Hands-On Deep Learning for IoT :: Train Neural Network Models to Develop Intelligent IoT Applications /
Reference; Chapter 2: Deep Learning Architectures for IoT; A soft introduction to ML; Working principle of a learning algorithm; General ML rule of thumb; General issues in ML models; ML tasks; Supervised learning; Unsupervised learning; Reinforcement learning; Learning types with applications; Delv...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing, Limited,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Reference; Chapter 2: Deep Learning Architectures for IoT; A soft introduction to ML; Working principle of a learning algorithm; General ML rule of thumb; General issues in ML models; ML tasks; Supervised learning; Unsupervised learning; Reinforcement learning; Learning types with applications; Delving into DL; How did DL take ML to the next level?; Artificial neural networks; ANN and the human brain; A brief history of ANNs; How does an ANN learn?; Training a neural network; Weight and bias initialization; Activation functions; Neural network architectures; Deep neural networks This book will provide you an overview of Deep Learning techniques to facilitate the analytics and learning in various IoT apps. We will take you through each process - from data collection, analysis, modeling, statistics, and monitoring. We will make IoT data speak with a set of popular frameworks, like TensorFlow, TensorFlow Lite, and Chainer. |
Beschreibung: | 1 online resource (298 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 1789616069 9781789616064 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1107574315 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 190713s2019 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d TEFOD |d EBLCP |d TEFOD |d OCLCQ |d OCLCF |d YDX |d N$T |d UKAHL |d OCLCQ |d NLW |d OCLCO |d UKMGB |d OCLCO |d NZAUC |d OCLCQ |d OCLCO |d TMA |d OCLCQ | ||
015 | |a GBC225916 |2 bnb | ||
016 | 7 | |a 019465055 |2 Uk | |
019 | |a 1107335469 | ||
020 | |a 1789616069 | ||
020 | |a 9781789616064 |q (electronic bk.) | ||
020 | |z 9781789616132 |q print | ||
035 | |a (OCoLC)1107574315 |z (OCoLC)1107335469 | ||
037 | |a B2FC99E5-8AE1-491D-9DAC-923D5AE5B2DE |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a TK5105.8857 | |
082 | 7 | |a 005.8 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Razzaque, Mohammad Abdur. | |
245 | 1 | 0 | |a Hands-On Deep Learning for IoT : |b Train Neural Network Models to Develop Intelligent IoT Applications / |c Mohammad Abdur Razzaque, Md. Rezaul Karim. |
260 | |a Birmingham : |b Packt Publishing, Limited, |c 2019. | ||
300 | |a 1 online resource (298 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks; Chapter 1: The End-to-End Life Cycle of the IoT; The E2E life cycle of the IoT; The three-layer E2E IoT life cycle; The five-layer IoT E2E life cycle; IoT system architectures; IoT application domains; The importance of analytics in IoT; The motivation to use DL in IoT data analytics; The key characteristics and requirements of IoT data; Real-life examples of fast and streaming IoT data; Real-life examples of IoT big data | |
520 | |a Reference; Chapter 2: Deep Learning Architectures for IoT; A soft introduction to ML; Working principle of a learning algorithm; General ML rule of thumb; General issues in ML models; ML tasks; Supervised learning; Unsupervised learning; Reinforcement learning; Learning types with applications; Delving into DL; How did DL take ML to the next level?; Artificial neural networks; ANN and the human brain; A brief history of ANNs; How does an ANN learn?; Training a neural network; Weight and bias initialization; Activation functions; Neural network architectures; Deep neural networks | ||
505 | 8 | |a AutoencodersConvolutional neural networks; Recurrent neural networks; Emergent architectures; Residual neural networks; Generative adversarial networks; Capsule networks; Neural networks for clustering analysis; DL frameworks and cloud platforms for IoT; Summary; Section 2: Hands-On Deep Learning Application Development for IoT; Chapter 3: Image Recognition in IoT; IoT applications and image recognition; Use case one -- image-based automated fault detection; Implementing use case one; Use case two -- image-based smart solid waste separation; Implementing use case two | |
505 | 8 | |a Transfer learning for image recognition in IoTCNNs for image recognition in IoT applications; Collecting data for use case one; Exploring the dataset from use case one; Collecting data for use case two; Data exploration of use case two; Data pre-processing; Models training; Evaluating models; Model performance (use case one); Model performance (use case two); Summary; References; Chapter 4: Audio/Speech/Voice Recognition in IoT; Speech/voice recognition for IoT; Use case one -- voice-controlled smart light; Implementing use case one; Use case two -- voice-controlled home access | |
505 | 8 | |a Implementing use case twoDL for sound/audio recognition in IoT; ASR system model; Features extraction in ASR; DL models for ASR; CNNs and transfer learning for speech recognition in IoT applications; Collecting data; Exploring data; Data preprocessing; Models training; Evaluating models; Model performance (use case 1); Model performance (use case 2); Summary; References; Chapter 5: Indoor Localization in IoT; An overview of indoor localization; Techniques for indoor localization; Fingerprinting; DL-based indoor localization for IoT; K-nearest neighbor (k-NN) classifier; AE classifier | |
505 | 8 | |a Example -- Indoor localization with Wi-Fi fingerprinting | |
520 | |a This book will provide you an overview of Deep Learning techniques to facilitate the analytics and learning in various IoT apps. We will take you through each process - from data collection, analysis, modeling, statistics, and monitoring. We will make IoT data speak with a set of popular frameworks, like TensorFlow, TensorFlow Lite, and Chainer. | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references. | ||
650 | 0 | |a Internet of things. |0 http://id.loc.gov/authorities/subjects/sh2013000266 | |
650 | 6 | |a Internet des objets. | |
650 | 7 | |a Artificial intelligence. |2 bicssc | |
650 | 7 | |a Pattern recognition. |2 bicssc | |
650 | 7 | |a Computer vision. |2 bicssc | |
650 | 7 | |a Neural networks & fuzzy systems. |2 bicssc | |
650 | 7 | |a Computers |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Computers |x Computer Vision & Pattern Recognition. |2 bisacsh | |
650 | 7 | |a Computers |x Neural Networks. |2 bisacsh | |
650 | 7 | |a Internet of things |2 fast | |
700 | 1 | |a Karim, Md. Rezaul | |
776 | 0 | 8 | |i Print version: |a Karim, Rezaul. |t Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications. |d Birmingham : Packt Publishing, Limited, ©2019 |z 9781789616132 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2179553 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n BDZ0040218755 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5806407 | ||
938 | |a EBSCOhost |b EBSC |n 2179553 | ||
938 | |a YBP Library Services |b YANK |n 300674933 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1107574315 |
---|---|
_version_ | 1816882495623266304 |
adam_text | |
any_adam_object | |
author | Razzaque, Mohammad Abdur |
author2 | Karim, Md. Rezaul |
author2_role | |
author2_variant | m r k mr mrk |
author_facet | Razzaque, Mohammad Abdur Karim, Md. Rezaul |
author_role | |
author_sort | Razzaque, Mohammad Abdur |
author_variant | m a r ma mar |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK5105 |
callnumber-raw | TK5105.8857 |
callnumber-search | TK5105.8857 |
callnumber-sort | TK 45105.8857 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks; Chapter 1: The End-to-End Life Cycle of the IoT; The E2E life cycle of the IoT; The three-layer E2E IoT life cycle; The five-layer IoT E2E life cycle; IoT system architectures; IoT application domains; The importance of analytics in IoT; The motivation to use DL in IoT data analytics; The key characteristics and requirements of IoT data; Real-life examples of fast and streaming IoT data; Real-life examples of IoT big data AutoencodersConvolutional neural networks; Recurrent neural networks; Emergent architectures; Residual neural networks; Generative adversarial networks; Capsule networks; Neural networks for clustering analysis; DL frameworks and cloud platforms for IoT; Summary; Section 2: Hands-On Deep Learning Application Development for IoT; Chapter 3: Image Recognition in IoT; IoT applications and image recognition; Use case one -- image-based automated fault detection; Implementing use case one; Use case two -- image-based smart solid waste separation; Implementing use case two Transfer learning for image recognition in IoTCNNs for image recognition in IoT applications; Collecting data for use case one; Exploring the dataset from use case one; Collecting data for use case two; Data exploration of use case two; Data pre-processing; Models training; Evaluating models; Model performance (use case one); Model performance (use case two); Summary; References; Chapter 4: Audio/Speech/Voice Recognition in IoT; Speech/voice recognition for IoT; Use case one -- voice-controlled smart light; Implementing use case one; Use case two -- voice-controlled home access Implementing use case twoDL for sound/audio recognition in IoT; ASR system model; Features extraction in ASR; DL models for ASR; CNNs and transfer learning for speech recognition in IoT applications; Collecting data; Exploring data; Data preprocessing; Models training; Evaluating models; Model performance (use case 1); Model performance (use case 2); Summary; References; Chapter 5: Indoor Localization in IoT; An overview of indoor localization; Techniques for indoor localization; Fingerprinting; DL-based indoor localization for IoT; K-nearest neighbor (k-NN) classifier; AE classifier Example -- Indoor localization with Wi-Fi fingerprinting |
ctrlnum | (OCoLC)1107574315 |
dewey-full | 005.8 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.8 |
dewey-search | 005.8 |
dewey-sort | 15.8 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05914cam a2200649 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1107574315</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">190713s2019 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">TEFOD</subfield><subfield code="d">EBLCP</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NZAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC225916</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019465055</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1107335469</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789616069</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789616064</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781789616132</subfield><subfield code="q">print</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1107574315</subfield><subfield code="z">(OCoLC)1107335469</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">B2FC99E5-8AE1-491D-9DAC-923D5AE5B2DE</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK5105.8857</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Razzaque, Mohammad Abdur.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-On Deep Learning for IoT :</subfield><subfield code="b">Train Neural Network Models to Develop Intelligent IoT Applications /</subfield><subfield code="c">Mohammad Abdur Razzaque, Md. Rezaul Karim.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing, Limited,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (298 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks; Chapter 1: The End-to-End Life Cycle of the IoT; The E2E life cycle of the IoT; The three-layer E2E IoT life cycle; The five-layer IoT E2E life cycle; IoT system architectures; IoT application domains; The importance of analytics in IoT; The motivation to use DL in IoT data analytics; The key characteristics and requirements of IoT data; Real-life examples of fast and streaming IoT data; Real-life examples of IoT big data</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reference; Chapter 2: Deep Learning Architectures for IoT; A soft introduction to ML; Working principle of a learning algorithm; General ML rule of thumb; General issues in ML models; ML tasks; Supervised learning; Unsupervised learning; Reinforcement learning; Learning types with applications; Delving into DL; How did DL take ML to the next level?; Artificial neural networks; ANN and the human brain; A brief history of ANNs; How does an ANN learn?; Training a neural network; Weight and bias initialization; Activation functions; Neural network architectures; Deep neural networks</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">AutoencodersConvolutional neural networks; Recurrent neural networks; Emergent architectures; Residual neural networks; Generative adversarial networks; Capsule networks; Neural networks for clustering analysis; DL frameworks and cloud platforms for IoT; Summary; Section 2: Hands-On Deep Learning Application Development for IoT; Chapter 3: Image Recognition in IoT; IoT applications and image recognition; Use case one -- image-based automated fault detection; Implementing use case one; Use case two -- image-based smart solid waste separation; Implementing use case two</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Transfer learning for image recognition in IoTCNNs for image recognition in IoT applications; Collecting data for use case one; Exploring the dataset from use case one; Collecting data for use case two; Data exploration of use case two; Data pre-processing; Models training; Evaluating models; Model performance (use case one); Model performance (use case two); Summary; References; Chapter 4: Audio/Speech/Voice Recognition in IoT; Speech/voice recognition for IoT; Use case one -- voice-controlled smart light; Implementing use case one; Use case two -- voice-controlled home access</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Implementing use case twoDL for sound/audio recognition in IoT; ASR system model; Features extraction in ASR; DL models for ASR; CNNs and transfer learning for speech recognition in IoT applications; Collecting data; Exploring data; Data preprocessing; Models training; Evaluating models; Model performance (use case 1); Model performance (use case 2); Summary; References; Chapter 5: Indoor Localization in IoT; An overview of indoor localization; Techniques for indoor localization; Fingerprinting; DL-based indoor localization for IoT; K-nearest neighbor (k-NN) classifier; AE classifier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Example -- Indoor localization with Wi-Fi fingerprinting</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book will provide you an overview of Deep Learning techniques to facilitate the analytics and learning in various IoT apps. We will take you through each process - from data collection, analysis, modeling, statistics, and monitoring. We will make IoT data speak with a set of popular frameworks, like TensorFlow, TensorFlow Lite, and Chainer.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Internet of things.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2013000266</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Internet des objets.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer vision.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks & fuzzy systems.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Computer Vision & Pattern Recognition.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Neural Networks.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Internet of things</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karim, Md. Rezaul</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Karim, Rezaul.</subfield><subfield code="t">Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications.</subfield><subfield code="d">Birmingham : Packt Publishing, Limited, ©2019</subfield><subfield code="z">9781789616132</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2179553</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">BDZ0040218755</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5806407</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2179553</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">300674933</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1107574315 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:31Z |
institution | BVB |
isbn | 1789616069 9781789616064 |
language | English |
oclc_num | 1107574315 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (298 pages) |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing, Limited, |
record_format | marc |
spelling | Razzaque, Mohammad Abdur. Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications / Mohammad Abdur Razzaque, Md. Rezaul Karim. Birmingham : Packt Publishing, Limited, 2019. 1 online resource (298 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks; Chapter 1: The End-to-End Life Cycle of the IoT; The E2E life cycle of the IoT; The three-layer E2E IoT life cycle; The five-layer IoT E2E life cycle; IoT system architectures; IoT application domains; The importance of analytics in IoT; The motivation to use DL in IoT data analytics; The key characteristics and requirements of IoT data; Real-life examples of fast and streaming IoT data; Real-life examples of IoT big data Reference; Chapter 2: Deep Learning Architectures for IoT; A soft introduction to ML; Working principle of a learning algorithm; General ML rule of thumb; General issues in ML models; ML tasks; Supervised learning; Unsupervised learning; Reinforcement learning; Learning types with applications; Delving into DL; How did DL take ML to the next level?; Artificial neural networks; ANN and the human brain; A brief history of ANNs; How does an ANN learn?; Training a neural network; Weight and bias initialization; Activation functions; Neural network architectures; Deep neural networks AutoencodersConvolutional neural networks; Recurrent neural networks; Emergent architectures; Residual neural networks; Generative adversarial networks; Capsule networks; Neural networks for clustering analysis; DL frameworks and cloud platforms for IoT; Summary; Section 2: Hands-On Deep Learning Application Development for IoT; Chapter 3: Image Recognition in IoT; IoT applications and image recognition; Use case one -- image-based automated fault detection; Implementing use case one; Use case two -- image-based smart solid waste separation; Implementing use case two Transfer learning for image recognition in IoTCNNs for image recognition in IoT applications; Collecting data for use case one; Exploring the dataset from use case one; Collecting data for use case two; Data exploration of use case two; Data pre-processing; Models training; Evaluating models; Model performance (use case one); Model performance (use case two); Summary; References; Chapter 4: Audio/Speech/Voice Recognition in IoT; Speech/voice recognition for IoT; Use case one -- voice-controlled smart light; Implementing use case one; Use case two -- voice-controlled home access Implementing use case twoDL for sound/audio recognition in IoT; ASR system model; Features extraction in ASR; DL models for ASR; CNNs and transfer learning for speech recognition in IoT applications; Collecting data; Exploring data; Data preprocessing; Models training; Evaluating models; Model performance (use case 1); Model performance (use case 2); Summary; References; Chapter 5: Indoor Localization in IoT; An overview of indoor localization; Techniques for indoor localization; Fingerprinting; DL-based indoor localization for IoT; K-nearest neighbor (k-NN) classifier; AE classifier Example -- Indoor localization with Wi-Fi fingerprinting This book will provide you an overview of Deep Learning techniques to facilitate the analytics and learning in various IoT apps. We will take you through each process - from data collection, analysis, modeling, statistics, and monitoring. We will make IoT data speak with a set of popular frameworks, like TensorFlow, TensorFlow Lite, and Chainer. Print version record. Includes bibliographical references. Internet of things. http://id.loc.gov/authorities/subjects/sh2013000266 Internet des objets. Artificial intelligence. bicssc Pattern recognition. bicssc Computer vision. bicssc Neural networks & fuzzy systems. bicssc Computers Intelligence (AI) & Semantics. bisacsh Computers Computer Vision & Pattern Recognition. bisacsh Computers Neural Networks. bisacsh Internet of things fast Karim, Md. Rezaul Print version: Karim, Rezaul. Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications. Birmingham : Packt Publishing, Limited, ©2019 9781789616132 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2179553 Volltext |
spellingShingle | Razzaque, Mohammad Abdur Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications / Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks; Chapter 1: The End-to-End Life Cycle of the IoT; The E2E life cycle of the IoT; The three-layer E2E IoT life cycle; The five-layer IoT E2E life cycle; IoT system architectures; IoT application domains; The importance of analytics in IoT; The motivation to use DL in IoT data analytics; The key characteristics and requirements of IoT data; Real-life examples of fast and streaming IoT data; Real-life examples of IoT big data AutoencodersConvolutional neural networks; Recurrent neural networks; Emergent architectures; Residual neural networks; Generative adversarial networks; Capsule networks; Neural networks for clustering analysis; DL frameworks and cloud platforms for IoT; Summary; Section 2: Hands-On Deep Learning Application Development for IoT; Chapter 3: Image Recognition in IoT; IoT applications and image recognition; Use case one -- image-based automated fault detection; Implementing use case one; Use case two -- image-based smart solid waste separation; Implementing use case two Transfer learning for image recognition in IoTCNNs for image recognition in IoT applications; Collecting data for use case one; Exploring the dataset from use case one; Collecting data for use case two; Data exploration of use case two; Data pre-processing; Models training; Evaluating models; Model performance (use case one); Model performance (use case two); Summary; References; Chapter 4: Audio/Speech/Voice Recognition in IoT; Speech/voice recognition for IoT; Use case one -- voice-controlled smart light; Implementing use case one; Use case two -- voice-controlled home access Implementing use case twoDL for sound/audio recognition in IoT; ASR system model; Features extraction in ASR; DL models for ASR; CNNs and transfer learning for speech recognition in IoT applications; Collecting data; Exploring data; Data preprocessing; Models training; Evaluating models; Model performance (use case 1); Model performance (use case 2); Summary; References; Chapter 5: Indoor Localization in IoT; An overview of indoor localization; Techniques for indoor localization; Fingerprinting; DL-based indoor localization for IoT; K-nearest neighbor (k-NN) classifier; AE classifier Example -- Indoor localization with Wi-Fi fingerprinting Internet of things. http://id.loc.gov/authorities/subjects/sh2013000266 Internet des objets. Artificial intelligence. bicssc Pattern recognition. bicssc Computer vision. bicssc Neural networks & fuzzy systems. bicssc Computers Intelligence (AI) & Semantics. bisacsh Computers Computer Vision & Pattern Recognition. bisacsh Computers Neural Networks. bisacsh Internet of things fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2013000266 |
title | Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications / |
title_auth | Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications / |
title_exact_search | Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications / |
title_full | Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications / Mohammad Abdur Razzaque, Md. Rezaul Karim. |
title_fullStr | Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications / Mohammad Abdur Razzaque, Md. Rezaul Karim. |
title_full_unstemmed | Hands-On Deep Learning for IoT : Train Neural Network Models to Develop Intelligent IoT Applications / Mohammad Abdur Razzaque, Md. Rezaul Karim. |
title_short | Hands-On Deep Learning for IoT : |
title_sort | hands on deep learning for iot train neural network models to develop intelligent iot applications |
title_sub | Train Neural Network Models to Develop Intelligent IoT Applications / |
topic | Internet of things. http://id.loc.gov/authorities/subjects/sh2013000266 Internet des objets. Artificial intelligence. bicssc Pattern recognition. bicssc Computer vision. bicssc Neural networks & fuzzy systems. bicssc Computers Intelligence (AI) & Semantics. bisacsh Computers Computer Vision & Pattern Recognition. bisacsh Computers Neural Networks. bisacsh Internet of things fast |
topic_facet | Internet of things. Internet des objets. Artificial intelligence. Pattern recognition. Computer vision. Neural networks & fuzzy systems. Computers Intelligence (AI) & Semantics. Computers Computer Vision & Pattern Recognition. Computers Neural Networks. Internet of things |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2179553 |
work_keys_str_mv | AT razzaquemohammadabdur handsondeeplearningforiottrainneuralnetworkmodelstodevelopintelligentiotapplications AT karimmdrezaul handsondeeplearningforiottrainneuralnetworkmodelstodevelopintelligentiotapplications |