Deep Learning with R for Beginners :: Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet.
This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep mod...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing, Limited,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep models using R. |
Beschreibung: | Document classification |
Beschreibung: | 1 online resource (605 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 1838647228 9781838647223 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1102470876 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 190608s2019 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d UKMGB |d OCLCO |d TEFOD |d OCLCF |d EBLCP |d TEFOD |d OCLCQ |d YDX |d UKAHL |d OCLCQ |d N$T |d OCLCQ |d AFU |d OCLCO |d NZAUC |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBB999295 |2 bnb | ||
016 | 7 | |a 019419963 |2 Uk | |
019 | |a 1102477154 | ||
020 | |a 1838647228 | ||
020 | |a 9781838647223 |q (electronic bk.) | ||
035 | |a (OCoLC)1102470876 |z (OCoLC)1102477154 | ||
037 | |a 9781838647223 |b Packt Publishing | ||
037 | |a 3D8F42A2-676D-4B03-8A69-435BC09160A1 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a Q325.5 |b .H63 2019 | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Hodnett, Mark. | |
245 | 1 | 0 | |a Deep Learning with R for Beginners : |b Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. |
260 | |a Birmingham : |b Packt Publishing, Limited, |c 2019. | ||
300 | |a 1 online resource (605 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R | |
505 | 8 | |a Building neural network models; Generating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter | |
505 | 8 | |a Using regularization to overcome overfitting; L1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration | |
505 | 8 | |a Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models | |
505 | 8 | |a Evaluation metrics and evaluating performance; Types of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning | |
500 | |a Document classification | ||
520 | |a This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep models using R. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a R (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh2002004407 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a R (Langage de programmation) | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
700 | 1 | |a Wiley, Joshua F. | |
700 | 1 | |a Liu, Yuxi (Hayden) | |
700 | 1 | |a Maldonado, Pablo. | |
758 | |i has work: |a Deep learning with R for beginners (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJJd6hTfFdVDy7rhrxg4y |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Hodnett, Mark. |t Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. |d Birmingham : Packt Publishing, Limited, ©2019 |z 9781838642709 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2142582 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2142582 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH36312517 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5778833 | ||
938 | |a EBSCOhost |b EBSC |n 2142582 | ||
938 | |a YBP Library Services |b YANK |n 300558438 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1102470876 |
---|---|
_version_ | 1813901651403079680 |
adam_text | |
any_adam_object | |
author | Hodnett, Mark |
author2 | Wiley, Joshua F. Liu, Yuxi (Hayden) Maldonado, Pablo |
author2_role | |
author2_variant | j f w jf jfw y h l yh yhl p m pm |
author_facet | Hodnett, Mark Wiley, Joshua F. Liu, Yuxi (Hayden) Maldonado, Pablo |
author_role | |
author_sort | Hodnett, Mark |
author_variant | m h mh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .H63 2019 |
callnumber-search | Q325.5 .H63 2019 |
callnumber-sort | Q 3325.5 H63 42019 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R Building neural network models; Generating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter Using regularization to overcome overfitting; L1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models Evaluation metrics and evaluating performance; Types of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning |
ctrlnum | (OCoLC)1102470876 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05877cam a2200637 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1102470876</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">190608s2019 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AFU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NZAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB999295</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019419963</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1102477154</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838647228</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838647223</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1102470876</subfield><subfield code="z">(OCoLC)1102477154</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781838647223</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">3D8F42A2-676D-4B03-8A69-435BC09160A1</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.H63 2019</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hodnett, Mark.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep Learning with R for Beginners :</subfield><subfield code="b">Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing, Limited,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (605 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Building neural network models; Generating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using regularization to overcome overfitting; L1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Evaluation metrics and evaluating performance; Types of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Document classification</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep models using R.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004407</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiley, Joshua F.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yuxi (Hayden)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maldonado, Pablo.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Deep learning with R for beginners (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJJd6hTfFdVDy7rhrxg4y</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Hodnett, Mark.</subfield><subfield code="t">Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet.</subfield><subfield code="d">Birmingham : Packt Publishing, Limited, ©2019</subfield><subfield code="z">9781838642709</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2142582</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2142582</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36312517</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5778833</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2142582</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">300558438</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1102470876 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T15:50:17Z |
institution | BVB |
isbn | 1838647228 9781838647223 |
language | English |
oclc_num | 1102470876 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (605 pages) |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing, Limited, |
record_format | marc |
spelling | Hodnett, Mark. Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. Birmingham : Packt Publishing, Limited, 2019. 1 online resource (605 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R Building neural network models; Generating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter Using regularization to overcome overfitting; L1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models Evaluation metrics and evaluating performance; Types of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning Document classification This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep models using R. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Apprentissage automatique. R (Langage de programmation) Machine learning fast R (Computer program language) fast Wiley, Joshua F. Liu, Yuxi (Hayden) Maldonado, Pablo. has work: Deep learning with R for beginners (Text) https://id.oclc.org/worldcat/entity/E39PCGJJd6hTfFdVDy7rhrxg4y https://id.oclc.org/worldcat/ontology/hasWork Print version: Hodnett, Mark. Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. Birmingham : Packt Publishing, Limited, ©2019 9781838642709 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2142582 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2142582 Volltext |
spellingShingle | Hodnett, Mark Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R Building neural network models; Generating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter Using regularization to overcome overfitting; L1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models Evaluation metrics and evaluating performance; Types of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Apprentissage automatique. R (Langage de programmation) Machine learning fast R (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh2002004407 |
title | Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. |
title_auth | Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. |
title_exact_search | Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. |
title_full | Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. |
title_fullStr | Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. |
title_full_unstemmed | Deep Learning with R for Beginners : Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. |
title_short | Deep Learning with R for Beginners : |
title_sort | deep learning with r for beginners design neural network models in r 3 5 using tensorflow keras and mxnet |
title_sub | Design Neural Network Models in R 3. 5 Using TensorFlow, Keras, and MXNet. |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Apprentissage automatique. R (Langage de programmation) Machine learning fast R (Computer program language) fast |
topic_facet | Machine learning. R (Computer program language) Apprentissage automatique. R (Langage de programmation) Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2142582 |
work_keys_str_mv | AT hodnettmark deeplearningwithrforbeginnersdesignneuralnetworkmodelsinr35usingtensorflowkerasandmxnet AT wileyjoshuaf deeplearningwithrforbeginnersdesignneuralnetworkmodelsinr35usingtensorflowkerasandmxnet AT liuyuxihayden deeplearningwithrforbeginnersdesignneuralnetworkmodelsinr35usingtensorflowkerasandmxnet AT maldonadopablo deeplearningwithrforbeginnersdesignneuralnetworkmodelsinr35usingtensorflowkerasandmxnet |