Hands-On Generative Adversarial Networks with Keras :: Your Guide to Implementing Next-Generation Generative Adversarial Networks.
This book will explore deep learning and generative models, and their applications in artificial intelligence. You will learn to evaluate and improve your GAN models by eliminating challenges that are encountered in real-world applications. You will implement GAN architectures in various domains suc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book will explore deep learning and generative models, and their applications in artificial intelligence. You will learn to evaluate and improve your GAN models by eliminating challenges that are encountered in real-world applications. You will implement GAN architectures in various domains such as computer vision, NLP, and audio processing. |
Beschreibung: | 1 online resource (263 pages) |
ISBN: | 9781789535136 1789535131 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1101033581 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 190511s2019 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d YDX |d N$T |d UKAHL |d N$T |d OCLCF |d OCLCQ |d NLW |d OCLCO |d OCLCQ |d OCLCO |d K6U |d OCLCQ |d OCLCO |d OCLCL |d TMA |d OCLCQ |d SXB | ||
019 | |a 1100604669 | ||
020 | |a 9781789535136 |q (electronic bk.) | ||
020 | |a 1789535131 |q (electronic bk.) | ||
020 | |z 9781789535136 | ||
035 | |a (OCoLC)1101033581 |z (OCoLC)1100604669 | ||
050 | 4 | |a Q325.5 | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Valle, Rafael, |d 1985- |e author. |0 http://id.loc.gov/authorities/names/no2010009429 | |
245 | 1 | 0 | |a Hands-On Generative Adversarial Networks with Keras : |b Your Guide to Implementing Next-Generation Generative Adversarial Networks. |
260 | |a Birmingham : |b Packt, |c 2019. | ||
300 | |a 1 online resource (263 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed August 30, 2019) | |
505 | 0 | |a Cover; Title Page; Copyright and Credits; About Packt; Foreword; Contributors; Table of Contents; Preface; Section 1: Introduction and Environment Setup; Chapter 1: Deep Learning Basics and Environment Setup; Deep learning basics; Artificial Neural Networks (ANNs); The parameter estimation; Backpropagation; Loss functions; L1 loss; L2 loss; Categorical crossentropy loss; Non-linearities; Sigmoid; Tanh; ReLU; A fully connected layer; The convolution layer; The max pooling layer; Deep learning environment setup; Installing Anaconda and Python; Setting up a virtual environment in Anaconda | |
505 | 8 | |a Installing TensorFlowInstalling Keras; Installing data visualization and machine learning libraries; The matplotlib library; The Jupyter library; The scikit-learn library; NVIDIA's CUDA Toolkit and cuDNN; The deep learning environment test; Summary; Chapter 2: Introduction to Generative Models; Discriminative and generative models compared; Comparing discriminative and generative models; Generative models; Autoregressive models; Variational autoencoders; Reversible flows; Generative adversarial networks; GANs -- building blocks; The discriminator; The generator; Real and fake data | |
505 | 8 | |a Random noiseDiscriminator and generator loss; GANs -- strengths and weaknesses; Summary; Section 2: Training GANs; Chapter 3: Implementing Your First GAN; Technical requirements; Imports; Implementing a Generator and Discriminator; Generator; Discriminator; Auxiliary functions; Training your GAN; Summary; Further reading; Chapter 4: Evaluating Your First GAN; The evaluation of GANs; Image quality; Image variety; Domain specifications; Qualitative methods; k-nearest neighbors; Mode analysis; Other methods; Quantitative methods; The Inception score; The Frechét Inception Distance | |
505 | 8 | |a Precision, Recall, and the F1 ScoreGANs and the birthday paradox; Summary; Chapter 5: Improving Your First GAN; Technical requirements; Challenges in training GANs; Mode collapse and mode drop; Training instability; Sensitivity to hyperparameter initialization; Vanishing gradients; Tricks of the trade; Tracking failure; Working with labels; Working with discrete inputs; Adding noise; Input normalization; Modified objective function; Distribute latent vector; Weight normalization; Avoid sparse gradients; Use a different optimizer; Learning rate schedule; GAN model architectures; ResNet GAN | |
505 | 8 | |a GAN algorithms and loss functionsLeast Squares GAN; Wasserstein GAN; Wasserstein GAN with gradient penalty; Relativistic GAN; Summary; Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio; Chapter 6: Synthesizing and Manipulating Images with GANs; Technical requirements; Image-to-image translation; Experimental setup; Data; Training; Imports; Training signature; Training setup; Training loop; Logging; pix2pix implementation; Custom layers; Discriminator; Generator; pix2pixHD implementation; Improvements to pix2pix; Custom layers; Discriminator; Generator | |
520 | |a This book will explore deep learning and generative models, and their applications in artificial intelligence. You will learn to evaluate and improve your GAN models by eliminating challenges that are encountered in real-world applications. You will implement GAN architectures in various domains such as computer vision, NLP, and audio processing. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Neural networks (Computer science) |0 http://id.loc.gov/authorities/subjects/sh90001937 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 2 | |a Neural Networks, Computer |0 https://id.nlm.nih.gov/mesh/D016571 | |
650 | 2 | |a Artificial Intelligence |0 https://id.nlm.nih.gov/mesh/D001185 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Réseaux neuronaux (Informatique) | |
650 | 6 | |a Intelligence artificielle. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a Computer modelling & simulation. |2 bicssc | |
650 | 7 | |a Machine learning. |2 bicssc | |
650 | 7 | |a Pattern recognition. |2 bicssc | |
650 | 7 | |a Computer vision. |2 bicssc | |
650 | 7 | |a Mathematical theory of computation. |2 bicssc | |
650 | 7 | |a Computers |x Computer Vision & Pattern Recognition. |2 bisacsh | |
650 | 7 | |a Computers |x Computer Simulation. |2 bisacsh | |
650 | 7 | |a Computers |x Machine Theory. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
655 | 4 | |a Electronic book. | |
758 | |i has work: |a Hands-On Generative Adversarial Networks with Keras (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFQvTgQ7VkcYQdqfjqR8BX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2117001 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n BDZ0040044129 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5764480 | ||
938 | |a EBSCOhost |b EBSC |n 2117001 | ||
938 | |a YBP Library Services |b YANK |n 300508782 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1101033581 |
---|---|
_version_ | 1816882492705079296 |
adam_text | |
any_adam_object | |
author | Valle, Rafael, 1985- |
author_GND | http://id.loc.gov/authorities/names/no2010009429 |
author_facet | Valle, Rafael, 1985- |
author_role | aut |
author_sort | Valle, Rafael, 1985- |
author_variant | r v rv |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright and Credits; About Packt; Foreword; Contributors; Table of Contents; Preface; Section 1: Introduction and Environment Setup; Chapter 1: Deep Learning Basics and Environment Setup; Deep learning basics; Artificial Neural Networks (ANNs); The parameter estimation; Backpropagation; Loss functions; L1 loss; L2 loss; Categorical crossentropy loss; Non-linearities; Sigmoid; Tanh; ReLU; A fully connected layer; The convolution layer; The max pooling layer; Deep learning environment setup; Installing Anaconda and Python; Setting up a virtual environment in Anaconda Installing TensorFlowInstalling Keras; Installing data visualization and machine learning libraries; The matplotlib library; The Jupyter library; The scikit-learn library; NVIDIA's CUDA Toolkit and cuDNN; The deep learning environment test; Summary; Chapter 2: Introduction to Generative Models; Discriminative and generative models compared; Comparing discriminative and generative models; Generative models; Autoregressive models; Variational autoencoders; Reversible flows; Generative adversarial networks; GANs -- building blocks; The discriminator; The generator; Real and fake data Random noiseDiscriminator and generator loss; GANs -- strengths and weaknesses; Summary; Section 2: Training GANs; Chapter 3: Implementing Your First GAN; Technical requirements; Imports; Implementing a Generator and Discriminator; Generator; Discriminator; Auxiliary functions; Training your GAN; Summary; Further reading; Chapter 4: Evaluating Your First GAN; The evaluation of GANs; Image quality; Image variety; Domain specifications; Qualitative methods; k-nearest neighbors; Mode analysis; Other methods; Quantitative methods; The Inception score; The Frechét Inception Distance Precision, Recall, and the F1 ScoreGANs and the birthday paradox; Summary; Chapter 5: Improving Your First GAN; Technical requirements; Challenges in training GANs; Mode collapse and mode drop; Training instability; Sensitivity to hyperparameter initialization; Vanishing gradients; Tricks of the trade; Tracking failure; Working with labels; Working with discrete inputs; Adding noise; Input normalization; Modified objective function; Distribute latent vector; Weight normalization; Avoid sparse gradients; Use a different optimizer; Learning rate schedule; GAN model architectures; ResNet GAN GAN algorithms and loss functionsLeast Squares GAN; Wasserstein GAN; Wasserstein GAN with gradient penalty; Relativistic GAN; Summary; Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio; Chapter 6: Synthesizing and Manipulating Images with GANs; Technical requirements; Image-to-image translation; Experimental setup; Data; Training; Imports; Training signature; Training setup; Training loop; Logging; pix2pix implementation; Custom layers; Discriminator; Generator; pix2pixHD implementation; Improvements to pix2pix; Custom layers; Discriminator; Generator |
ctrlnum | (OCoLC)1101033581 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06429cam a2200721 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1101033581</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">190511s2019 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">UKAHL</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1100604669</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789535136</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789535131</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781789535136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1101033581</subfield><subfield code="z">(OCoLC)1100604669</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Valle, Rafael,</subfield><subfield code="d">1985-</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010009429</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-On Generative Adversarial Networks with Keras :</subfield><subfield code="b">Your Guide to Implementing Next-Generation Generative Adversarial Networks.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (263 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed August 30, 2019)</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; About Packt; Foreword; Contributors; Table of Contents; Preface; Section 1: Introduction and Environment Setup; Chapter 1: Deep Learning Basics and Environment Setup; Deep learning basics; Artificial Neural Networks (ANNs); The parameter estimation; Backpropagation; Loss functions; L1 loss; L2 loss; Categorical crossentropy loss; Non-linearities; Sigmoid; Tanh; ReLU; A fully connected layer; The convolution layer; The max pooling layer; Deep learning environment setup; Installing Anaconda and Python; Setting up a virtual environment in Anaconda</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Installing TensorFlowInstalling Keras; Installing data visualization and machine learning libraries; The matplotlib library; The Jupyter library; The scikit-learn library; NVIDIA's CUDA Toolkit and cuDNN; The deep learning environment test; Summary; Chapter 2: Introduction to Generative Models; Discriminative and generative models compared; Comparing discriminative and generative models; Generative models; Autoregressive models; Variational autoencoders; Reversible flows; Generative adversarial networks; GANs -- building blocks; The discriminator; The generator; Real and fake data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Random noiseDiscriminator and generator loss; GANs -- strengths and weaknesses; Summary; Section 2: Training GANs; Chapter 3: Implementing Your First GAN; Technical requirements; Imports; Implementing a Generator and Discriminator; Generator; Discriminator; Auxiliary functions; Training your GAN; Summary; Further reading; Chapter 4: Evaluating Your First GAN; The evaluation of GANs; Image quality; Image variety; Domain specifications; Qualitative methods; k-nearest neighbors; Mode analysis; Other methods; Quantitative methods; The Inception score; The Frechét Inception Distance</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Precision, Recall, and the F1 ScoreGANs and the birthday paradox; Summary; Chapter 5: Improving Your First GAN; Technical requirements; Challenges in training GANs; Mode collapse and mode drop; Training instability; Sensitivity to hyperparameter initialization; Vanishing gradients; Tricks of the trade; Tracking failure; Working with labels; Working with discrete inputs; Adding noise; Input normalization; Modified objective function; Distribute latent vector; Weight normalization; Avoid sparse gradients; Use a different optimizer; Learning rate schedule; GAN model architectures; ResNet GAN</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">GAN algorithms and loss functionsLeast Squares GAN; Wasserstein GAN; Wasserstein GAN with gradient penalty; Relativistic GAN; Summary; Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio; Chapter 6: Synthesizing and Manipulating Images with GANs; Technical requirements; Image-to-image translation; Experimental setup; Data; Training; Imports; Training signature; Training setup; Training loop; Logging; pix2pix implementation; Custom layers; Discriminator; Generator; pix2pixHD implementation; Improvements to pix2pix; Custom layers; Discriminator; Generator</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book will explore deep learning and generative models, and their applications in artificial intelligence. You will learn to evaluate and improve your GAN models by eliminating challenges that are encountered in real-world applications. You will implement GAN architectures in various domains such as computer vision, NLP, and audio processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90001937</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Neural Networks, Computer</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D016571</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D001185</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer modelling & simulation.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer vision.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical theory of computation.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Computer Vision & Pattern Recognition.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Computer Simulation.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Machine Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hands-On Generative Adversarial Networks with Keras (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFQvTgQ7VkcYQdqfjqR8BX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2117001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">BDZ0040044129</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5764480</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2117001</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">300508782</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-on1101033581 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:28Z |
institution | BVB |
isbn | 9781789535136 1789535131 |
language | English |
oclc_num | 1101033581 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (263 pages) |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt, |
record_format | marc |
spelling | Valle, Rafael, 1985- author. http://id.loc.gov/authorities/names/no2010009429 Hands-On Generative Adversarial Networks with Keras : Your Guide to Implementing Next-Generation Generative Adversarial Networks. Birmingham : Packt, 2019. 1 online resource (263 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from PDF title page (EBSCO, viewed August 30, 2019) Cover; Title Page; Copyright and Credits; About Packt; Foreword; Contributors; Table of Contents; Preface; Section 1: Introduction and Environment Setup; Chapter 1: Deep Learning Basics and Environment Setup; Deep learning basics; Artificial Neural Networks (ANNs); The parameter estimation; Backpropagation; Loss functions; L1 loss; L2 loss; Categorical crossentropy loss; Non-linearities; Sigmoid; Tanh; ReLU; A fully connected layer; The convolution layer; The max pooling layer; Deep learning environment setup; Installing Anaconda and Python; Setting up a virtual environment in Anaconda Installing TensorFlowInstalling Keras; Installing data visualization and machine learning libraries; The matplotlib library; The Jupyter library; The scikit-learn library; NVIDIA's CUDA Toolkit and cuDNN; The deep learning environment test; Summary; Chapter 2: Introduction to Generative Models; Discriminative and generative models compared; Comparing discriminative and generative models; Generative models; Autoregressive models; Variational autoencoders; Reversible flows; Generative adversarial networks; GANs -- building blocks; The discriminator; The generator; Real and fake data Random noiseDiscriminator and generator loss; GANs -- strengths and weaknesses; Summary; Section 2: Training GANs; Chapter 3: Implementing Your First GAN; Technical requirements; Imports; Implementing a Generator and Discriminator; Generator; Discriminator; Auxiliary functions; Training your GAN; Summary; Further reading; Chapter 4: Evaluating Your First GAN; The evaluation of GANs; Image quality; Image variety; Domain specifications; Qualitative methods; k-nearest neighbors; Mode analysis; Other methods; Quantitative methods; The Inception score; The Frechét Inception Distance Precision, Recall, and the F1 ScoreGANs and the birthday paradox; Summary; Chapter 5: Improving Your First GAN; Technical requirements; Challenges in training GANs; Mode collapse and mode drop; Training instability; Sensitivity to hyperparameter initialization; Vanishing gradients; Tricks of the trade; Tracking failure; Working with labels; Working with discrete inputs; Adding noise; Input normalization; Modified objective function; Distribute latent vector; Weight normalization; Avoid sparse gradients; Use a different optimizer; Learning rate schedule; GAN model architectures; ResNet GAN GAN algorithms and loss functionsLeast Squares GAN; Wasserstein GAN; Wasserstein GAN with gradient penalty; Relativistic GAN; Summary; Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio; Chapter 6: Synthesizing and Manipulating Images with GANs; Technical requirements; Image-to-image translation; Experimental setup; Data; Training; Imports; Training signature; Training setup; Training loop; Logging; pix2pix implementation; Custom layers; Discriminator; Generator; pix2pixHD implementation; Improvements to pix2pix; Custom layers; Discriminator; Generator This book will explore deep learning and generative models, and their applications in artificial intelligence. You will learn to evaluate and improve your GAN models by eliminating challenges that are encountered in real-world applications. You will implement GAN architectures in various domains such as computer vision, NLP, and audio processing. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Neural Networks, Computer https://id.nlm.nih.gov/mesh/D016571 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Réseaux neuronaux (Informatique) Intelligence artificielle. artificial intelligence. aat Computer modelling & simulation. bicssc Machine learning. bicssc Pattern recognition. bicssc Computer vision. bicssc Mathematical theory of computation. bicssc Computers Computer Vision & Pattern Recognition. bisacsh Computers Computer Simulation. bisacsh Computers Machine Theory. bisacsh Artificial intelligence fast Machine learning fast Neural networks (Computer science) fast Electronic book. has work: Hands-On Generative Adversarial Networks with Keras (Text) https://id.oclc.org/worldcat/entity/E39PCFQvTgQ7VkcYQdqfjqR8BX https://id.oclc.org/worldcat/ontology/hasWork FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2117001 Volltext |
spellingShingle | Valle, Rafael, 1985- Hands-On Generative Adversarial Networks with Keras : Your Guide to Implementing Next-Generation Generative Adversarial Networks. Cover; Title Page; Copyright and Credits; About Packt; Foreword; Contributors; Table of Contents; Preface; Section 1: Introduction and Environment Setup; Chapter 1: Deep Learning Basics and Environment Setup; Deep learning basics; Artificial Neural Networks (ANNs); The parameter estimation; Backpropagation; Loss functions; L1 loss; L2 loss; Categorical crossentropy loss; Non-linearities; Sigmoid; Tanh; ReLU; A fully connected layer; The convolution layer; The max pooling layer; Deep learning environment setup; Installing Anaconda and Python; Setting up a virtual environment in Anaconda Installing TensorFlowInstalling Keras; Installing data visualization and machine learning libraries; The matplotlib library; The Jupyter library; The scikit-learn library; NVIDIA's CUDA Toolkit and cuDNN; The deep learning environment test; Summary; Chapter 2: Introduction to Generative Models; Discriminative and generative models compared; Comparing discriminative and generative models; Generative models; Autoregressive models; Variational autoencoders; Reversible flows; Generative adversarial networks; GANs -- building blocks; The discriminator; The generator; Real and fake data Random noiseDiscriminator and generator loss; GANs -- strengths and weaknesses; Summary; Section 2: Training GANs; Chapter 3: Implementing Your First GAN; Technical requirements; Imports; Implementing a Generator and Discriminator; Generator; Discriminator; Auxiliary functions; Training your GAN; Summary; Further reading; Chapter 4: Evaluating Your First GAN; The evaluation of GANs; Image quality; Image variety; Domain specifications; Qualitative methods; k-nearest neighbors; Mode analysis; Other methods; Quantitative methods; The Inception score; The Frechét Inception Distance Precision, Recall, and the F1 ScoreGANs and the birthday paradox; Summary; Chapter 5: Improving Your First GAN; Technical requirements; Challenges in training GANs; Mode collapse and mode drop; Training instability; Sensitivity to hyperparameter initialization; Vanishing gradients; Tricks of the trade; Tracking failure; Working with labels; Working with discrete inputs; Adding noise; Input normalization; Modified objective function; Distribute latent vector; Weight normalization; Avoid sparse gradients; Use a different optimizer; Learning rate schedule; GAN model architectures; ResNet GAN GAN algorithms and loss functionsLeast Squares GAN; Wasserstein GAN; Wasserstein GAN with gradient penalty; Relativistic GAN; Summary; Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio; Chapter 6: Synthesizing and Manipulating Images with GANs; Technical requirements; Image-to-image translation; Experimental setup; Data; Training; Imports; Training signature; Training setup; Training loop; Logging; pix2pix implementation; Custom layers; Discriminator; Generator; pix2pixHD implementation; Improvements to pix2pix; Custom layers; Discriminator; Generator Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Neural Networks, Computer https://id.nlm.nih.gov/mesh/D016571 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Réseaux neuronaux (Informatique) Intelligence artificielle. artificial intelligence. aat Computer modelling & simulation. bicssc Machine learning. bicssc Pattern recognition. bicssc Computer vision. bicssc Mathematical theory of computation. bicssc Computers Computer Vision & Pattern Recognition. bisacsh Computers Computer Simulation. bisacsh Computers Machine Theory. bisacsh Artificial intelligence fast Machine learning fast Neural networks (Computer science) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh90001937 http://id.loc.gov/authorities/subjects/sh85008180 https://id.nlm.nih.gov/mesh/D016571 https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D000069550 |
title | Hands-On Generative Adversarial Networks with Keras : Your Guide to Implementing Next-Generation Generative Adversarial Networks. |
title_auth | Hands-On Generative Adversarial Networks with Keras : Your Guide to Implementing Next-Generation Generative Adversarial Networks. |
title_exact_search | Hands-On Generative Adversarial Networks with Keras : Your Guide to Implementing Next-Generation Generative Adversarial Networks. |
title_full | Hands-On Generative Adversarial Networks with Keras : Your Guide to Implementing Next-Generation Generative Adversarial Networks. |
title_fullStr | Hands-On Generative Adversarial Networks with Keras : Your Guide to Implementing Next-Generation Generative Adversarial Networks. |
title_full_unstemmed | Hands-On Generative Adversarial Networks with Keras : Your Guide to Implementing Next-Generation Generative Adversarial Networks. |
title_short | Hands-On Generative Adversarial Networks with Keras : |
title_sort | hands on generative adversarial networks with keras your guide to implementing next generation generative adversarial networks |
title_sub | Your Guide to Implementing Next-Generation Generative Adversarial Networks. |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Neural Networks, Computer https://id.nlm.nih.gov/mesh/D016571 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Réseaux neuronaux (Informatique) Intelligence artificielle. artificial intelligence. aat Computer modelling & simulation. bicssc Machine learning. bicssc Pattern recognition. bicssc Computer vision. bicssc Mathematical theory of computation. bicssc Computers Computer Vision & Pattern Recognition. bisacsh Computers Computer Simulation. bisacsh Computers Machine Theory. bisacsh Artificial intelligence fast Machine learning fast Neural networks (Computer science) fast |
topic_facet | Machine learning. Neural networks (Computer science) Artificial intelligence. Neural Networks, Computer Artificial Intelligence Machine Learning Apprentissage automatique. Réseaux neuronaux (Informatique) Intelligence artificielle. artificial intelligence. Computer modelling & simulation. Pattern recognition. Computer vision. Mathematical theory of computation. Computers Computer Vision & Pattern Recognition. Computers Computer Simulation. Computers Machine Theory. Artificial intelligence Machine learning Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2117001 |
work_keys_str_mv | AT vallerafael handsongenerativeadversarialnetworkswithkerasyourguidetoimplementingnextgenerationgenerativeadversarialnetworks |