Multi-Objective Optimization in Theory and Practice II :: metaheuristic algorithms.
Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO te...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Sharjah :
Bentham Science Publishers,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO techniques. These include the determination of Pareto-optimal sets of solutions, metaheuristic algorithms, genetic search algorithms and evolution strategies, decomposition algorithms, hybridization of different metaheuristics, and many-objective (more than three objectives) optimization and parallel computation. The final section of the book presents information about the design and types of fifty test problems for which the Pareto-optimal front is approximated. For each of them, the package NSGA-II is used to approximate the Pareto-optimal front. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science and mathematics degree programs. |
Beschreibung: | 7.2.2. Decomposition-Based MOEA Algorithm |
Beschreibung: | 1 online resource (310 pages) |
ISBN: | 1681087057 9781681087054 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1097974294 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 190420s2019 xx o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d YDX |d N$T |d OCLCQ |d OCLCF |d OCLCQ |d UKAHL |d OCLCO |d OCL |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCO |d OCLCQ | ||
019 | |a 1097276484 | ||
020 | |a 1681087057 | ||
020 | |a 9781681087054 |q (electronic bk.) | ||
035 | |a (OCoLC)1097974294 |z (OCoLC)1097276484 | ||
050 | 4 | |a QA9.58 | |
082 | 7 | |a 511.8 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Keller, André A. |1 https://id.oclc.org/worldcat/entity/E39PCjv6vGPC9D4KwfXfvwhQHK |0 http://id.loc.gov/authorities/names/no2018087161 | |
245 | 1 | 0 | |a Multi-Objective Optimization in Theory and Practice II : |b metaheuristic algorithms. |
260 | |a Sharjah : |b Bentham Science Publishers, |c 2019. | ||
300 | |a 1 online resource (310 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO techniques. These include the determination of Pareto-optimal sets of solutions, metaheuristic algorithms, genetic search algorithms and evolution strategies, decomposition algorithms, hybridization of different metaheuristics, and many-objective (more than three objectives) optimization and parallel computation. The final section of the book presents information about the design and types of fifty test problems for which the Pareto-optimal front is approximated. For each of them, the package NSGA-II is used to approximate the Pareto-optimal front. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science and mathematics degree programs. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Title; Biblography; End User License Agreement; Contents; Preface; Acknowledgements; Pareto-Optimal Front Determination; Pareto-Optimal Front Determination; 1.1. INTRODUCTION; 1.1.1. Heuristic and Metaheuristic Algorithms; 1.1.2. History of Metaheuristics; 1.1.3. Probabilistic Metaheuristics and Applications; 1.1.4. Optimum Design of Framed Structures: A Review of Literature; 1.2. Elements of Static Multi-Objective Programming; 1.2.1. Problem Formulation; 1.2.2. Concept of Dominance; 1.2.3. Pareto-Optimality; 1.3. Pareto-Optimal Front; 1.3.1. Non-Dominated Solutions | |
505 | 8 | |a 1.3.2. Analytical Pareto-Optimal Front1.3.3. Near Pareto-Optimal Front; 1.3.4. Shapes of a Pareto-Optimal Front; 1.4. Selection Procedures of Algorithms; 1.4.1. Elitist Pareto Criteria; 1.4.2. Non-Pareto Criteria; 1.4.3. Bi-criterion Evolution; 1.4.4. Other Concepts of Dominance; NOTES; REFERENCES; Untitled; Metaheuristic Optimization Algorithms; Metaheuristic Optimization Algorithms; 2.1. INTRODUCTION; 2.2. Simulated Annealing Algorithm; 2.2.1. Annealing Principle and Description; 2.2.2. Problem Formulation; 2.2.3. Algorithm Description; 2.3. Multi-Objective Simulated Annealing | |
505 | 8 | |a 2.3.1. MOSA Algorithms2.3.2. Test Problems; NOTES; REFERENCES√; Evolutionary Strategy Algorithms; Evolutionary Strategy Algorithms; 3.1. INTRODUCTION1; 3.2. Principles and Operators; 3.2.1. Algorithm for Solving Optimization Problems; 3.2.2. Binary and Real-Number Encoding; 3.2.3. Genetic Operators; 3.3. GA-Based Mathematica® Notebook; 3.4. Single-Objective Optimization; 3.4.1. SciLab Package for Genetic Algorithm; 3.4.2. GA-Based Software Package: GENOCOP III; NOTES; REFERENCES√; Genetic Search Algorithms; Genetic Search Algorithms; 4.1. INTRODUCTION | |
505 | 8 | |a 4.2. Niched Pareto Genetic Algorithms (NPGA)4.3. Non-Dominated Sorting Genetic Algorithm; 4.4. Multi-Objective Optimization Test Problems; 4.4.1. Unconstrained Optimization Problems; 4.4.2. Constrained Optimization Problem; NOTES; REFERENCES√; Evolution Strategy Algorithms; Evolution Strategy Algorithms; 5.1. INTRODUCTION; 5.2. Differential Evolution Strategy; 5.2.1. Principles and Algorithm2; 5.2.2. DE Operators; 5.3. DE Algorithm for Single-Objective Optimization Problems; 5.4. Multi-Objective DE Algorithm; 5.4.1. Diversity-Promoting; 5.4.2. Performing Elitism; NOTES; REFERENCES√ | |
505 | 8 | |a Swarm Intelligence and Co-Evolutionary AlgorithmsSwarm Intelligence and Co-Evolutionary Algorithms; 6.1. INTRODUCTION; 6.2. Particle Swarm Optimization; 6.3. Cooperative Co-Evolutionary Genetic Algorithms; 6.4. Competitive Predator-Prey Optimization Model; 6.4.1. Principle of PP Algorithm; 6.4.2. PP Algorithm; 6.4.3. Illustrative Problems; NOTES; REFERENCES√; Decomposition-Based and Hybrid Evolutionary Algorithms; Decomposition-Based and Hybrid Evolutionary Algorithms; 7.1. INTRODUCTION; 7.2. Decomposition-Based Algorithm; 7.2.1. Scalar Decomposition Principle | |
500 | |a 7.2.2. Decomposition-Based MOEA Algorithm | ||
650 | 0 | |a Algorithms. |0 http://id.loc.gov/authorities/subjects/sh85003487 | |
650 | 0 | |a Metaheuristics. |0 http://id.loc.gov/authorities/subjects/sh2016000809 | |
650 | 0 | |a Computer algorithms. |0 http://id.loc.gov/authorities/subjects/sh91000149 | |
650 | 6 | |a Algorithmes. | |
650 | 6 | |a Métaheuristiques. | |
650 | 7 | |a algorithms. |2 aat | |
650 | 7 | |a Computer algorithms |2 fast | |
650 | 7 | |a Algorithms |2 fast | |
650 | 7 | |a Metaheuristics |2 fast | |
758 | |i has work: |a Multi-Objective Optimization in Theory and Practice II (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGrr9WTq7VwgtJpFP86PHC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Keller, André A. |t Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms. |d Sharjah : Bentham Science Publishers, ©2019 |z 9781681087061 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2100972 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH37776457 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5750363 | ||
938 | |a EBSCOhost |b EBSC |n 2100972 | ||
938 | |a YBP Library Services |b YANK |n 16162951 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1097974294 |
---|---|
_version_ | 1816882490420232192 |
adam_text | |
any_adam_object | |
author | Keller, André A. |
author_GND | http://id.loc.gov/authorities/names/no2018087161 |
author_facet | Keller, André A. |
author_role | |
author_sort | Keller, André A. |
author_variant | a a k aa aak |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.58 |
callnumber-search | QA9.58 |
callnumber-sort | QA 19.58 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Biblography; End User License Agreement; Contents; Preface; Acknowledgements; Pareto-Optimal Front Determination; Pareto-Optimal Front Determination; 1.1. INTRODUCTION; 1.1.1. Heuristic and Metaheuristic Algorithms; 1.1.2. History of Metaheuristics; 1.1.3. Probabilistic Metaheuristics and Applications; 1.1.4. Optimum Design of Framed Structures: A Review of Literature; 1.2. Elements of Static Multi-Objective Programming; 1.2.1. Problem Formulation; 1.2.2. Concept of Dominance; 1.2.3. Pareto-Optimality; 1.3. Pareto-Optimal Front; 1.3.1. Non-Dominated Solutions 1.3.2. Analytical Pareto-Optimal Front1.3.3. Near Pareto-Optimal Front; 1.3.4. Shapes of a Pareto-Optimal Front; 1.4. Selection Procedures of Algorithms; 1.4.1. Elitist Pareto Criteria; 1.4.2. Non-Pareto Criteria; 1.4.3. Bi-criterion Evolution; 1.4.4. Other Concepts of Dominance; NOTES; REFERENCES; Untitled; Metaheuristic Optimization Algorithms; Metaheuristic Optimization Algorithms; 2.1. INTRODUCTION; 2.2. Simulated Annealing Algorithm; 2.2.1. Annealing Principle and Description; 2.2.2. Problem Formulation; 2.2.3. Algorithm Description; 2.3. Multi-Objective Simulated Annealing 2.3.1. MOSA Algorithms2.3.2. Test Problems; NOTES; REFERENCES√; Evolutionary Strategy Algorithms; Evolutionary Strategy Algorithms; 3.1. INTRODUCTION1; 3.2. Principles and Operators; 3.2.1. Algorithm for Solving Optimization Problems; 3.2.2. Binary and Real-Number Encoding; 3.2.3. Genetic Operators; 3.3. GA-Based Mathematica® Notebook; 3.4. Single-Objective Optimization; 3.4.1. SciLab Package for Genetic Algorithm; 3.4.2. GA-Based Software Package: GENOCOP III; NOTES; REFERENCES√; Genetic Search Algorithms; Genetic Search Algorithms; 4.1. INTRODUCTION 4.2. Niched Pareto Genetic Algorithms (NPGA)4.3. Non-Dominated Sorting Genetic Algorithm; 4.4. Multi-Objective Optimization Test Problems; 4.4.1. Unconstrained Optimization Problems; 4.4.2. Constrained Optimization Problem; NOTES; REFERENCES√; Evolution Strategy Algorithms; Evolution Strategy Algorithms; 5.1. INTRODUCTION; 5.2. Differential Evolution Strategy; 5.2.1. Principles and Algorithm2; 5.2.2. DE Operators; 5.3. DE Algorithm for Single-Objective Optimization Problems; 5.4. Multi-Objective DE Algorithm; 5.4.1. Diversity-Promoting; 5.4.2. Performing Elitism; NOTES; REFERENCES√ Swarm Intelligence and Co-Evolutionary AlgorithmsSwarm Intelligence and Co-Evolutionary Algorithms; 6.1. INTRODUCTION; 6.2. Particle Swarm Optimization; 6.3. Cooperative Co-Evolutionary Genetic Algorithms; 6.4. Competitive Predator-Prey Optimization Model; 6.4.1. Principle of PP Algorithm; 6.4.2. PP Algorithm; 6.4.3. Illustrative Problems; NOTES; REFERENCES√; Decomposition-Based and Hybrid Evolutionary Algorithms; Decomposition-Based and Hybrid Evolutionary Algorithms; 7.1. INTRODUCTION; 7.2. Decomposition-Based Algorithm; 7.2.1. Scalar Decomposition Principle |
ctrlnum | (OCoLC)1097974294 |
dewey-full | 511.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.8 |
dewey-search | 511.8 |
dewey-sort | 3511.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06352cam a2200577Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1097974294</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">190420s2019 xx o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1097276484</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1681087057</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781681087054</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1097974294</subfield><subfield code="z">(OCoLC)1097276484</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.58</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Keller, André A.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjv6vGPC9D4KwfXfvwhQHK</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2018087161</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-Objective Optimization in Theory and Practice II :</subfield><subfield code="b">metaheuristic algorithms.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Sharjah :</subfield><subfield code="b">Bentham Science Publishers,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (310 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO techniques. These include the determination of Pareto-optimal sets of solutions, metaheuristic algorithms, genetic search algorithms and evolution strategies, decomposition algorithms, hybridization of different metaheuristics, and many-objective (more than three objectives) optimization and parallel computation. The final section of the book presents information about the design and types of fifty test problems for which the Pareto-optimal front is approximated. For each of them, the package NSGA-II is used to approximate the Pareto-optimal front. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science and mathematics degree programs.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Biblography; End User License Agreement; Contents; Preface; Acknowledgements; Pareto-Optimal Front Determination; Pareto-Optimal Front Determination; 1.1. INTRODUCTION; 1.1.1. Heuristic and Metaheuristic Algorithms; 1.1.2. History of Metaheuristics; 1.1.3. Probabilistic Metaheuristics and Applications; 1.1.4. Optimum Design of Framed Structures: A Review of Literature; 1.2. Elements of Static Multi-Objective Programming; 1.2.1. Problem Formulation; 1.2.2. Concept of Dominance; 1.2.3. Pareto-Optimality; 1.3. Pareto-Optimal Front; 1.3.1. Non-Dominated Solutions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.3.2. Analytical Pareto-Optimal Front1.3.3. Near Pareto-Optimal Front; 1.3.4. Shapes of a Pareto-Optimal Front; 1.4. Selection Procedures of Algorithms; 1.4.1. Elitist Pareto Criteria; 1.4.2. Non-Pareto Criteria; 1.4.3. Bi-criterion Evolution; 1.4.4. Other Concepts of Dominance; NOTES; REFERENCES; Untitled; Metaheuristic Optimization Algorithms; Metaheuristic Optimization Algorithms; 2.1. INTRODUCTION; 2.2. Simulated Annealing Algorithm; 2.2.1. Annealing Principle and Description; 2.2.2. Problem Formulation; 2.2.3. Algorithm Description; 2.3. Multi-Objective Simulated Annealing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.1. MOSA Algorithms2.3.2. Test Problems; NOTES; REFERENCES√; Evolutionary Strategy Algorithms; Evolutionary Strategy Algorithms; 3.1. INTRODUCTION1; 3.2. Principles and Operators; 3.2.1. Algorithm for Solving Optimization Problems; 3.2.2. Binary and Real-Number Encoding; 3.2.3. Genetic Operators; 3.3. GA-Based Mathematica® Notebook; 3.4. Single-Objective Optimization; 3.4.1. SciLab Package for Genetic Algorithm; 3.4.2. GA-Based Software Package: GENOCOP III; NOTES; REFERENCES√; Genetic Search Algorithms; Genetic Search Algorithms; 4.1. INTRODUCTION</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2. Niched Pareto Genetic Algorithms (NPGA)4.3. Non-Dominated Sorting Genetic Algorithm; 4.4. Multi-Objective Optimization Test Problems; 4.4.1. Unconstrained Optimization Problems; 4.4.2. Constrained Optimization Problem; NOTES; REFERENCES√; Evolution Strategy Algorithms; Evolution Strategy Algorithms; 5.1. INTRODUCTION; 5.2. Differential Evolution Strategy; 5.2.1. Principles and Algorithm2; 5.2.2. DE Operators; 5.3. DE Algorithm for Single-Objective Optimization Problems; 5.4. Multi-Objective DE Algorithm; 5.4.1. Diversity-Promoting; 5.4.2. Performing Elitism; NOTES; REFERENCES√</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Swarm Intelligence and Co-Evolutionary AlgorithmsSwarm Intelligence and Co-Evolutionary Algorithms; 6.1. INTRODUCTION; 6.2. Particle Swarm Optimization; 6.3. Cooperative Co-Evolutionary Genetic Algorithms; 6.4. Competitive Predator-Prey Optimization Model; 6.4.1. Principle of PP Algorithm; 6.4.2. PP Algorithm; 6.4.3. Illustrative Problems; NOTES; REFERENCES√; Decomposition-Based and Hybrid Evolutionary Algorithms; Decomposition-Based and Hybrid Evolutionary Algorithms; 7.1. INTRODUCTION; 7.2. Decomposition-Based Algorithm; 7.2.1. Scalar Decomposition Principle</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.2.2. Decomposition-Based MOEA Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algorithms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003487</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Metaheuristics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2016000809</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer algorithms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91000149</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algorithmes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Métaheuristiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithms.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metaheuristics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Multi-Objective Optimization in Theory and Practice II (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGrr9WTq7VwgtJpFP86PHC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Keller, André A.</subfield><subfield code="t">Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms.</subfield><subfield code="d">Sharjah : Bentham Science Publishers, ©2019</subfield><subfield code="z">9781681087061</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2100972</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37776457</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5750363</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2100972</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">16162951</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1097974294 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:26Z |
institution | BVB |
isbn | 1681087057 9781681087054 |
language | English |
oclc_num | 1097974294 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (310 pages) |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Bentham Science Publishers, |
record_format | marc |
spelling | Keller, André A. https://id.oclc.org/worldcat/entity/E39PCjv6vGPC9D4KwfXfvwhQHK http://id.loc.gov/authorities/names/no2018087161 Multi-Objective Optimization in Theory and Practice II : metaheuristic algorithms. Sharjah : Bentham Science Publishers, 2019. 1 online resource (310 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO techniques. These include the determination of Pareto-optimal sets of solutions, metaheuristic algorithms, genetic search algorithms and evolution strategies, decomposition algorithms, hybridization of different metaheuristics, and many-objective (more than three objectives) optimization and parallel computation. The final section of the book presents information about the design and types of fifty test problems for which the Pareto-optimal front is approximated. For each of them, the package NSGA-II is used to approximate the Pareto-optimal front. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science and mathematics degree programs. Print version record. Cover; Title; Biblography; End User License Agreement; Contents; Preface; Acknowledgements; Pareto-Optimal Front Determination; Pareto-Optimal Front Determination; 1.1. INTRODUCTION; 1.1.1. Heuristic and Metaheuristic Algorithms; 1.1.2. History of Metaheuristics; 1.1.3. Probabilistic Metaheuristics and Applications; 1.1.4. Optimum Design of Framed Structures: A Review of Literature; 1.2. Elements of Static Multi-Objective Programming; 1.2.1. Problem Formulation; 1.2.2. Concept of Dominance; 1.2.3. Pareto-Optimality; 1.3. Pareto-Optimal Front; 1.3.1. Non-Dominated Solutions 1.3.2. Analytical Pareto-Optimal Front1.3.3. Near Pareto-Optimal Front; 1.3.4. Shapes of a Pareto-Optimal Front; 1.4. Selection Procedures of Algorithms; 1.4.1. Elitist Pareto Criteria; 1.4.2. Non-Pareto Criteria; 1.4.3. Bi-criterion Evolution; 1.4.4. Other Concepts of Dominance; NOTES; REFERENCES; Untitled; Metaheuristic Optimization Algorithms; Metaheuristic Optimization Algorithms; 2.1. INTRODUCTION; 2.2. Simulated Annealing Algorithm; 2.2.1. Annealing Principle and Description; 2.2.2. Problem Formulation; 2.2.3. Algorithm Description; 2.3. Multi-Objective Simulated Annealing 2.3.1. MOSA Algorithms2.3.2. Test Problems; NOTES; REFERENCES√; Evolutionary Strategy Algorithms; Evolutionary Strategy Algorithms; 3.1. INTRODUCTION1; 3.2. Principles and Operators; 3.2.1. Algorithm for Solving Optimization Problems; 3.2.2. Binary and Real-Number Encoding; 3.2.3. Genetic Operators; 3.3. GA-Based Mathematica® Notebook; 3.4. Single-Objective Optimization; 3.4.1. SciLab Package for Genetic Algorithm; 3.4.2. GA-Based Software Package: GENOCOP III; NOTES; REFERENCES√; Genetic Search Algorithms; Genetic Search Algorithms; 4.1. INTRODUCTION 4.2. Niched Pareto Genetic Algorithms (NPGA)4.3. Non-Dominated Sorting Genetic Algorithm; 4.4. Multi-Objective Optimization Test Problems; 4.4.1. Unconstrained Optimization Problems; 4.4.2. Constrained Optimization Problem; NOTES; REFERENCES√; Evolution Strategy Algorithms; Evolution Strategy Algorithms; 5.1. INTRODUCTION; 5.2. Differential Evolution Strategy; 5.2.1. Principles and Algorithm2; 5.2.2. DE Operators; 5.3. DE Algorithm for Single-Objective Optimization Problems; 5.4. Multi-Objective DE Algorithm; 5.4.1. Diversity-Promoting; 5.4.2. Performing Elitism; NOTES; REFERENCES√ Swarm Intelligence and Co-Evolutionary AlgorithmsSwarm Intelligence and Co-Evolutionary Algorithms; 6.1. INTRODUCTION; 6.2. Particle Swarm Optimization; 6.3. Cooperative Co-Evolutionary Genetic Algorithms; 6.4. Competitive Predator-Prey Optimization Model; 6.4.1. Principle of PP Algorithm; 6.4.2. PP Algorithm; 6.4.3. Illustrative Problems; NOTES; REFERENCES√; Decomposition-Based and Hybrid Evolutionary Algorithms; Decomposition-Based and Hybrid Evolutionary Algorithms; 7.1. INTRODUCTION; 7.2. Decomposition-Based Algorithm; 7.2.1. Scalar Decomposition Principle 7.2.2. Decomposition-Based MOEA Algorithm Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Metaheuristics. http://id.loc.gov/authorities/subjects/sh2016000809 Computer algorithms. http://id.loc.gov/authorities/subjects/sh91000149 Algorithmes. Métaheuristiques. algorithms. aat Computer algorithms fast Algorithms fast Metaheuristics fast has work: Multi-Objective Optimization in Theory and Practice II (Text) https://id.oclc.org/worldcat/entity/E39PCGrr9WTq7VwgtJpFP86PHC https://id.oclc.org/worldcat/ontology/hasWork Print version: Keller, André A. Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms. Sharjah : Bentham Science Publishers, ©2019 9781681087061 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2100972 Volltext |
spellingShingle | Keller, André A. Multi-Objective Optimization in Theory and Practice II : metaheuristic algorithms. Cover; Title; Biblography; End User License Agreement; Contents; Preface; Acknowledgements; Pareto-Optimal Front Determination; Pareto-Optimal Front Determination; 1.1. INTRODUCTION; 1.1.1. Heuristic and Metaheuristic Algorithms; 1.1.2. History of Metaheuristics; 1.1.3. Probabilistic Metaheuristics and Applications; 1.1.4. Optimum Design of Framed Structures: A Review of Literature; 1.2. Elements of Static Multi-Objective Programming; 1.2.1. Problem Formulation; 1.2.2. Concept of Dominance; 1.2.3. Pareto-Optimality; 1.3. Pareto-Optimal Front; 1.3.1. Non-Dominated Solutions 1.3.2. Analytical Pareto-Optimal Front1.3.3. Near Pareto-Optimal Front; 1.3.4. Shapes of a Pareto-Optimal Front; 1.4. Selection Procedures of Algorithms; 1.4.1. Elitist Pareto Criteria; 1.4.2. Non-Pareto Criteria; 1.4.3. Bi-criterion Evolution; 1.4.4. Other Concepts of Dominance; NOTES; REFERENCES; Untitled; Metaheuristic Optimization Algorithms; Metaheuristic Optimization Algorithms; 2.1. INTRODUCTION; 2.2. Simulated Annealing Algorithm; 2.2.1. Annealing Principle and Description; 2.2.2. Problem Formulation; 2.2.3. Algorithm Description; 2.3. Multi-Objective Simulated Annealing 2.3.1. MOSA Algorithms2.3.2. Test Problems; NOTES; REFERENCES√; Evolutionary Strategy Algorithms; Evolutionary Strategy Algorithms; 3.1. INTRODUCTION1; 3.2. Principles and Operators; 3.2.1. Algorithm for Solving Optimization Problems; 3.2.2. Binary and Real-Number Encoding; 3.2.3. Genetic Operators; 3.3. GA-Based Mathematica® Notebook; 3.4. Single-Objective Optimization; 3.4.1. SciLab Package for Genetic Algorithm; 3.4.2. GA-Based Software Package: GENOCOP III; NOTES; REFERENCES√; Genetic Search Algorithms; Genetic Search Algorithms; 4.1. INTRODUCTION 4.2. Niched Pareto Genetic Algorithms (NPGA)4.3. Non-Dominated Sorting Genetic Algorithm; 4.4. Multi-Objective Optimization Test Problems; 4.4.1. Unconstrained Optimization Problems; 4.4.2. Constrained Optimization Problem; NOTES; REFERENCES√; Evolution Strategy Algorithms; Evolution Strategy Algorithms; 5.1. INTRODUCTION; 5.2. Differential Evolution Strategy; 5.2.1. Principles and Algorithm2; 5.2.2. DE Operators; 5.3. DE Algorithm for Single-Objective Optimization Problems; 5.4. Multi-Objective DE Algorithm; 5.4.1. Diversity-Promoting; 5.4.2. Performing Elitism; NOTES; REFERENCES√ Swarm Intelligence and Co-Evolutionary AlgorithmsSwarm Intelligence and Co-Evolutionary Algorithms; 6.1. INTRODUCTION; 6.2. Particle Swarm Optimization; 6.3. Cooperative Co-Evolutionary Genetic Algorithms; 6.4. Competitive Predator-Prey Optimization Model; 6.4.1. Principle of PP Algorithm; 6.4.2. PP Algorithm; 6.4.3. Illustrative Problems; NOTES; REFERENCES√; Decomposition-Based and Hybrid Evolutionary Algorithms; Decomposition-Based and Hybrid Evolutionary Algorithms; 7.1. INTRODUCTION; 7.2. Decomposition-Based Algorithm; 7.2.1. Scalar Decomposition Principle Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Metaheuristics. http://id.loc.gov/authorities/subjects/sh2016000809 Computer algorithms. http://id.loc.gov/authorities/subjects/sh91000149 Algorithmes. Métaheuristiques. algorithms. aat Computer algorithms fast Algorithms fast Metaheuristics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85003487 http://id.loc.gov/authorities/subjects/sh2016000809 http://id.loc.gov/authorities/subjects/sh91000149 |
title | Multi-Objective Optimization in Theory and Practice II : metaheuristic algorithms. |
title_auth | Multi-Objective Optimization in Theory and Practice II : metaheuristic algorithms. |
title_exact_search | Multi-Objective Optimization in Theory and Practice II : metaheuristic algorithms. |
title_full | Multi-Objective Optimization in Theory and Practice II : metaheuristic algorithms. |
title_fullStr | Multi-Objective Optimization in Theory and Practice II : metaheuristic algorithms. |
title_full_unstemmed | Multi-Objective Optimization in Theory and Practice II : metaheuristic algorithms. |
title_short | Multi-Objective Optimization in Theory and Practice II : |
title_sort | multi objective optimization in theory and practice ii metaheuristic algorithms |
title_sub | metaheuristic algorithms. |
topic | Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Metaheuristics. http://id.loc.gov/authorities/subjects/sh2016000809 Computer algorithms. http://id.loc.gov/authorities/subjects/sh91000149 Algorithmes. Métaheuristiques. algorithms. aat Computer algorithms fast Algorithms fast Metaheuristics fast |
topic_facet | Algorithms. Metaheuristics. Computer algorithms. Algorithmes. Métaheuristiques. algorithms. Computer algorithms Algorithms Metaheuristics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2100972 |
work_keys_str_mv | AT kellerandrea multiobjectiveoptimizationintheoryandpracticeiimetaheuristicalgorithms |