TensorFlow Reinforcement Learning Quick Start Guide :: Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python.
This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Dee...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing Ltd,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ... |
Beschreibung: | The A3C algorithm applied to LunarLander |
Beschreibung: | 1 online resource (175 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 1789533449 9781789533446 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1096525137 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 190413s2019 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d TEFOD |d OCLCF |d OCLCQ |d UKAHL |d OCLCQ |d N$T |d OCLCQ |d NLW |d K6U |d OCLCO |d UKMGB |d OCLCO |d OCLCQ |d PSYSI |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
015 | |a GBC216935 |2 bnb | ||
016 | 7 | |a 019365464 |2 Uk | |
020 | |a 1789533449 | ||
020 | |a 9781789533446 |q (electronic bk.) | ||
020 | |z 9781789533583 |q print | ||
035 | |a (OCoLC)1096525137 | ||
037 | |a 17D228CA-B9A5-47F9-8400-6F06CA49CCCE |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.73.P98 | |
082 | 7 | |a 005.133 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Balakrishnan, Kaushik. | |
245 | 1 | 0 | |a TensorFlow Reinforcement Learning Quick Start Guide : |b Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. |
260 | |a Birmingham : |b Packt Publishing Ltd, |c 2019. | ||
300 | |a 1 online resource (175 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Up and Running with Reinforcement Learning; Why RL?; Formulating the RL problem; The relationship between an agent and its environment; Defining the states of the agent; Defining the actions of the agent; Understanding policy, value, and advantage functions; Identifying episodes; Identifying reward functions and the concept of discounted rewards; Rewards; Learning the Markov decision process ; Defining the Bellman equation; On-policy versus off-policy learning | |
505 | 8 | |a On-policy methodOff-policy method; Model-free and model-based training; Algorithms covered in this book; Summary; Questions; Further reading; Chapter 2: Temporal Difference, SARSA, and Q-Learning; Technical requirements; Understanding TD learning; Relation between the value functions and state; Understanding SARSA and Q-Learning ; Learning SARSA ; Understanding Q-learning; Cliff walking and grid world problems; Cliff walking with SARSA; Cliff walking with Q-learning; Grid world with SARSA; Summary; Further reading; Chapter 3: Deep Q-Network; Technical requirements | |
505 | 8 | |a Learning the theory behind a DQNUnderstanding target networks; Learning about replay buffer; Getting introduced to the Atari environment; Summary of Atari games; Pong; Breakout; Space Invaders; LunarLander; The Arcade Learning Environment ; Coding a DQN in TensorFlow; Using the model.py file; Using the funcs.py file; Using the dqn.py file; Evaluating the performance of the DQN on Atari Breakout; Summary; Questions; Further reading; Chapter 4: Double DQN, Dueling Architectures, and Rainbow; Technical requirements; Understanding Double DQN ; Coding DDQN and training to play Atari Breakout | |
505 | 8 | |a Evaluating the performance of DDQN on Atari BreakoutUnderstanding dueling network architectures; Coding dueling network architecture and training it to play Atari Breakout; Combining V and A to obtain Q; Evaluating the performance of dueling architectures on Atari Breakout ; Understanding Rainbow networks; DQN improvements; Prioritized experience replay ; Multi-step learning; Distributional RL; Noisy nets; Running a Rainbow network on Dopamine; Rainbow using Dopamine; Summary; Questions; Further reading; Chapter 5: Deep Deterministic Policy Gradient; Technical requirements | |
505 | 8 | |a Actor-Critic algorithms and policy gradientsPolicy gradient; Deep Deterministic Policy Gradient; Coding ddpg.py; Coding AandC.py; Coding TrainOrTest.py; Coding replay_buffer.py; Training and testing the DDPG on Pendulum-v0; Summary; Questions; Further reading; Chapter 6: Asynchronous Methods -- A3C and A2C; Technical requirements; The A3C algorithm; Loss functions; CartPole and LunarLander; CartPole; LunarLander; The A3C algorithm applied to CartPole; Coding cartpole.py; Coding a3c.py; The AC class; The Worker() class; Coding utils.py; Training on CartPole | |
500 | |a The A3C algorithm applied to LunarLander | ||
520 | |a This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ... | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references. | ||
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Intelligence artificielle. | |
650 | 6 | |a Apprentissage automatique. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a Database design & theory. |2 bicssc | |
650 | 7 | |a Mathematical theory of computation. |2 bicssc | |
650 | 7 | |a Machine learning. |2 bicssc | |
650 | 7 | |a Information architecture. |2 bicssc | |
650 | 7 | |a Artificial intelligence. |2 bicssc | |
650 | 7 | |a Computers |x Machine Theory. |2 bisacsh | |
650 | 7 | |a Computers |x Data Modeling & Design. |2 bisacsh | |
650 | 7 | |a Computers |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
655 | 4 | |a Electronic book. | |
758 | |i has work: |a TensorFlow Reinforcement Learning Quick Start Guide (Work) |1 https://id.oclc.org/worldcat/entity/E39PCYpJGT6f7wBvPvgyhgtD7b |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Balakrishnan, Kaushik. |t TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. |d Birmingham : Packt Publishing Ltd, ©2019 |z 9781789533583 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094787 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH36155814 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5744473 | ||
938 | |a EBSCOhost |b EBSC |n 2094787 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1096525137 |
---|---|
_version_ | 1816882489839321088 |
adam_text | |
any_adam_object | |
author | Balakrishnan, Kaushik |
author_facet | Balakrishnan, Kaushik |
author_role | |
author_sort | Balakrishnan, Kaushik |
author_variant | k b kb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 |
callnumber-search | QA76.73.P98 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Up and Running with Reinforcement Learning; Why RL?; Formulating the RL problem; The relationship between an agent and its environment; Defining the states of the agent; Defining the actions of the agent; Understanding policy, value, and advantage functions; Identifying episodes; Identifying reward functions and the concept of discounted rewards; Rewards; Learning the Markov decision process ; Defining the Bellman equation; On-policy versus off-policy learning On-policy methodOff-policy method; Model-free and model-based training; Algorithms covered in this book; Summary; Questions; Further reading; Chapter 2: Temporal Difference, SARSA, and Q-Learning; Technical requirements; Understanding TD learning; Relation between the value functions and state; Understanding SARSA and Q-Learning ; Learning SARSA ; Understanding Q-learning; Cliff walking and grid world problems; Cliff walking with SARSA; Cliff walking with Q-learning; Grid world with SARSA; Summary; Further reading; Chapter 3: Deep Q-Network; Technical requirements Learning the theory behind a DQNUnderstanding target networks; Learning about replay buffer; Getting introduced to the Atari environment; Summary of Atari games; Pong; Breakout; Space Invaders; LunarLander; The Arcade Learning Environment ; Coding a DQN in TensorFlow; Using the model.py file; Using the funcs.py file; Using the dqn.py file; Evaluating the performance of the DQN on Atari Breakout; Summary; Questions; Further reading; Chapter 4: Double DQN, Dueling Architectures, and Rainbow; Technical requirements; Understanding Double DQN ; Coding DDQN and training to play Atari Breakout Evaluating the performance of DDQN on Atari BreakoutUnderstanding dueling network architectures; Coding dueling network architecture and training it to play Atari Breakout; Combining V and A to obtain Q; Evaluating the performance of dueling architectures on Atari Breakout ; Understanding Rainbow networks; DQN improvements; Prioritized experience replay ; Multi-step learning; Distributional RL; Noisy nets; Running a Rainbow network on Dopamine; Rainbow using Dopamine; Summary; Questions; Further reading; Chapter 5: Deep Deterministic Policy Gradient; Technical requirements Actor-Critic algorithms and policy gradientsPolicy gradient; Deep Deterministic Policy Gradient; Coding ddpg.py; Coding AandC.py; Coding TrainOrTest.py; Coding replay_buffer.py; Training and testing the DDPG on Pendulum-v0; Summary; Questions; Further reading; Chapter 6: Asynchronous Methods -- A3C and A2C; Technical requirements; The A3C algorithm; Loss functions; CartPole and LunarLander; CartPole; LunarLander; The A3C algorithm applied to CartPole; Coding cartpole.py; Coding a3c.py; The AC class; The Worker() class; Coding utils.py; Training on CartPole |
ctrlnum | (OCoLC)1096525137 |
dewey-full | 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.133 |
dewey-search | 005.133 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06482cam a2200733 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1096525137</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">190413s2019 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLW</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PSYSI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC216935</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019365464</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789533449</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789533446</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781789533583</subfield><subfield code="q">print</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1096525137</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">17D228CA-B9A5-47F9-8400-6F06CA49CCCE</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balakrishnan, Kaushik.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TensorFlow Reinforcement Learning Quick Start Guide :</subfield><subfield code="b">Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing Ltd,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (175 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Up and Running with Reinforcement Learning; Why RL?; Formulating the RL problem; The relationship between an agent and its environment; Defining the states of the agent; Defining the actions of the agent; Understanding policy, value, and advantage functions; Identifying episodes; Identifying reward functions and the concept of discounted rewards; Rewards; Learning the Markov decision process ; Defining the Bellman equation; On-policy versus off-policy learning</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">On-policy methodOff-policy method; Model-free and model-based training; Algorithms covered in this book; Summary; Questions; Further reading; Chapter 2: Temporal Difference, SARSA, and Q-Learning; Technical requirements; Understanding TD learning; Relation between the value functions and state; Understanding SARSA and Q-Learning ; Learning SARSA ; Understanding Q-learning; Cliff walking and grid world problems; Cliff walking with SARSA; Cliff walking with Q-learning; Grid world with SARSA; Summary; Further reading; Chapter 3: Deep Q-Network; Technical requirements</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Learning the theory behind a DQNUnderstanding target networks; Learning about replay buffer; Getting introduced to the Atari environment; Summary of Atari games; Pong; Breakout; Space Invaders; LunarLander; The Arcade Learning Environment ; Coding a DQN in TensorFlow; Using the model.py file; Using the funcs.py file; Using the dqn.py file; Evaluating the performance of the DQN on Atari Breakout; Summary; Questions; Further reading; Chapter 4: Double DQN, Dueling Architectures, and Rainbow; Technical requirements; Understanding Double DQN ; Coding DDQN and training to play Atari Breakout</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Evaluating the performance of DDQN on Atari BreakoutUnderstanding dueling network architectures; Coding dueling network architecture and training it to play Atari Breakout; Combining V and A to obtain Q; Evaluating the performance of dueling architectures on Atari Breakout ; Understanding Rainbow networks; DQN improvements; Prioritized experience replay ; Multi-step learning; Distributional RL; Noisy nets; Running a Rainbow network on Dopamine; Rainbow using Dopamine; Summary; Questions; Further reading; Chapter 5: Deep Deterministic Policy Gradient; Technical requirements</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Actor-Critic algorithms and policy gradientsPolicy gradient; Deep Deterministic Policy Gradient; Coding ddpg.py; Coding AandC.py; Coding TrainOrTest.py; Coding replay_buffer.py; Training and testing the DDPG on Pendulum-v0; Summary; Questions; Further reading; Chapter 6: Asynchronous Methods -- A3C and A2C; Technical requirements; The A3C algorithm; Loss functions; CartPole and LunarLander; CartPole; LunarLander; The A3C algorithm applied to CartPole; Coding cartpole.py; Coding a3c.py; The AC class; The Worker() class; Coding utils.py; Training on CartPole</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The A3C algorithm applied to LunarLander</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ...</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Database design & theory.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical theory of computation.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information architecture.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Machine Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Data Modeling & Design.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">TensorFlow Reinforcement Learning Quick Start Guide (Work)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYpJGT6f7wBvPvgyhgtD7b</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Balakrishnan, Kaushik.</subfield><subfield code="t">TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python.</subfield><subfield code="d">Birmingham : Packt Publishing Ltd, ©2019</subfield><subfield code="z">9781789533583</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094787</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36155814</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5744473</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2094787</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-on1096525137 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:26Z |
institution | BVB |
isbn | 1789533449 9781789533446 |
language | English |
oclc_num | 1096525137 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (175 pages) |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing Ltd, |
record_format | marc |
spelling | Balakrishnan, Kaushik. TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. Birmingham : Packt Publishing Ltd, 2019. 1 online resource (175 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Up and Running with Reinforcement Learning; Why RL?; Formulating the RL problem; The relationship between an agent and its environment; Defining the states of the agent; Defining the actions of the agent; Understanding policy, value, and advantage functions; Identifying episodes; Identifying reward functions and the concept of discounted rewards; Rewards; Learning the Markov decision process ; Defining the Bellman equation; On-policy versus off-policy learning On-policy methodOff-policy method; Model-free and model-based training; Algorithms covered in this book; Summary; Questions; Further reading; Chapter 2: Temporal Difference, SARSA, and Q-Learning; Technical requirements; Understanding TD learning; Relation between the value functions and state; Understanding SARSA and Q-Learning ; Learning SARSA ; Understanding Q-learning; Cliff walking and grid world problems; Cliff walking with SARSA; Cliff walking with Q-learning; Grid world with SARSA; Summary; Further reading; Chapter 3: Deep Q-Network; Technical requirements Learning the theory behind a DQNUnderstanding target networks; Learning about replay buffer; Getting introduced to the Atari environment; Summary of Atari games; Pong; Breakout; Space Invaders; LunarLander; The Arcade Learning Environment ; Coding a DQN in TensorFlow; Using the model.py file; Using the funcs.py file; Using the dqn.py file; Evaluating the performance of the DQN on Atari Breakout; Summary; Questions; Further reading; Chapter 4: Double DQN, Dueling Architectures, and Rainbow; Technical requirements; Understanding Double DQN ; Coding DDQN and training to play Atari Breakout Evaluating the performance of DDQN on Atari BreakoutUnderstanding dueling network architectures; Coding dueling network architecture and training it to play Atari Breakout; Combining V and A to obtain Q; Evaluating the performance of dueling architectures on Atari Breakout ; Understanding Rainbow networks; DQN improvements; Prioritized experience replay ; Multi-step learning; Distributional RL; Noisy nets; Running a Rainbow network on Dopamine; Rainbow using Dopamine; Summary; Questions; Further reading; Chapter 5: Deep Deterministic Policy Gradient; Technical requirements Actor-Critic algorithms and policy gradientsPolicy gradient; Deep Deterministic Policy Gradient; Coding ddpg.py; Coding AandC.py; Coding TrainOrTest.py; Coding replay_buffer.py; Training and testing the DDPG on Pendulum-v0; Summary; Questions; Further reading; Chapter 6: Asynchronous Methods -- A3C and A2C; Technical requirements; The A3C algorithm; Loss functions; CartPole and LunarLander; CartPole; LunarLander; The A3C algorithm applied to CartPole; Coding cartpole.py; Coding a3c.py; The AC class; The Worker() class; Coding utils.py; Training on CartPole The A3C algorithm applied to LunarLander This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ... Print version record. Includes bibliographical references. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Python (Langage de programmation) Intelligence artificielle. Apprentissage automatique. artificial intelligence. aat Database design & theory. bicssc Mathematical theory of computation. bicssc Machine learning. bicssc Information architecture. bicssc Artificial intelligence. bicssc Computers Machine Theory. bisacsh Computers Data Modeling & Design. bisacsh Computers Intelligence (AI) & Semantics. bisacsh Artificial intelligence fast Machine learning fast Python (Computer program language) fast Electronic book. has work: TensorFlow Reinforcement Learning Quick Start Guide (Work) https://id.oclc.org/worldcat/entity/E39PCYpJGT6f7wBvPvgyhgtD7b https://id.oclc.org/worldcat/ontology/hasWork Print version: Balakrishnan, Kaushik. TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. Birmingham : Packt Publishing Ltd, ©2019 9781789533583 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094787 Volltext |
spellingShingle | Balakrishnan, Kaushik TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Up and Running with Reinforcement Learning; Why RL?; Formulating the RL problem; The relationship between an agent and its environment; Defining the states of the agent; Defining the actions of the agent; Understanding policy, value, and advantage functions; Identifying episodes; Identifying reward functions and the concept of discounted rewards; Rewards; Learning the Markov decision process ; Defining the Bellman equation; On-policy versus off-policy learning On-policy methodOff-policy method; Model-free and model-based training; Algorithms covered in this book; Summary; Questions; Further reading; Chapter 2: Temporal Difference, SARSA, and Q-Learning; Technical requirements; Understanding TD learning; Relation between the value functions and state; Understanding SARSA and Q-Learning ; Learning SARSA ; Understanding Q-learning; Cliff walking and grid world problems; Cliff walking with SARSA; Cliff walking with Q-learning; Grid world with SARSA; Summary; Further reading; Chapter 3: Deep Q-Network; Technical requirements Learning the theory behind a DQNUnderstanding target networks; Learning about replay buffer; Getting introduced to the Atari environment; Summary of Atari games; Pong; Breakout; Space Invaders; LunarLander; The Arcade Learning Environment ; Coding a DQN in TensorFlow; Using the model.py file; Using the funcs.py file; Using the dqn.py file; Evaluating the performance of the DQN on Atari Breakout; Summary; Questions; Further reading; Chapter 4: Double DQN, Dueling Architectures, and Rainbow; Technical requirements; Understanding Double DQN ; Coding DDQN and training to play Atari Breakout Evaluating the performance of DDQN on Atari BreakoutUnderstanding dueling network architectures; Coding dueling network architecture and training it to play Atari Breakout; Combining V and A to obtain Q; Evaluating the performance of dueling architectures on Atari Breakout ; Understanding Rainbow networks; DQN improvements; Prioritized experience replay ; Multi-step learning; Distributional RL; Noisy nets; Running a Rainbow network on Dopamine; Rainbow using Dopamine; Summary; Questions; Further reading; Chapter 5: Deep Deterministic Policy Gradient; Technical requirements Actor-Critic algorithms and policy gradientsPolicy gradient; Deep Deterministic Policy Gradient; Coding ddpg.py; Coding AandC.py; Coding TrainOrTest.py; Coding replay_buffer.py; Training and testing the DDPG on Pendulum-v0; Summary; Questions; Further reading; Chapter 6: Asynchronous Methods -- A3C and A2C; Technical requirements; The A3C algorithm; Loss functions; CartPole and LunarLander; CartPole; LunarLander; The A3C algorithm applied to CartPole; Coding cartpole.py; Coding a3c.py; The AC class; The Worker() class; Coding utils.py; Training on CartPole Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Python (Langage de programmation) Intelligence artificielle. Apprentissage automatique. artificial intelligence. aat Database design & theory. bicssc Mathematical theory of computation. bicssc Machine learning. bicssc Information architecture. bicssc Artificial intelligence. bicssc Computers Machine Theory. bisacsh Computers Data Modeling & Design. bisacsh Computers Intelligence (AI) & Semantics. bisacsh Artificial intelligence fast Machine learning fast Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh96008834 http://id.loc.gov/authorities/subjects/sh85008180 http://id.loc.gov/authorities/subjects/sh85079324 |
title | TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. |
title_auth | TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. |
title_exact_search | TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. |
title_full | TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. |
title_fullStr | TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. |
title_full_unstemmed | TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. |
title_short | TensorFlow Reinforcement Learning Quick Start Guide : |
title_sort | tensorflow reinforcement learning quick start guide get up and running with training and deploying intelligent self learning agents using python |
title_sub | Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. |
topic | Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Python (Langage de programmation) Intelligence artificielle. Apprentissage automatique. artificial intelligence. aat Database design & theory. bicssc Mathematical theory of computation. bicssc Machine learning. bicssc Information architecture. bicssc Artificial intelligence. bicssc Computers Machine Theory. bisacsh Computers Data Modeling & Design. bisacsh Computers Intelligence (AI) & Semantics. bisacsh Artificial intelligence fast Machine learning fast Python (Computer program language) fast |
topic_facet | Python (Computer program language) Artificial intelligence. Machine learning. Python (Langage de programmation) Intelligence artificielle. Apprentissage automatique. artificial intelligence. Database design & theory. Mathematical theory of computation. Information architecture. Computers Machine Theory. Computers Data Modeling & Design. Computers Intelligence (AI) & Semantics. Artificial intelligence Machine learning Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094787 |
work_keys_str_mv | AT balakrishnankaushik tensorflowreinforcementlearningquickstartguidegetupandrunningwithtraininganddeployingintelligentselflearningagentsusingpython |