Partial differential equations arising from physics and geometry :: a volume in memory of Abbas Bahri /
In this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor...
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2019.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
450. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor Abbas Bahri. The opening chapter commemorates his life and work. While the research presented in this book is cutting-edge, the treatment throughout is at a level accessible to graduate students. It includes short courses offering readers a unique opportunity to learn the state of the art in evolution equations and mathematical models in physics, which will serve as an introduction for students and a useful reference for established researchers. Finally, the volume includes many open problems to inspire the next generation. |
Beschreibung: | 1 online resource (xvi, 453 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781108367639 1108367631 9781108373272 1108373275 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1101102167 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 190513s2019 enk ob 001 0 eng d | ||
040 | |a CAMBR |b eng |e rda |e pn |c CAMBR |d OCLCO |d UIU |d EBLCP |d OCLCF |d N$T |d OCLCQ |d CEF |d OCLCQ |d YDX |d VRC |d OCLCQ |d K6U |d UKAHL |d OCLCO |d OCLCQ |d S9M |d OCLCL |d SFB |d OCLCQ |d SXB | ||
019 | |a 1103320776 |a 1155311400 |a 1167351626 | ||
020 | |a 9781108367639 |q (electronic bk.) | ||
020 | |a 1108367631 |q (electronic bk.) | ||
020 | |a 9781108373272 |q (electronic bk.) | ||
020 | |a 1108373275 |q (electronic bk.) | ||
020 | |z 9781108431637 |q (paperback) | ||
020 | |z 1108431631 | ||
035 | |a (OCoLC)1101102167 |z (OCoLC)1103320776 |z (OCoLC)1155311400 |z (OCoLC)1167351626 | ||
050 | 4 | |a QA377 |b .P37 2019 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.353 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Partial differential equations arising from physics and geometry : |b a volume in memory of Abbas Bahri / |c edited by Mohamed Ben Ayed, Mohamed Ali Jendoubi, Yomna Rb̌a, ̐ Hasna Riahi, Hatem Zaag. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2019. | |
300 | |a 1 online resource (xvi, 453 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 450 | |
520 | |a In this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor Abbas Bahri. The opening chapter commemorates his life and work. While the research presented in this book is cutting-edge, the treatment throughout is at a level accessible to graduate students. It includes short courses offering readers a unique opportunity to learn the state of the art in evolution equations and mathematical models in physics, which will serve as an introduction for students and a useful reference for established researchers. Finally, the volume includes many open problems to inspire the next generation. | ||
588 | 0 | |a Vendor-supplied metadata. | |
505 | 0 | |a Cover; Series page; Title page; Copyright information; Table of contents; Preface; Abbas Bahri: A Dedicated Life; 0.1 A short biography; 0.2 Mathematical contributions; References; 1 Blow-up Rate for a Semilinear Wave Equation with Exponential Nonlinearity in One Space Dimension; 1.1 Introduction; 1.2 The Local Cauchy Problem; 1.3 Energy Estimates; 1.4 ODE Type Estimates; 1.4.1 Preliminaries; 1.4.2 The Blow-up Rate; 1.5 Blow-up Estimates for Equation (1.1); 1.5.1 Blow-up Estimates in the General Case; 1.5.2 Blow-up Estimates in the Non-characteristic Case; References | |
505 | 8 | |a 2 On the Role of Anisotropy in the Weak Stability of the Navier-Stokes System2.1 Introduction and Statement of Results; 2.1.1 Setting of the Problem; 2.1.2 Statement of the Main Result; 2.1.3 Layout; 2.2 Proof of the Main Theorem; 2.2.1 General Scheme of the Proof; 2.2.2 Anisotropic Profile Decomposition; 2.2.3 Propagation of Profiles; 2.2.4 End of the Proof of the Main Theorem; 2.3 Profile Decomposition of the Sequence of Initial Data: Proof of Theorem 2.12; 2.3.1 Profile Decomposition of Anisotropically Oscillating, Divergence-free Vector Fields | |
505 | 8 | |a 2.3.2 Regrouping of Profiles According to Horizontal Scales2.4 Proof of Theorems 2.14 and 2.15; 2.4.1 Proof of Theorem 2.14; 2.4.2 Proof of [interactionprofilescale1]Theorem 2.15; References; 3 The Motion Law of Fronts for Scalar Reaction-diffusion Equations with Multiple Wells: the Degenerate Case; 3.1 Introduction; 3.1.1 Main Results: Fronts and Their Speed; 3.1.2 Regularized Fronts; 3.1.3 Paving the Way to the Motion Law; 3.1.4 A First Compactness Result; 3.1.5 Refined Estimates Off the Front Set and the Motion Law; 3.2 Remarks on Stationary Solutions | |
505 | 8 | |a 3.2.1 Stationary Solutions on R with Vanishing Discrepancy3.2.2 On the Energy of Chains of Stationary Solutions; 3.2.3 Study of the Perturbed Stationary Equation; 3.3 Regularized Fronts; 3.3.1 Finding Regularized Fronts; 3.3.2 Local Dissipation; 3.3.3 Quantization of the Energy; 3.3.4 Propagating Regularized Fronts; 3.4 First Compactness Results for the Front Points; 3.5 Refined Asymptotics Off the Front Set; 3.5.1 Relaxations Towards Stationary Solutions; 3.5.2 Preliminary Results; 3.5.3 The Attractive Case; 3.5.4 The Repulsive Case; 3.5.5 Estimating the Discrepancy; Linear Estimates | |
504 | |a Includes bibliographical references. | ||
650 | 0 | |a Evolution equations, Nonlinear. |0 http://id.loc.gov/authorities/subjects/sh85046037 | |
650 | 0 | |a Differential equations, Partial. |0 http://id.loc.gov/authorities/subjects/sh85037912 | |
650 | 6 | |a Équations d'évolution non linéaires. | |
650 | 6 | |a Équations aux dérivées partielles. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Análisis matemático |2 embne | |
650 | 7 | |a Ecuaciones diferenciales |2 embne | |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 7 | |a Evolution equations, Nonlinear |2 fast | |
655 | 4 | |a Electronic book. | |
700 | 1 | |a Ben Ayed, Mohamed, |e editor. |0 http://id.loc.gov/authorities/names/nb2019024445 | |
700 | 1 | |a Jendoubi, Mohamed Ali, |e editor. |0 http://id.loc.gov/authorities/names/nb2019024448 | |
700 | 1 | |a Rb̌a, ̐ Yomna, |e editor. | |
700 | 1 | |a Riahi, Hasna, |d 1966- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjtwYqtkvVRtpKTJKMyb8d |0 http://id.loc.gov/authorities/names/n98104803 | |
700 | 1 | |a Zaag, Hatem, |e editor. |0 http://id.loc.gov/authorities/names/nb2019024451 | |
700 | 1 | |a Bahri, Abbas, |e honouree. |0 http://id.loc.gov/authorities/names/nr98015565 | |
758 | |i has work: |a Partial differential equations arising from physics and geometry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFRfGbqt6PPP6DpTVMMmJP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Partial differential equations arising from physics and geometry. |d Cambridge : Cambridge University Press 2019 |z 9781108431637 |w (OCoLC)1026264197 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 450. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2091078 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH36227709 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33943634 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5780807 | ||
938 | |a EBSCOhost |b EBSC |n 2091078 | ||
938 | |a YBP Library Services |b YANK |n 300569998 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1101102167 |
---|---|
_version_ | 1816882492772188161 |
adam_text | |
any_adam_object | |
author2 | Ben Ayed, Mohamed Jendoubi, Mohamed Ali Rb̌a, ̐ Yomna Riahi, Hasna, 1966- Zaag, Hatem |
author2_role | edt edt edt edt edt |
author2_variant | a m b am amb m a j ma maj y r y yr h r hr h z hz |
author_GND | http://id.loc.gov/authorities/names/nb2019024445 http://id.loc.gov/authorities/names/nb2019024448 http://id.loc.gov/authorities/names/n98104803 http://id.loc.gov/authorities/names/nb2019024451 http://id.loc.gov/authorities/names/nr98015565 |
author_facet | Ben Ayed, Mohamed Jendoubi, Mohamed Ali Rb̌a, ̐ Yomna Riahi, Hasna, 1966- Zaag, Hatem |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .P37 2019 |
callnumber-search | QA377 .P37 2019 |
callnumber-sort | QA 3377 P37 42019 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Series page; Title page; Copyright information; Table of contents; Preface; Abbas Bahri: A Dedicated Life; 0.1 A short biography; 0.2 Mathematical contributions; References; 1 Blow-up Rate for a Semilinear Wave Equation with Exponential Nonlinearity in One Space Dimension; 1.1 Introduction; 1.2 The Local Cauchy Problem; 1.3 Energy Estimates; 1.4 ODE Type Estimates; 1.4.1 Preliminaries; 1.4.2 The Blow-up Rate; 1.5 Blow-up Estimates for Equation (1.1); 1.5.1 Blow-up Estimates in the General Case; 1.5.2 Blow-up Estimates in the Non-characteristic Case; References 2 On the Role of Anisotropy in the Weak Stability of the Navier-Stokes System2.1 Introduction and Statement of Results; 2.1.1 Setting of the Problem; 2.1.2 Statement of the Main Result; 2.1.3 Layout; 2.2 Proof of the Main Theorem; 2.2.1 General Scheme of the Proof; 2.2.2 Anisotropic Profile Decomposition; 2.2.3 Propagation of Profiles; 2.2.4 End of the Proof of the Main Theorem; 2.3 Profile Decomposition of the Sequence of Initial Data: Proof of Theorem 2.12; 2.3.1 Profile Decomposition of Anisotropically Oscillating, Divergence-free Vector Fields 2.3.2 Regrouping of Profiles According to Horizontal Scales2.4 Proof of Theorems 2.14 and 2.15; 2.4.1 Proof of Theorem 2.14; 2.4.2 Proof of [interactionprofilescale1]Theorem 2.15; References; 3 The Motion Law of Fronts for Scalar Reaction-diffusion Equations with Multiple Wells: the Degenerate Case; 3.1 Introduction; 3.1.1 Main Results: Fronts and Their Speed; 3.1.2 Regularized Fronts; 3.1.3 Paving the Way to the Motion Law; 3.1.4 A First Compactness Result; 3.1.5 Refined Estimates Off the Front Set and the Motion Law; 3.2 Remarks on Stationary Solutions 3.2.1 Stationary Solutions on R with Vanishing Discrepancy3.2.2 On the Energy of Chains of Stationary Solutions; 3.2.3 Study of the Perturbed Stationary Equation; 3.3 Regularized Fronts; 3.3.1 Finding Regularized Fronts; 3.3.2 Local Dissipation; 3.3.3 Quantization of the Energy; 3.3.4 Propagating Regularized Fronts; 3.4 First Compactness Results for the Front Points; 3.5 Refined Asymptotics Off the Front Set; 3.5.1 Relaxations Towards Stationary Solutions; 3.5.2 Preliminary Results; 3.5.3 The Attractive Case; 3.5.4 The Repulsive Case; 3.5.5 Estimating the Discrepancy; Linear Estimates |
ctrlnum | (OCoLC)1101102167 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06884cam a2200757 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1101102167</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">190513s2019 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UIU</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">VRC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1103320776</subfield><subfield code="a">1155311400</subfield><subfield code="a">1167351626</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108367639</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108367631</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108373272</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108373275</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781108431637</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1108431631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1101102167</subfield><subfield code="z">(OCoLC)1103320776</subfield><subfield code="z">(OCoLC)1155311400</subfield><subfield code="z">(OCoLC)1167351626</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.P37 2019</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Partial differential equations arising from physics and geometry :</subfield><subfield code="b">a volume in memory of Abbas Bahri /</subfield><subfield code="c">edited by Mohamed Ben Ayed, Mohamed Ali Jendoubi, Yomna Rb̌a, ̐ Hasna Riahi, Hatem Zaag.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 453 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">450</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor Abbas Bahri. The opening chapter commemorates his life and work. While the research presented in this book is cutting-edge, the treatment throughout is at a level accessible to graduate students. It includes short courses offering readers a unique opportunity to learn the state of the art in evolution equations and mathematical models in physics, which will serve as an introduction for students and a useful reference for established researchers. Finally, the volume includes many open problems to inspire the next generation.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Vendor-supplied metadata.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Series page; Title page; Copyright information; Table of contents; Preface; Abbas Bahri: A Dedicated Life; 0.1 A short biography; 0.2 Mathematical contributions; References; 1 Blow-up Rate for a Semilinear Wave Equation with Exponential Nonlinearity in One Space Dimension; 1.1 Introduction; 1.2 The Local Cauchy Problem; 1.3 Energy Estimates; 1.4 ODE Type Estimates; 1.4.1 Preliminaries; 1.4.2 The Blow-up Rate; 1.5 Blow-up Estimates for Equation (1.1); 1.5.1 Blow-up Estimates in the General Case; 1.5.2 Blow-up Estimates in the Non-characteristic Case; References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2 On the Role of Anisotropy in the Weak Stability of the Navier-Stokes System2.1 Introduction and Statement of Results; 2.1.1 Setting of the Problem; 2.1.2 Statement of the Main Result; 2.1.3 Layout; 2.2 Proof of the Main Theorem; 2.2.1 General Scheme of the Proof; 2.2.2 Anisotropic Profile Decomposition; 2.2.3 Propagation of Profiles; 2.2.4 End of the Proof of the Main Theorem; 2.3 Profile Decomposition of the Sequence of Initial Data: Proof of Theorem 2.12; 2.3.1 Profile Decomposition of Anisotropically Oscillating, Divergence-free Vector Fields</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.2 Regrouping of Profiles According to Horizontal Scales2.4 Proof of Theorems 2.14 and 2.15; 2.4.1 Proof of Theorem 2.14; 2.4.2 Proof of [interactionprofilescale1]Theorem 2.15; References; 3 The Motion Law of Fronts for Scalar Reaction-diffusion Equations with Multiple Wells: the Degenerate Case; 3.1 Introduction; 3.1.1 Main Results: Fronts and Their Speed; 3.1.2 Regularized Fronts; 3.1.3 Paving the Way to the Motion Law; 3.1.4 A First Compactness Result; 3.1.5 Refined Estimates Off the Front Set and the Motion Law; 3.2 Remarks on Stationary Solutions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.1 Stationary Solutions on R with Vanishing Discrepancy3.2.2 On the Energy of Chains of Stationary Solutions; 3.2.3 Study of the Perturbed Stationary Equation; 3.3 Regularized Fronts; 3.3.1 Finding Regularized Fronts; 3.3.2 Local Dissipation; 3.3.3 Quantization of the Energy; 3.3.4 Propagating Regularized Fronts; 3.4 First Compactness Results for the Front Points; 3.5 Refined Asymptotics Off the Front Set; 3.5.1 Relaxations Towards Stationary Solutions; 3.5.2 Preliminary Results; 3.5.3 The Attractive Case; 3.5.4 The Repulsive Case; 3.5.5 Estimating the Discrepancy; Linear Estimates</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Evolution equations, Nonlinear.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85046037</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037912</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations d'évolution non linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Análisis matemático</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ecuaciones diferenciales</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolution equations, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ben Ayed, Mohamed,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2019024445</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jendoubi, Mohamed Ali,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2019024448</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rb̌a, ̐ Yomna,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riahi, Hasna,</subfield><subfield code="d">1966-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjtwYqtkvVRtpKTJKMyb8d</subfield><subfield code="0">http://id.loc.gov/authorities/names/n98104803</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaag, Hatem,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2019024451</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bahri, Abbas,</subfield><subfield code="e">honouree.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr98015565</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Partial differential equations arising from physics and geometry (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFRfGbqt6PPP6DpTVMMmJP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Partial differential equations arising from physics and geometry.</subfield><subfield code="d">Cambridge : Cambridge University Press 2019</subfield><subfield code="z">9781108431637</subfield><subfield code="w">(OCoLC)1026264197</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">450.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2091078</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36227709</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33943634</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5780807</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2091078</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">300569998</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-on1101102167 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:29Z |
institution | BVB |
isbn | 9781108367639 1108367631 9781108373272 1108373275 |
language | English |
oclc_num | 1101102167 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 453 pages) |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Partial differential equations arising from physics and geometry : a volume in memory of Abbas Bahri / edited by Mohamed Ben Ayed, Mohamed Ali Jendoubi, Yomna Rb̌a, ̐ Hasna Riahi, Hatem Zaag. Cambridge : Cambridge University Press, 2019. 1 online resource (xvi, 453 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 450 In this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor Abbas Bahri. The opening chapter commemorates his life and work. While the research presented in this book is cutting-edge, the treatment throughout is at a level accessible to graduate students. It includes short courses offering readers a unique opportunity to learn the state of the art in evolution equations and mathematical models in physics, which will serve as an introduction for students and a useful reference for established researchers. Finally, the volume includes many open problems to inspire the next generation. Vendor-supplied metadata. Cover; Series page; Title page; Copyright information; Table of contents; Preface; Abbas Bahri: A Dedicated Life; 0.1 A short biography; 0.2 Mathematical contributions; References; 1 Blow-up Rate for a Semilinear Wave Equation with Exponential Nonlinearity in One Space Dimension; 1.1 Introduction; 1.2 The Local Cauchy Problem; 1.3 Energy Estimates; 1.4 ODE Type Estimates; 1.4.1 Preliminaries; 1.4.2 The Blow-up Rate; 1.5 Blow-up Estimates for Equation (1.1); 1.5.1 Blow-up Estimates in the General Case; 1.5.2 Blow-up Estimates in the Non-characteristic Case; References 2 On the Role of Anisotropy in the Weak Stability of the Navier-Stokes System2.1 Introduction and Statement of Results; 2.1.1 Setting of the Problem; 2.1.2 Statement of the Main Result; 2.1.3 Layout; 2.2 Proof of the Main Theorem; 2.2.1 General Scheme of the Proof; 2.2.2 Anisotropic Profile Decomposition; 2.2.3 Propagation of Profiles; 2.2.4 End of the Proof of the Main Theorem; 2.3 Profile Decomposition of the Sequence of Initial Data: Proof of Theorem 2.12; 2.3.1 Profile Decomposition of Anisotropically Oscillating, Divergence-free Vector Fields 2.3.2 Regrouping of Profiles According to Horizontal Scales2.4 Proof of Theorems 2.14 and 2.15; 2.4.1 Proof of Theorem 2.14; 2.4.2 Proof of [interactionprofilescale1]Theorem 2.15; References; 3 The Motion Law of Fronts for Scalar Reaction-diffusion Equations with Multiple Wells: the Degenerate Case; 3.1 Introduction; 3.1.1 Main Results: Fronts and Their Speed; 3.1.2 Regularized Fronts; 3.1.3 Paving the Way to the Motion Law; 3.1.4 A First Compactness Result; 3.1.5 Refined Estimates Off the Front Set and the Motion Law; 3.2 Remarks on Stationary Solutions 3.2.1 Stationary Solutions on R with Vanishing Discrepancy3.2.2 On the Energy of Chains of Stationary Solutions; 3.2.3 Study of the Perturbed Stationary Equation; 3.3 Regularized Fronts; 3.3.1 Finding Regularized Fronts; 3.3.2 Local Dissipation; 3.3.3 Quantization of the Energy; 3.3.4 Propagating Regularized Fronts; 3.4 First Compactness Results for the Front Points; 3.5 Refined Asymptotics Off the Front Set; 3.5.1 Relaxations Towards Stationary Solutions; 3.5.2 Preliminary Results; 3.5.3 The Attractive Case; 3.5.4 The Repulsive Case; 3.5.5 Estimating the Discrepancy; Linear Estimates Includes bibliographical references. Evolution equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85046037 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Équations d'évolution non linéaires. Équations aux dérivées partielles. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Análisis matemático embne Ecuaciones diferenciales embne Differential equations, Partial fast Evolution equations, Nonlinear fast Electronic book. Ben Ayed, Mohamed, editor. http://id.loc.gov/authorities/names/nb2019024445 Jendoubi, Mohamed Ali, editor. http://id.loc.gov/authorities/names/nb2019024448 Rb̌a, ̐ Yomna, editor. Riahi, Hasna, 1966- editor. https://id.oclc.org/worldcat/entity/E39PCjtwYqtkvVRtpKTJKMyb8d http://id.loc.gov/authorities/names/n98104803 Zaag, Hatem, editor. http://id.loc.gov/authorities/names/nb2019024451 Bahri, Abbas, honouree. http://id.loc.gov/authorities/names/nr98015565 has work: Partial differential equations arising from physics and geometry (Text) https://id.oclc.org/worldcat/entity/E39PCFRfGbqt6PPP6DpTVMMmJP https://id.oclc.org/worldcat/ontology/hasWork Print version: Partial differential equations arising from physics and geometry. Cambridge : Cambridge University Press 2019 9781108431637 (OCoLC)1026264197 London Mathematical Society lecture note series ; 450. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2091078 Volltext |
spellingShingle | Partial differential equations arising from physics and geometry : a volume in memory of Abbas Bahri / London Mathematical Society lecture note series ; Cover; Series page; Title page; Copyright information; Table of contents; Preface; Abbas Bahri: A Dedicated Life; 0.1 A short biography; 0.2 Mathematical contributions; References; 1 Blow-up Rate for a Semilinear Wave Equation with Exponential Nonlinearity in One Space Dimension; 1.1 Introduction; 1.2 The Local Cauchy Problem; 1.3 Energy Estimates; 1.4 ODE Type Estimates; 1.4.1 Preliminaries; 1.4.2 The Blow-up Rate; 1.5 Blow-up Estimates for Equation (1.1); 1.5.1 Blow-up Estimates in the General Case; 1.5.2 Blow-up Estimates in the Non-characteristic Case; References 2 On the Role of Anisotropy in the Weak Stability of the Navier-Stokes System2.1 Introduction and Statement of Results; 2.1.1 Setting of the Problem; 2.1.2 Statement of the Main Result; 2.1.3 Layout; 2.2 Proof of the Main Theorem; 2.2.1 General Scheme of the Proof; 2.2.2 Anisotropic Profile Decomposition; 2.2.3 Propagation of Profiles; 2.2.4 End of the Proof of the Main Theorem; 2.3 Profile Decomposition of the Sequence of Initial Data: Proof of Theorem 2.12; 2.3.1 Profile Decomposition of Anisotropically Oscillating, Divergence-free Vector Fields 2.3.2 Regrouping of Profiles According to Horizontal Scales2.4 Proof of Theorems 2.14 and 2.15; 2.4.1 Proof of Theorem 2.14; 2.4.2 Proof of [interactionprofilescale1]Theorem 2.15; References; 3 The Motion Law of Fronts for Scalar Reaction-diffusion Equations with Multiple Wells: the Degenerate Case; 3.1 Introduction; 3.1.1 Main Results: Fronts and Their Speed; 3.1.2 Regularized Fronts; 3.1.3 Paving the Way to the Motion Law; 3.1.4 A First Compactness Result; 3.1.5 Refined Estimates Off the Front Set and the Motion Law; 3.2 Remarks on Stationary Solutions 3.2.1 Stationary Solutions on R with Vanishing Discrepancy3.2.2 On the Energy of Chains of Stationary Solutions; 3.2.3 Study of the Perturbed Stationary Equation; 3.3 Regularized Fronts; 3.3.1 Finding Regularized Fronts; 3.3.2 Local Dissipation; 3.3.3 Quantization of the Energy; 3.3.4 Propagating Regularized Fronts; 3.4 First Compactness Results for the Front Points; 3.5 Refined Asymptotics Off the Front Set; 3.5.1 Relaxations Towards Stationary Solutions; 3.5.2 Preliminary Results; 3.5.3 The Attractive Case; 3.5.4 The Repulsive Case; 3.5.5 Estimating the Discrepancy; Linear Estimates Evolution equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85046037 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Équations d'évolution non linéaires. Équations aux dérivées partielles. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Análisis matemático embne Ecuaciones diferenciales embne Differential equations, Partial fast Evolution equations, Nonlinear fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85046037 http://id.loc.gov/authorities/subjects/sh85037912 |
title | Partial differential equations arising from physics and geometry : a volume in memory of Abbas Bahri / |
title_auth | Partial differential equations arising from physics and geometry : a volume in memory of Abbas Bahri / |
title_exact_search | Partial differential equations arising from physics and geometry : a volume in memory of Abbas Bahri / |
title_full | Partial differential equations arising from physics and geometry : a volume in memory of Abbas Bahri / edited by Mohamed Ben Ayed, Mohamed Ali Jendoubi, Yomna Rb̌a, ̐ Hasna Riahi, Hatem Zaag. |
title_fullStr | Partial differential equations arising from physics and geometry : a volume in memory of Abbas Bahri / edited by Mohamed Ben Ayed, Mohamed Ali Jendoubi, Yomna Rb̌a, ̐ Hasna Riahi, Hatem Zaag. |
title_full_unstemmed | Partial differential equations arising from physics and geometry : a volume in memory of Abbas Bahri / edited by Mohamed Ben Ayed, Mohamed Ali Jendoubi, Yomna Rb̌a, ̐ Hasna Riahi, Hatem Zaag. |
title_short | Partial differential equations arising from physics and geometry : |
title_sort | partial differential equations arising from physics and geometry a volume in memory of abbas bahri |
title_sub | a volume in memory of Abbas Bahri / |
topic | Evolution equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85046037 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Équations d'évolution non linéaires. Équations aux dérivées partielles. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Análisis matemático embne Ecuaciones diferenciales embne Differential equations, Partial fast Evolution equations, Nonlinear fast |
topic_facet | Evolution equations, Nonlinear. Differential equations, Partial. Équations d'évolution non linéaires. Équations aux dérivées partielles. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Análisis matemático Ecuaciones diferenciales Differential equations, Partial Evolution equations, Nonlinear Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2091078 |
work_keys_str_mv | AT benayedmohamed partialdifferentialequationsarisingfromphysicsandgeometryavolumeinmemoryofabbasbahri AT jendoubimohamedali partialdifferentialequationsarisingfromphysicsandgeometryavolumeinmemoryofabbasbahri AT rbayomna partialdifferentialequationsarisingfromphysicsandgeometryavolumeinmemoryofabbasbahri AT riahihasna partialdifferentialequationsarisingfromphysicsandgeometryavolumeinmemoryofabbasbahri AT zaaghatem partialdifferentialequationsarisingfromphysicsandgeometryavolumeinmemoryofabbasbahri AT bahriabbas partialdifferentialequationsarisingfromphysicsandgeometryavolumeinmemoryofabbasbahri |