Applied Supervised Learning with R :: Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends.
Applied Supervised Learning with R will make you a pro at identifying your business problem, selecting the best supervised machine learning algorithm to solve it, and fine-tuning your model to exactly deliver your needs without overfitting itself.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing, Limited,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Applied Supervised Learning with R will make you a pro at identifying your business problem, selecting the best supervised machine learning algorithm to solve it, and fine-tuning your model to exactly deliver your needs without overfitting itself. |
Beschreibung: | Exercise 26: Exploring Categorical Features using Pie Chart |
Beschreibung: | 1 online resource (503 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 1838557164 9781838557164 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1104084485 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 190615s2019 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d N$T |d OCLCF |d OCLCQ |d YDX |d UKAHL |d OCLCQ |d NLW |d OCLCO |d UKMGB |d K6U |d OCLCQ |d OCLCO |d TMA |d OCLCL |d OCLCQ | ||
015 | |a GBC221807 |2 bnb | ||
016 | 7 | |a 019436495 |2 Uk | |
019 | |a 1103985351 | ||
020 | |a 1838557164 | ||
020 | |a 9781838557164 |q (electronic bk.) | ||
020 | |z 9781838556334 |q print | ||
035 | |a (OCoLC)1104084485 |z (OCoLC)1103985351 | ||
037 | |a 9781838557164 |b Packt Publishing | ||
050 | 4 | |a Q325.5 | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Ramasubramanian, Karthik. | |
245 | 1 | 0 | |a Applied Supervised Learning with R : |b Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. |
260 | |a Birmingham : |b Packt Publishing, Limited, |c 2019. | ||
300 | |a 1 online resource (503 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; FM; Table of Contents; Preface; Chapter 1: R for Advanced Analytics; Introduction; Working with Real-World Datasets; Exercise 1: Using the unzip Method for Unzipping a Downloaded File; Reading Data from Various Data Formats; CSV Files; Exercise 2: Reading a CSV File and Summarizing its Column; JSON; Exercise 3: Reading a JSON file and Storing the Data in DataFrame; Text; Exercise 4: Reading a CSV File with Text Column and Storing the Data in VCorpus; Write R Markdown Files for Code Reproducibility; Activity 1: Create an R Markdown File to Read a CSV File and Write a Summary of Data | |
505 | 8 | |a Data Structures in RVector; Matrix; Exercise 5: Performing Transformation on the Data to Make it Available for the Analysis; List; Exercise 6: Using the List Method for Storing Integers and Characters Together; Activity 2: Create a List of Two Matrices and Access the Values; DataFrame; Exercise 7: Performing Integrity Checks Using DataFrame; Data Table; Exercise 8: Exploring the File Read Operation; Data Processing and Transformation; cbind; Exercise 9: Exploring the cbind Function; rbind; Exercise 10: Exploring the rbind Function; The merge Function; Exercise 11: Exploring the merge Function | |
505 | 8 | |a Inner JoinLeft Join; Right Join; Full Join; The reshape Function; Exercise 12: Exploring the reshape Function; The aggregate Function; The Apply Family of Functions; The apply Function; Exercise 13: Implementing the apply Function; The lapply Function; Exercise 14: Implementing the lapply Function; The sapply Function; The tapply Function; Useful Packages; The dplyr Package; Exercise 15: Implementing the dplyr Package; The tidyr Package; Exercise 16: Implementing the tidyr Package | |
505 | 8 | |a Activity 3: Create a DataFrame with Five Summary Statistics for All Numeric Variables from Bank Data Using dplyr and tidyrThe plyr Package; Exercise 17: Exploring the plyr Package; The caret Package; Data Visualization; Scatterplot; Scatter Plot between Age and Balance split by Marital Status; Line Charts; Histogram; Boxplot; Summary; Chapter 2: Exploratory Analysis of Data; Introduction; Defining the Problem Statement; Problem-Designing Artifacts; Understanding the Science Behind EDA; Exploratory Data Analysis; Exercise 18: Studying the Data Dimensions; Univariate Analysis | |
505 | 8 | |a Exploring Numeric/Continuous FeaturesExercise 19: Visualizing Data Using a Box Plot; Exercise 20: Visualizing Data Using a Histogram; Exercise 21: Visualizing Data Using a Density Plot; Exercise 22: Visualizing Multiple Variables Using a Histogram; Activity 4: Plotting Multiple Density Plots and Boxplots; Exercise 23: Plotting a Histogram for the nr.employed, euribor3m, cons.conf.idx, and duration Variables; Exploring Categorical Features; Exercise 24: Exploring Categorical Features; Exercise 25: Exploring Categorical Features Using a Bar Chart | |
500 | |a Exercise 26: Exploring Categorical Features using Pie Chart | ||
520 | |a Applied Supervised Learning with R will make you a pro at identifying your business problem, selecting the best supervised machine learning algorithm to solve it, and fine-tuning your model to exactly deliver your needs without overfitting itself. | ||
504 | |a Includes bibliographical references. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a R (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh2002004407 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a R (Langage de programmation) | |
650 | 7 | |a Artificial intelligence. |2 bicssc | |
650 | 7 | |a Neural networks & fuzzy systems. |2 bicssc | |
650 | 7 | |a Data capture & analysis. |2 bicssc | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
700 | 1 | |a Moolayil, Jojo. | |
758 | |i has work: |a Applied supervised learning with R (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYyVvMXVjM8qfTqFgGjw83 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Ramasubramanian, Karthik. |t Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. |d Birmingham : Packt Publishing, Limited, ©2019 |z 9781838556334 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2153726 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2153726 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH36368510 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5784240 | ||
938 | |a EBSCOhost |b EBSC |n 2153726 | ||
938 | |a YBP Library Services |b YANK |n 300576902 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1104084485 |
---|---|
_version_ | 1813901652256620544 |
adam_text | |
any_adam_object | |
author | Ramasubramanian, Karthik |
author2 | Moolayil, Jojo |
author2_role | |
author2_variant | j m jm |
author_facet | Ramasubramanian, Karthik Moolayil, Jojo |
author_role | |
author_sort | Ramasubramanian, Karthik |
author_variant | k r kr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover; FM; Table of Contents; Preface; Chapter 1: R for Advanced Analytics; Introduction; Working with Real-World Datasets; Exercise 1: Using the unzip Method for Unzipping a Downloaded File; Reading Data from Various Data Formats; CSV Files; Exercise 2: Reading a CSV File and Summarizing its Column; JSON; Exercise 3: Reading a JSON file and Storing the Data in DataFrame; Text; Exercise 4: Reading a CSV File with Text Column and Storing the Data in VCorpus; Write R Markdown Files for Code Reproducibility; Activity 1: Create an R Markdown File to Read a CSV File and Write a Summary of Data Data Structures in RVector; Matrix; Exercise 5: Performing Transformation on the Data to Make it Available for the Analysis; List; Exercise 6: Using the List Method for Storing Integers and Characters Together; Activity 2: Create a List of Two Matrices and Access the Values; DataFrame; Exercise 7: Performing Integrity Checks Using DataFrame; Data Table; Exercise 8: Exploring the File Read Operation; Data Processing and Transformation; cbind; Exercise 9: Exploring the cbind Function; rbind; Exercise 10: Exploring the rbind Function; The merge Function; Exercise 11: Exploring the merge Function Inner JoinLeft Join; Right Join; Full Join; The reshape Function; Exercise 12: Exploring the reshape Function; The aggregate Function; The Apply Family of Functions; The apply Function; Exercise 13: Implementing the apply Function; The lapply Function; Exercise 14: Implementing the lapply Function; The sapply Function; The tapply Function; Useful Packages; The dplyr Package; Exercise 15: Implementing the dplyr Package; The tidyr Package; Exercise 16: Implementing the tidyr Package Activity 3: Create a DataFrame with Five Summary Statistics for All Numeric Variables from Bank Data Using dplyr and tidyrThe plyr Package; Exercise 17: Exploring the plyr Package; The caret Package; Data Visualization; Scatterplot; Scatter Plot between Age and Balance split by Marital Status; Line Charts; Histogram; Boxplot; Summary; Chapter 2: Exploratory Analysis of Data; Introduction; Defining the Problem Statement; Problem-Designing Artifacts; Understanding the Science Behind EDA; Exploratory Data Analysis; Exercise 18: Studying the Data Dimensions; Univariate Analysis Exploring Numeric/Continuous FeaturesExercise 19: Visualizing Data Using a Box Plot; Exercise 20: Visualizing Data Using a Histogram; Exercise 21: Visualizing Data Using a Density Plot; Exercise 22: Visualizing Multiple Variables Using a Histogram; Activity 4: Plotting Multiple Density Plots and Boxplots; Exercise 23: Plotting a Histogram for the nr.employed, euribor3m, cons.conf.idx, and duration Variables; Exploring Categorical Features; Exercise 24: Exploring Categorical Features; Exercise 25: Exploring Categorical Features Using a Bar Chart |
ctrlnum | (OCoLC)1104084485 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05901cam a2200673Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1104084485</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">190615s2019 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKMGB</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC221807</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019436495</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1103985351</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838557164</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838557164</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781838556334</subfield><subfield code="q">print</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1104084485</subfield><subfield code="z">(OCoLC)1103985351</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781838557164</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramasubramanian, Karthik.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied Supervised Learning with R :</subfield><subfield code="b">Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing, Limited,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (503 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; FM; Table of Contents; Preface; Chapter 1: R for Advanced Analytics; Introduction; Working with Real-World Datasets; Exercise 1: Using the unzip Method for Unzipping a Downloaded File; Reading Data from Various Data Formats; CSV Files; Exercise 2: Reading a CSV File and Summarizing its Column; JSON; Exercise 3: Reading a JSON file and Storing the Data in DataFrame; Text; Exercise 4: Reading a CSV File with Text Column and Storing the Data in VCorpus; Write R Markdown Files for Code Reproducibility; Activity 1: Create an R Markdown File to Read a CSV File and Write a Summary of Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Data Structures in RVector; Matrix; Exercise 5: Performing Transformation on the Data to Make it Available for the Analysis; List; Exercise 6: Using the List Method for Storing Integers and Characters Together; Activity 2: Create a List of Two Matrices and Access the Values; DataFrame; Exercise 7: Performing Integrity Checks Using DataFrame; Data Table; Exercise 8: Exploring the File Read Operation; Data Processing and Transformation; cbind; Exercise 9: Exploring the cbind Function; rbind; Exercise 10: Exploring the rbind Function; The merge Function; Exercise 11: Exploring the merge Function</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Inner JoinLeft Join; Right Join; Full Join; The reshape Function; Exercise 12: Exploring the reshape Function; The aggregate Function; The Apply Family of Functions; The apply Function; Exercise 13: Implementing the apply Function; The lapply Function; Exercise 14: Implementing the lapply Function; The sapply Function; The tapply Function; Useful Packages; The dplyr Package; Exercise 15: Implementing the dplyr Package; The tidyr Package; Exercise 16: Implementing the tidyr Package</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Activity 3: Create a DataFrame with Five Summary Statistics for All Numeric Variables from Bank Data Using dplyr and tidyrThe plyr Package; Exercise 17: Exploring the plyr Package; The caret Package; Data Visualization; Scatterplot; Scatter Plot between Age and Balance split by Marital Status; Line Charts; Histogram; Boxplot; Summary; Chapter 2: Exploratory Analysis of Data; Introduction; Defining the Problem Statement; Problem-Designing Artifacts; Understanding the Science Behind EDA; Exploratory Data Analysis; Exercise 18: Studying the Data Dimensions; Univariate Analysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Exploring Numeric/Continuous FeaturesExercise 19: Visualizing Data Using a Box Plot; Exercise 20: Visualizing Data Using a Histogram; Exercise 21: Visualizing Data Using a Density Plot; Exercise 22: Visualizing Multiple Variables Using a Histogram; Activity 4: Plotting Multiple Density Plots and Boxplots; Exercise 23: Plotting a Histogram for the nr.employed, euribor3m, cons.conf.idx, and duration Variables; Exploring Categorical Features; Exercise 24: Exploring Categorical Features; Exercise 25: Exploring Categorical Features Using a Bar Chart</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Exercise 26: Exploring Categorical Features using Pie Chart</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Applied Supervised Learning with R will make you a pro at identifying your business problem, selecting the best supervised machine learning algorithm to solve it, and fine-tuning your model to exactly deliver your needs without overfitting itself.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004407</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks & fuzzy systems.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data capture & analysis.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moolayil, Jojo.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Applied supervised learning with R (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYyVvMXVjM8qfTqFgGjw83</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ramasubramanian, Karthik.</subfield><subfield code="t">Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends.</subfield><subfield code="d">Birmingham : Packt Publishing, Limited, ©2019</subfield><subfield code="z">9781838556334</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2153726</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2153726</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36368510</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5784240</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2153726</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">300576902</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1104084485 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T15:50:18Z |
institution | BVB |
isbn | 1838557164 9781838557164 |
language | English |
oclc_num | 1104084485 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (503 pages) |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing, Limited, |
record_format | marc |
spelling | Ramasubramanian, Karthik. Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. Birmingham : Packt Publishing, Limited, 2019. 1 online resource (503 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Cover; FM; Table of Contents; Preface; Chapter 1: R for Advanced Analytics; Introduction; Working with Real-World Datasets; Exercise 1: Using the unzip Method for Unzipping a Downloaded File; Reading Data from Various Data Formats; CSV Files; Exercise 2: Reading a CSV File and Summarizing its Column; JSON; Exercise 3: Reading a JSON file and Storing the Data in DataFrame; Text; Exercise 4: Reading a CSV File with Text Column and Storing the Data in VCorpus; Write R Markdown Files for Code Reproducibility; Activity 1: Create an R Markdown File to Read a CSV File and Write a Summary of Data Data Structures in RVector; Matrix; Exercise 5: Performing Transformation on the Data to Make it Available for the Analysis; List; Exercise 6: Using the List Method for Storing Integers and Characters Together; Activity 2: Create a List of Two Matrices and Access the Values; DataFrame; Exercise 7: Performing Integrity Checks Using DataFrame; Data Table; Exercise 8: Exploring the File Read Operation; Data Processing and Transformation; cbind; Exercise 9: Exploring the cbind Function; rbind; Exercise 10: Exploring the rbind Function; The merge Function; Exercise 11: Exploring the merge Function Inner JoinLeft Join; Right Join; Full Join; The reshape Function; Exercise 12: Exploring the reshape Function; The aggregate Function; The Apply Family of Functions; The apply Function; Exercise 13: Implementing the apply Function; The lapply Function; Exercise 14: Implementing the lapply Function; The sapply Function; The tapply Function; Useful Packages; The dplyr Package; Exercise 15: Implementing the dplyr Package; The tidyr Package; Exercise 16: Implementing the tidyr Package Activity 3: Create a DataFrame with Five Summary Statistics for All Numeric Variables from Bank Data Using dplyr and tidyrThe plyr Package; Exercise 17: Exploring the plyr Package; The caret Package; Data Visualization; Scatterplot; Scatter Plot between Age and Balance split by Marital Status; Line Charts; Histogram; Boxplot; Summary; Chapter 2: Exploratory Analysis of Data; Introduction; Defining the Problem Statement; Problem-Designing Artifacts; Understanding the Science Behind EDA; Exploratory Data Analysis; Exercise 18: Studying the Data Dimensions; Univariate Analysis Exploring Numeric/Continuous FeaturesExercise 19: Visualizing Data Using a Box Plot; Exercise 20: Visualizing Data Using a Histogram; Exercise 21: Visualizing Data Using a Density Plot; Exercise 22: Visualizing Multiple Variables Using a Histogram; Activity 4: Plotting Multiple Density Plots and Boxplots; Exercise 23: Plotting a Histogram for the nr.employed, euribor3m, cons.conf.idx, and duration Variables; Exploring Categorical Features; Exercise 24: Exploring Categorical Features; Exercise 25: Exploring Categorical Features Using a Bar Chart Exercise 26: Exploring Categorical Features using Pie Chart Applied Supervised Learning with R will make you a pro at identifying your business problem, selecting the best supervised machine learning algorithm to solve it, and fine-tuning your model to exactly deliver your needs without overfitting itself. Includes bibliographical references. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Apprentissage automatique. R (Langage de programmation) Artificial intelligence. bicssc Neural networks & fuzzy systems. bicssc Data capture & analysis. bicssc COMPUTERS General. bisacsh Machine learning fast R (Computer program language) fast Moolayil, Jojo. has work: Applied supervised learning with R (Text) https://id.oclc.org/worldcat/entity/E39PCYyVvMXVjM8qfTqFgGjw83 https://id.oclc.org/worldcat/ontology/hasWork Print version: Ramasubramanian, Karthik. Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. Birmingham : Packt Publishing, Limited, ©2019 9781838556334 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2153726 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2153726 Volltext |
spellingShingle | Ramasubramanian, Karthik Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. Cover; FM; Table of Contents; Preface; Chapter 1: R for Advanced Analytics; Introduction; Working with Real-World Datasets; Exercise 1: Using the unzip Method for Unzipping a Downloaded File; Reading Data from Various Data Formats; CSV Files; Exercise 2: Reading a CSV File and Summarizing its Column; JSON; Exercise 3: Reading a JSON file and Storing the Data in DataFrame; Text; Exercise 4: Reading a CSV File with Text Column and Storing the Data in VCorpus; Write R Markdown Files for Code Reproducibility; Activity 1: Create an R Markdown File to Read a CSV File and Write a Summary of Data Data Structures in RVector; Matrix; Exercise 5: Performing Transformation on the Data to Make it Available for the Analysis; List; Exercise 6: Using the List Method for Storing Integers and Characters Together; Activity 2: Create a List of Two Matrices and Access the Values; DataFrame; Exercise 7: Performing Integrity Checks Using DataFrame; Data Table; Exercise 8: Exploring the File Read Operation; Data Processing and Transformation; cbind; Exercise 9: Exploring the cbind Function; rbind; Exercise 10: Exploring the rbind Function; The merge Function; Exercise 11: Exploring the merge Function Inner JoinLeft Join; Right Join; Full Join; The reshape Function; Exercise 12: Exploring the reshape Function; The aggregate Function; The Apply Family of Functions; The apply Function; Exercise 13: Implementing the apply Function; The lapply Function; Exercise 14: Implementing the lapply Function; The sapply Function; The tapply Function; Useful Packages; The dplyr Package; Exercise 15: Implementing the dplyr Package; The tidyr Package; Exercise 16: Implementing the tidyr Package Activity 3: Create a DataFrame with Five Summary Statistics for All Numeric Variables from Bank Data Using dplyr and tidyrThe plyr Package; Exercise 17: Exploring the plyr Package; The caret Package; Data Visualization; Scatterplot; Scatter Plot between Age and Balance split by Marital Status; Line Charts; Histogram; Boxplot; Summary; Chapter 2: Exploratory Analysis of Data; Introduction; Defining the Problem Statement; Problem-Designing Artifacts; Understanding the Science Behind EDA; Exploratory Data Analysis; Exercise 18: Studying the Data Dimensions; Univariate Analysis Exploring Numeric/Continuous FeaturesExercise 19: Visualizing Data Using a Box Plot; Exercise 20: Visualizing Data Using a Histogram; Exercise 21: Visualizing Data Using a Density Plot; Exercise 22: Visualizing Multiple Variables Using a Histogram; Activity 4: Plotting Multiple Density Plots and Boxplots; Exercise 23: Plotting a Histogram for the nr.employed, euribor3m, cons.conf.idx, and duration Variables; Exploring Categorical Features; Exercise 24: Exploring Categorical Features; Exercise 25: Exploring Categorical Features Using a Bar Chart Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Apprentissage automatique. R (Langage de programmation) Artificial intelligence. bicssc Neural networks & fuzzy systems. bicssc Data capture & analysis. bicssc COMPUTERS General. bisacsh Machine learning fast R (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh2002004407 |
title | Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. |
title_auth | Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. |
title_exact_search | Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. |
title_full | Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. |
title_fullStr | Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. |
title_full_unstemmed | Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. |
title_short | Applied Supervised Learning with R : |
title_sort | applied supervised learning with r use machine learning libraries of r to build models that solve business problems and predict future trends |
title_sub | Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Apprentissage automatique. R (Langage de programmation) Artificial intelligence. bicssc Neural networks & fuzzy systems. bicssc Data capture & analysis. bicssc COMPUTERS General. bisacsh Machine learning fast R (Computer program language) fast |
topic_facet | Machine learning. R (Computer program language) Apprentissage automatique. R (Langage de programmation) Artificial intelligence. Neural networks & fuzzy systems. Data capture & analysis. COMPUTERS General. Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2153726 |
work_keys_str_mv | AT ramasubramaniankarthik appliedsupervisedlearningwithrusemachinelearninglibrariesofrtobuildmodelsthatsolvebusinessproblemsandpredictfuturetrends AT moolayiljojo appliedsupervisedlearningwithrusemachinelearninglibrariesofrtobuildmodelsthatsolvebusinessproblemsandpredictfuturetrends |