required libraries; Loading the dataset; Defining the number of neurons in each layer; Defining placeholders</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Forward propagationComputing loss and backpropagation; Computing accuracy; Creating summary; Training the model; Visualizing graphs in TensorBoard; Introducing eager execution; Math operations in TensorFlow; TensorFlow 2.0 and Keras; Bonjour Keras; Defining the model; Defining a sequential model; Defining a functional model; Compiling the model; Training the model; Evaluating the model; MNIST digit classification using TensorFlow 2.0; Should we use Keras or TensorFlow?; Summary; Questions; Further reading; Section 2: Fundamental Deep Learning Algorithms</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3: Gradient Descent and Its VariantsDemystifying gradient descent; Performing gradient descent in regression; Importing the libraries; Preparing the dataset; Defining the loss function; Computing the gradients of the loss function; Updating the model parameters; Gradient descent versus stochastic gradient descent; Momentum-based gradient descent; Gradient descent with momentum; Nesterov accelerated gradient; Adaptive methods of gradient descent; Setting a learning rate adaptively using Adagrad; Doing away with the learning rate using Adadelta</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Overcoming the limitations of Adagrad using RMSPropAdaptive moment estimation; Adamax -- Adam based on infinity-norm; Adaptive moment estimation with AMSGrad; Nadam -- adding NAG to ADAM; Summary; Questions; Further reading; Chapter 4: Generating Song Lyrics Using RNN; Introducing RNNs; The difference between feedforward networks and RNNs; Forward propagation in RNNs; Backpropagating through time; Gradients with respect to the hidden to output weight, V; Gradients with respect to hidden to hidden layer weights, W; Gradients with respect to input to the hidden layer weight, U</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">TensorFlow.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2019020612</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Application software</subfield><subfield code="x">Development.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh95009362</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logiciels d'application</subfield><subfield code="x">Développement.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Application software</subfield><subfield code="x">Development</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hands-On Deep Learning Algorithms with Python (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYMDxRGGxWJc8xKC44xrC3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1789344158</subfield><subfield code="z">9781789344158</subfield><subfield code="w">(OCoLC)1083564019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2207102</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36385287</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5841215</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2207102</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">16379065</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-on1110716984 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:33Z |
institution | BVB |
isbn | 9781789344516 1789344514 |
language | English |
oclc_num | 1110716984 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing Ltd, |
record_format | marc |
spelling | Ravichandiran, Sudharsan, author. Hands-on deep learning algorithms with Python : master deep learning algorithms with extensive math by implementing them using TensorFlow / Sudharsan Ravichandiran. Birmingham : Packt Publishing Ltd, 2019. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier This book introduces basic-to-advanced deep learning algorithms used in a production environment by AI researchers and principal data scientists; it explains algorithms intuitively, including the underlying math, and shows how to implement them using popular Python-based deep learning libraries such as TensorFlow. Includes bibliographical references and index. Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: Getting Started with Deep Learning; Chapter 1: Introduction to Deep Learning; What is deep learning?; Biological and artificial neurons; ANN and its layers; Input layer; Hidden layer; Output layer; Exploring activation functions; The sigmoid function; The tanh function; The Rectified Linear Unit function; The leaky ReLU function; The Exponential linear unit function; The Swish function; The softmax function; Forward propagation in ANN; How does ANN learn? Debugging gradient descent with gradient checkingPutting it all together; Building a neural network from scratch; Summary; Questions; Further reading; Chapter 2: Getting to Know TensorFlow; What is TensorFlow?; Understanding computational graphs and sessions; Sessions; Variables, constants, and placeholders; Variables; Constants; Placeholders and feed dictionaries; Introducing TensorBoard; Creating a name scope; Handwritten digit classification using TensorFlow; Importing the required libraries; Loading the dataset; Defining the number of neurons in each layer; Defining placeholders Forward propagationComputing loss and backpropagation; Computing accuracy; Creating summary; Training the model; Visualizing graphs in TensorBoard; Introducing eager execution; Math operations in TensorFlow; TensorFlow 2.0 and Keras; Bonjour Keras; Defining the model; Defining a sequential model; Defining a functional model; Compiling the model; Training the model; Evaluating the model; MNIST digit classification using TensorFlow 2.0; Should we use Keras or TensorFlow?; Summary; Questions; Further reading; Section 2: Fundamental Deep Learning Algorithms Chapter 3: Gradient Descent and Its VariantsDemystifying gradient descent; Performing gradient descent in regression; Importing the libraries; Preparing the dataset; Defining the loss function; Computing the gradients of the loss function; Updating the model parameters; Gradient descent versus stochastic gradient descent; Momentum-based gradient descent; Gradient descent with momentum; Nesterov accelerated gradient; Adaptive methods of gradient descent; Setting a learning rate adaptively using Adagrad; Doing away with the learning rate using Adadelta Overcoming the limitations of Adagrad using RMSPropAdaptive moment estimation; Adamax -- Adam based on infinity-norm; Adaptive moment estimation with AMSGrad; Nadam -- adding NAG to ADAM; Summary; Questions; Further reading; Chapter 4: Generating Song Lyrics Using RNN; Introducing RNNs; The difference between feedforward networks and RNNs; Forward propagation in RNNs; Backpropagating through time; Gradients with respect to the hidden to output weight, V; Gradients with respect to hidden to hidden layer weights, W; Gradients with respect to input to the hidden layer weight, U TensorFlow. http://id.loc.gov/authorities/names/n2019020612 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Application software Development. http://id.loc.gov/authorities/subjects/sh95009362 Python (Langage de programmation) Logiciels d'application Développement. Application software Development fast Computer algorithms fast Machine learning fast Python (Computer program language) fast Electronic book. has work: Hands-On Deep Learning Algorithms with Python (Text) https://id.oclc.org/worldcat/entity/E39PCYMDxRGGxWJc8xKC44xrC3 https://id.oclc.org/worldcat/ontology/hasWork Print version: 1789344158 9781789344158 (OCoLC)1083564019 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2207102 Volltext |
spellingShingle | Ravichandiran, Sudharsan Hands-on deep learning algorithms with Python : master deep learning algorithms with extensive math by implementing them using TensorFlow / Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: Getting Started with Deep Learning; Chapter 1: Introduction to Deep Learning; What is deep learning?; Biological and artificial neurons; ANN and its layers; Input layer; Hidden layer; Output layer; Exploring activation functions; The sigmoid function; The tanh function; The Rectified Linear Unit function; The leaky ReLU function; The Exponential linear unit function; The Swish function; The softmax function; Forward propagation in ANN; How does ANN learn? Debugging gradient descent with gradient checkingPutting it all together; Building a neural network from scratch; Summary; Questions; Further reading; Chapter 2: Getting to Know TensorFlow; What is TensorFlow?; Understanding computational graphs and sessions; Sessions; Variables, constants, and placeholders; Variables; Constants; Placeholders and feed dictionaries; Introducing TensorBoard; Creating a name scope; Handwritten digit classification using TensorFlow; Importing the required libraries; Loading the dataset; Defining the number of neurons in each layer; Defining placeholders Forward propagationComputing loss and backpropagation; Computing accuracy; Creating summary; Training the model; Visualizing graphs in TensorBoard; Introducing eager execution; Math operations in TensorFlow; TensorFlow 2.0 and Keras; Bonjour Keras; Defining the model; Defining a sequential model; Defining a functional model; Compiling the model; Training the model; Evaluating the model; MNIST digit classification using TensorFlow 2.0; Should we use Keras or TensorFlow?; Summary; Questions; Further reading; Section 2: Fundamental Deep Learning Algorithms Chapter 3: Gradient Descent and Its VariantsDemystifying gradient descent; Performing gradient descent in regression; Importing the libraries; Preparing the dataset; Defining the loss function; Computing the gradients of the loss function; Updating the model parameters; Gradient descent versus stochastic gradient descent; Momentum-based gradient descent; Gradient descent with momentum; Nesterov accelerated gradient; Adaptive methods of gradient descent; Setting a learning rate adaptively using Adagrad; Doing away with the learning rate using Adadelta Overcoming the limitations of Adagrad using RMSPropAdaptive moment estimation; Adamax -- Adam based on infinity-norm; Adaptive moment estimation with AMSGrad; Nadam -- adding NAG to ADAM; Summary; Questions; Further reading; Chapter 4: Generating Song Lyrics Using RNN; Introducing RNNs; The difference between feedforward networks and RNNs; Forward propagation in RNNs; Backpropagating through time; Gradients with respect to the hidden to output weight, V; Gradients with respect to hidden to hidden layer weights, W; Gradients with respect to input to the hidden layer weight, U TensorFlow. http://id.loc.gov/authorities/names/n2019020612 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Application software Development. http://id.loc.gov/authorities/subjects/sh95009362 Python (Langage de programmation) Logiciels d'application Développement. Application software Development fast Computer algorithms fast Machine learning fast Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/names/n2019020612 http://id.loc.gov/authorities/subjects/sh96008834 http://id.loc.gov/authorities/subjects/sh95009362 |
title | Hands-on deep learning algorithms with Python : master deep learning algorithms with extensive math by implementing them using TensorFlow / |
title_auth | Hands-on deep learning algorithms with Python : master deep learning algorithms with extensive math by implementing them using TensorFlow / |
title_exact_search | Hands-on deep learning algorithms with Python : master deep learning algorithms with extensive math by implementing them using TensorFlow / |
title_full | Hands-on deep learning algorithms with Python : master deep learning algorithms with extensive math by implementing them using TensorFlow / Sudharsan Ravichandiran. |
title_fullStr | Hands-on deep learning algorithms with Python : master deep learning algorithms with extensive math by implementing them using TensorFlow / Sudharsan Ravichandiran. |
title_full_unstemmed | Hands-on deep learning algorithms with Python : master deep learning algorithms with extensive math by implementing them using TensorFlow / Sudharsan Ravichandiran. |
title_short | Hands-on deep learning algorithms with Python : |
title_sort | hands on deep learning algorithms with python master deep learning algorithms with extensive math by implementing them using tensorflow |
title_sub | master deep learning algorithms with extensive math by implementing them using TensorFlow / |
topic | TensorFlow. http://id.loc.gov/authorities/names/n2019020612 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Application software Development. http://id.loc.gov/authorities/subjects/sh95009362 Python (Langage de programmation) Logiciels d'application Développement. Application software Development fast Computer algorithms fast Machine learning fast Python (Computer program language) fast |
topic_facet | TensorFlow. Python (Computer program language) Application software Development. Python (Langage de programmation) Logiciels d'application Développement. Application software Development Computer algorithms Machine learning Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2207102 |
work_keys_str_mv | AT ravichandiransudharsan handsondeeplearningalgorithmswithpythonmasterdeeplearningalgorithmswithextensivemathbyimplementingthemusingtensorflow |