Applied Unsupervised Learning with R :: Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA.
Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing Ltd,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions. |
Beschreibung: | Exercise 19: Studying the Effect of Changing Kernels on a Distribution |
Beschreibung: | 1 online resource (320 pages) |
ISBN: | 1789951461 9781789951462 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1096227855 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 190406s2019 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d TEFOD |d OCLCF |d UKAHL |d OCLCQ |d N$T |d OCLCQ |d K6U |d NLW |d OCLCO |d OCLCQ |d PSYSI |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
020 | |a 1789951461 | ||
020 | |a 9781789951462 |q (electronic bk.) | ||
035 | |a (OCoLC)1096227855 | ||
037 | |a 17537073-6211-4233-9C2D-213B82CF7F10 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA276.45.R3 | |
082 | 7 | |a 519.502855133 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Malik, Alok. | |
245 | 1 | 0 | |a Applied Unsupervised Learning with R : |b Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. |
260 | |a Birmingham : |b Packt Publishing Ltd, |c 2019. | ||
300 | |a 1 online resource (320 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Intro; Preface; Introduction to Clustering Methods; Introduction; Introduction to Clustering; Uses of Clustering; Introduction to the Iris Dataset; Exercise 1: Exploring the Iris Dataset; Types of Clustering; Introduction to k-means Clustering; Euclidean Distance; Manhattan Distance; Cosine Distance; The Hamming Distance; k-means Clustering Algorithm; Steps to Implement k-means Clustering; Exercise 2: Implementing k-means Clustering on the Iris Dataset; Activity 1: k-means Clustering with Three Clusters; Introduction to k-means Clustering with Built-In Functions | |
505 | 8 | |a K-means Clustering with Three ClustersExercise 3: k-means Clustering with R Libraries; Introduction to Market Segmentation; Exercise 4: Exploring the Wholesale Customer Dataset; Activity 2: Customer Segmentation with k-means; Introduction to k-medoids Clustering; The k-medoids Clustering Algorithm; k-medoids Clustering Code; Exercise 5: Implementing k-medoid Clustering; k-means Clustering versus k-medoids Clustering; Activity 3: Performing Customer Segmentation with k-medoids Clustering; Deciding the Optimal Number of Clusters; Types of Clustering Metrics; Silhouette Score | |
505 | 8 | |a Exercise 6: Calculating the Silhouette ScoreExercise 7: Identifying the Optimum Number of Clusters; WSS/Elbow Method; Exercise 8: Using WSS to Determine the Number of Clusters; The Gap Statistic; Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic; Activity 4: Finding the Ideal Number of Market Segments; Summary; Advanced Clustering Methods; Introduction; Introduction to k-modes Clustering; Steps for k-Modes Clustering; Exercise 10: Implementing k-modes Clustering; Activity 5: Implementing k-modes Clustering on the Mushroom Dataset | |
505 | 8 | |a Introduction to Density-Based Clustering (DBSCAN)Steps for DBSCAN; Exercise 11: Implementing DBSCAN; Uses of DBSCAN; Activity 6: Implementing DBSCAN and Visualizing the Results; Introduction to Hierarchical Clustering; Types of Similarity Metrics; Steps to Perform Agglomerative Hierarchical Clustering; Exercise 12: Agglomerative Clustering with Different Similarity Measures; Divisive Clustering; Steps to Perform Divisive Clustering; Exercise 13: Performing DIANA Clustering; Activity 7: Performing Hierarchical Cluster Analysis on the Seeds Dataset; Summary; Probability Distributions | |
505 | 8 | |a IntroductionBasic Terminology of Probability Distributions; Uniform Distribution; Exercise 14: Generating and Plotting Uniform Samples in R; Normal Distribution; Exercise 15: Generating and Plotting a Normal Distribution in R; Skew and Kurtosis; Log-Normal Distributions; Exercise 16: Generating a Log-Normal Distribution from a Normal Distribution; The Binomial Distribution; Exercise 17: Generating a Binomial Distribution; The Poisson Distribution; The Pareto Distribution; Introduction to Kernel Density Estimation; KDE Algorithm; Exercise 18: Visualizing and Understanding KDE | |
500 | |a Exercise 19: Studying the Effect of Changing Kernels on a Distribution | ||
520 | |a Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions. | ||
650 | 0 | |a R (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh2002004407 | |
650 | 0 | |a Cluster analysis |x Computer programs. |0 http://id.loc.gov/authorities/subjects/sh85027251 | |
650 | 0 | |a Probabilities |x Data processing. | |
650 | 0 | |a Algorithms. |0 http://id.loc.gov/authorities/subjects/sh85003487 | |
650 | 2 | |a Algorithms |0 https://id.nlm.nih.gov/mesh/D000465 | |
650 | 6 | |a R (Langage de programmation) | |
650 | 6 | |a Probabilités |x Informatique. | |
650 | 6 | |a Algorithmes. | |
650 | 7 | |a algorithms. |2 aat | |
650 | 7 | |a Data capture & analysis. |2 bicssc | |
650 | 7 | |a Neural networks & fuzzy systems. |2 bicssc | |
650 | 7 | |a Artificial intelligence. |2 bicssc | |
650 | 7 | |a Computers |x Data Processing. |2 bisacsh | |
650 | 7 | |a Computers |x Neural Networks. |2 bisacsh | |
650 | 7 | |a Computers |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Algorithms |2 fast | |
650 | 7 | |a Cluster analysis |x Computer programs |2 fast | |
650 | 7 | |a Probabilities |x Data processing |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
700 | 1 | |a Tuckfield, Bradford. | |
758 | |i has work: |a Applied unsupervised learning with R (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYGhqr69TMKw3mBM8tRhYd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Malik, Alok. |t Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. |d Birmingham : Packt Publishing Ltd, ©2019 |z 9781789956399 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2092865 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH36142857 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5742601 | ||
938 | |a EBSCOhost |b EBSC |n 2092865 | ||
936 | |a BATCHLOAD | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1096227855 |
---|---|
_version_ | 1816882489432473600 |
adam_text | |
any_adam_object | |
author | Malik, Alok |
author2 | Tuckfield, Bradford |
author2_role | |
author2_variant | b t bt |
author_facet | Malik, Alok Tuckfield, Bradford |
author_role | |
author_sort | Malik, Alok |
author_variant | a m am |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.45.R3 |
callnumber-search | QA276.45.R3 |
callnumber-sort | QA 3276.45 R3 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Intro; Preface; Introduction to Clustering Methods; Introduction; Introduction to Clustering; Uses of Clustering; Introduction to the Iris Dataset; Exercise 1: Exploring the Iris Dataset; Types of Clustering; Introduction to k-means Clustering; Euclidean Distance; Manhattan Distance; Cosine Distance; The Hamming Distance; k-means Clustering Algorithm; Steps to Implement k-means Clustering; Exercise 2: Implementing k-means Clustering on the Iris Dataset; Activity 1: k-means Clustering with Three Clusters; Introduction to k-means Clustering with Built-In Functions K-means Clustering with Three ClustersExercise 3: k-means Clustering with R Libraries; Introduction to Market Segmentation; Exercise 4: Exploring the Wholesale Customer Dataset; Activity 2: Customer Segmentation with k-means; Introduction to k-medoids Clustering; The k-medoids Clustering Algorithm; k-medoids Clustering Code; Exercise 5: Implementing k-medoid Clustering; k-means Clustering versus k-medoids Clustering; Activity 3: Performing Customer Segmentation with k-medoids Clustering; Deciding the Optimal Number of Clusters; Types of Clustering Metrics; Silhouette Score Exercise 6: Calculating the Silhouette ScoreExercise 7: Identifying the Optimum Number of Clusters; WSS/Elbow Method; Exercise 8: Using WSS to Determine the Number of Clusters; The Gap Statistic; Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic; Activity 4: Finding the Ideal Number of Market Segments; Summary; Advanced Clustering Methods; Introduction; Introduction to k-modes Clustering; Steps for k-Modes Clustering; Exercise 10: Implementing k-modes Clustering; Activity 5: Implementing k-modes Clustering on the Mushroom Dataset Introduction to Density-Based Clustering (DBSCAN)Steps for DBSCAN; Exercise 11: Implementing DBSCAN; Uses of DBSCAN; Activity 6: Implementing DBSCAN and Visualizing the Results; Introduction to Hierarchical Clustering; Types of Similarity Metrics; Steps to Perform Agglomerative Hierarchical Clustering; Exercise 12: Agglomerative Clustering with Different Similarity Measures; Divisive Clustering; Steps to Perform Divisive Clustering; Exercise 13: Performing DIANA Clustering; Activity 7: Performing Hierarchical Cluster Analysis on the Seeds Dataset; Summary; Probability Distributions IntroductionBasic Terminology of Probability Distributions; Uniform Distribution; Exercise 14: Generating and Plotting Uniform Samples in R; Normal Distribution; Exercise 15: Generating and Plotting a Normal Distribution in R; Skew and Kurtosis; Log-Normal Distributions; Exercise 16: Generating a Log-Normal Distribution from a Normal Distribution; The Binomial Distribution; Exercise 17: Generating a Binomial Distribution; The Poisson Distribution; The Pareto Distribution; Introduction to Kernel Density Estimation; KDE Algorithm; Exercise 18: Visualizing and Understanding KDE |
ctrlnum | (OCoLC)1096227855 |
dewey-full | 519.502855133 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.502855133 |
dewey-search | 519.502855133 |
dewey-sort | 3519.502855133 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06250cam a2200709 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1096227855</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">190406s2019 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">NLW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PSYSI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789951461</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789951462</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1096227855</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">17537073-6211-4233-9C2D-213B82CF7F10</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA276.45.R3</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.502855133</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malik, Alok.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied Unsupervised Learning with R :</subfield><subfield code="b">Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing Ltd,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (320 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro; Preface; Introduction to Clustering Methods; Introduction; Introduction to Clustering; Uses of Clustering; Introduction to the Iris Dataset; Exercise 1: Exploring the Iris Dataset; Types of Clustering; Introduction to k-means Clustering; Euclidean Distance; Manhattan Distance; Cosine Distance; The Hamming Distance; k-means Clustering Algorithm; Steps to Implement k-means Clustering; Exercise 2: Implementing k-means Clustering on the Iris Dataset; Activity 1: k-means Clustering with Three Clusters; Introduction to k-means Clustering with Built-In Functions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">K-means Clustering with Three ClustersExercise 3: k-means Clustering with R Libraries; Introduction to Market Segmentation; Exercise 4: Exploring the Wholesale Customer Dataset; Activity 2: Customer Segmentation with k-means; Introduction to k-medoids Clustering; The k-medoids Clustering Algorithm; k-medoids Clustering Code; Exercise 5: Implementing k-medoid Clustering; k-means Clustering versus k-medoids Clustering; Activity 3: Performing Customer Segmentation with k-medoids Clustering; Deciding the Optimal Number of Clusters; Types of Clustering Metrics; Silhouette Score</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Exercise 6: Calculating the Silhouette ScoreExercise 7: Identifying the Optimum Number of Clusters; WSS/Elbow Method; Exercise 8: Using WSS to Determine the Number of Clusters; The Gap Statistic; Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic; Activity 4: Finding the Ideal Number of Market Segments; Summary; Advanced Clustering Methods; Introduction; Introduction to k-modes Clustering; Steps for k-Modes Clustering; Exercise 10: Implementing k-modes Clustering; Activity 5: Implementing k-modes Clustering on the Mushroom Dataset</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction to Density-Based Clustering (DBSCAN)Steps for DBSCAN; Exercise 11: Implementing DBSCAN; Uses of DBSCAN; Activity 6: Implementing DBSCAN and Visualizing the Results; Introduction to Hierarchical Clustering; Types of Similarity Metrics; Steps to Perform Agglomerative Hierarchical Clustering; Exercise 12: Agglomerative Clustering with Different Similarity Measures; Divisive Clustering; Steps to Perform Divisive Clustering; Exercise 13: Performing DIANA Clustering; Activity 7: Performing Hierarchical Cluster Analysis on the Seeds Dataset; Summary; Probability Distributions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">IntroductionBasic Terminology of Probability Distributions; Uniform Distribution; Exercise 14: Generating and Plotting Uniform Samples in R; Normal Distribution; Exercise 15: Generating and Plotting a Normal Distribution in R; Skew and Kurtosis; Log-Normal Distributions; Exercise 16: Generating a Log-Normal Distribution from a Normal Distribution; The Binomial Distribution; Exercise 17: Generating a Binomial Distribution; The Poisson Distribution; The Pareto Distribution; Introduction to Kernel Density Estimation; KDE Algorithm; Exercise 18: Visualizing and Understanding KDE</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Exercise 19: Studying the Effect of Changing Kernels on a Distribution</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004407</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cluster analysis</subfield><subfield code="x">Computer programs.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85027251</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Probabilities</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algorithms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003487</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Algorithms</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000465</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Probabilités</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algorithmes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithms.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data capture & analysis.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks & fuzzy systems.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Data Processing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Neural Networks.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cluster analysis</subfield><subfield code="x">Computer programs</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuckfield, Bradford.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Applied unsupervised learning with R (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYGhqr69TMKw3mBM8tRhYd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Malik, Alok.</subfield><subfield code="t">Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA.</subfield><subfield code="d">Birmingham : Packt Publishing Ltd, ©2019</subfield><subfield code="z">9781789956399</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2092865</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36142857</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5742601</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2092865</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1096227855 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:25Z |
institution | BVB |
isbn | 1789951461 9781789951462 |
language | English |
oclc_num | 1096227855 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (320 pages) |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing Ltd, |
record_format | marc |
spelling | Malik, Alok. Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. Birmingham : Packt Publishing Ltd, 2019. 1 online resource (320 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Intro; Preface; Introduction to Clustering Methods; Introduction; Introduction to Clustering; Uses of Clustering; Introduction to the Iris Dataset; Exercise 1: Exploring the Iris Dataset; Types of Clustering; Introduction to k-means Clustering; Euclidean Distance; Manhattan Distance; Cosine Distance; The Hamming Distance; k-means Clustering Algorithm; Steps to Implement k-means Clustering; Exercise 2: Implementing k-means Clustering on the Iris Dataset; Activity 1: k-means Clustering with Three Clusters; Introduction to k-means Clustering with Built-In Functions K-means Clustering with Three ClustersExercise 3: k-means Clustering with R Libraries; Introduction to Market Segmentation; Exercise 4: Exploring the Wholesale Customer Dataset; Activity 2: Customer Segmentation with k-means; Introduction to k-medoids Clustering; The k-medoids Clustering Algorithm; k-medoids Clustering Code; Exercise 5: Implementing k-medoid Clustering; k-means Clustering versus k-medoids Clustering; Activity 3: Performing Customer Segmentation with k-medoids Clustering; Deciding the Optimal Number of Clusters; Types of Clustering Metrics; Silhouette Score Exercise 6: Calculating the Silhouette ScoreExercise 7: Identifying the Optimum Number of Clusters; WSS/Elbow Method; Exercise 8: Using WSS to Determine the Number of Clusters; The Gap Statistic; Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic; Activity 4: Finding the Ideal Number of Market Segments; Summary; Advanced Clustering Methods; Introduction; Introduction to k-modes Clustering; Steps for k-Modes Clustering; Exercise 10: Implementing k-modes Clustering; Activity 5: Implementing k-modes Clustering on the Mushroom Dataset Introduction to Density-Based Clustering (DBSCAN)Steps for DBSCAN; Exercise 11: Implementing DBSCAN; Uses of DBSCAN; Activity 6: Implementing DBSCAN and Visualizing the Results; Introduction to Hierarchical Clustering; Types of Similarity Metrics; Steps to Perform Agglomerative Hierarchical Clustering; Exercise 12: Agglomerative Clustering with Different Similarity Measures; Divisive Clustering; Steps to Perform Divisive Clustering; Exercise 13: Performing DIANA Clustering; Activity 7: Performing Hierarchical Cluster Analysis on the Seeds Dataset; Summary; Probability Distributions IntroductionBasic Terminology of Probability Distributions; Uniform Distribution; Exercise 14: Generating and Plotting Uniform Samples in R; Normal Distribution; Exercise 15: Generating and Plotting a Normal Distribution in R; Skew and Kurtosis; Log-Normal Distributions; Exercise 16: Generating a Log-Normal Distribution from a Normal Distribution; The Binomial Distribution; Exercise 17: Generating a Binomial Distribution; The Poisson Distribution; The Pareto Distribution; Introduction to Kernel Density Estimation; KDE Algorithm; Exercise 18: Visualizing and Understanding KDE Exercise 19: Studying the Effect of Changing Kernels on a Distribution Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions. R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Cluster analysis Computer programs. http://id.loc.gov/authorities/subjects/sh85027251 Probabilities Data processing. Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Algorithms https://id.nlm.nih.gov/mesh/D000465 R (Langage de programmation) Probabilités Informatique. Algorithmes. algorithms. aat Data capture & analysis. bicssc Neural networks & fuzzy systems. bicssc Artificial intelligence. bicssc Computers Data Processing. bisacsh Computers Neural Networks. bisacsh Computers Intelligence (AI) & Semantics. bisacsh Algorithms fast Cluster analysis Computer programs fast Probabilities Data processing fast R (Computer program language) fast Tuckfield, Bradford. has work: Applied unsupervised learning with R (Text) https://id.oclc.org/worldcat/entity/E39PCYGhqr69TMKw3mBM8tRhYd https://id.oclc.org/worldcat/ontology/hasWork Print version: Malik, Alok. Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. Birmingham : Packt Publishing Ltd, ©2019 9781789956399 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2092865 Volltext |
spellingShingle | Malik, Alok Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. Intro; Preface; Introduction to Clustering Methods; Introduction; Introduction to Clustering; Uses of Clustering; Introduction to the Iris Dataset; Exercise 1: Exploring the Iris Dataset; Types of Clustering; Introduction to k-means Clustering; Euclidean Distance; Manhattan Distance; Cosine Distance; The Hamming Distance; k-means Clustering Algorithm; Steps to Implement k-means Clustering; Exercise 2: Implementing k-means Clustering on the Iris Dataset; Activity 1: k-means Clustering with Three Clusters; Introduction to k-means Clustering with Built-In Functions K-means Clustering with Three ClustersExercise 3: k-means Clustering with R Libraries; Introduction to Market Segmentation; Exercise 4: Exploring the Wholesale Customer Dataset; Activity 2: Customer Segmentation with k-means; Introduction to k-medoids Clustering; The k-medoids Clustering Algorithm; k-medoids Clustering Code; Exercise 5: Implementing k-medoid Clustering; k-means Clustering versus k-medoids Clustering; Activity 3: Performing Customer Segmentation with k-medoids Clustering; Deciding the Optimal Number of Clusters; Types of Clustering Metrics; Silhouette Score Exercise 6: Calculating the Silhouette ScoreExercise 7: Identifying the Optimum Number of Clusters; WSS/Elbow Method; Exercise 8: Using WSS to Determine the Number of Clusters; The Gap Statistic; Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic; Activity 4: Finding the Ideal Number of Market Segments; Summary; Advanced Clustering Methods; Introduction; Introduction to k-modes Clustering; Steps for k-Modes Clustering; Exercise 10: Implementing k-modes Clustering; Activity 5: Implementing k-modes Clustering on the Mushroom Dataset Introduction to Density-Based Clustering (DBSCAN)Steps for DBSCAN; Exercise 11: Implementing DBSCAN; Uses of DBSCAN; Activity 6: Implementing DBSCAN and Visualizing the Results; Introduction to Hierarchical Clustering; Types of Similarity Metrics; Steps to Perform Agglomerative Hierarchical Clustering; Exercise 12: Agglomerative Clustering with Different Similarity Measures; Divisive Clustering; Steps to Perform Divisive Clustering; Exercise 13: Performing DIANA Clustering; Activity 7: Performing Hierarchical Cluster Analysis on the Seeds Dataset; Summary; Probability Distributions IntroductionBasic Terminology of Probability Distributions; Uniform Distribution; Exercise 14: Generating and Plotting Uniform Samples in R; Normal Distribution; Exercise 15: Generating and Plotting a Normal Distribution in R; Skew and Kurtosis; Log-Normal Distributions; Exercise 16: Generating a Log-Normal Distribution from a Normal Distribution; The Binomial Distribution; Exercise 17: Generating a Binomial Distribution; The Poisson Distribution; The Pareto Distribution; Introduction to Kernel Density Estimation; KDE Algorithm; Exercise 18: Visualizing and Understanding KDE R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Cluster analysis Computer programs. http://id.loc.gov/authorities/subjects/sh85027251 Probabilities Data processing. Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Algorithms https://id.nlm.nih.gov/mesh/D000465 R (Langage de programmation) Probabilités Informatique. Algorithmes. algorithms. aat Data capture & analysis. bicssc Neural networks & fuzzy systems. bicssc Artificial intelligence. bicssc Computers Data Processing. bisacsh Computers Neural Networks. bisacsh Computers Intelligence (AI) & Semantics. bisacsh Algorithms fast Cluster analysis Computer programs fast Probabilities Data processing fast R (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2002004407 http://id.loc.gov/authorities/subjects/sh85027251 http://id.loc.gov/authorities/subjects/sh85003487 https://id.nlm.nih.gov/mesh/D000465 |
title | Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. |
title_auth | Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. |
title_exact_search | Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. |
title_full | Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. |
title_fullStr | Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. |
title_full_unstemmed | Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. |
title_short | Applied Unsupervised Learning with R : |
title_sort | applied unsupervised learning with r uncover hidden relationships and patterns with k means clustering hierarchical clustering and pca |
title_sub | Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. |
topic | R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Cluster analysis Computer programs. http://id.loc.gov/authorities/subjects/sh85027251 Probabilities Data processing. Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Algorithms https://id.nlm.nih.gov/mesh/D000465 R (Langage de programmation) Probabilités Informatique. Algorithmes. algorithms. aat Data capture & analysis. bicssc Neural networks & fuzzy systems. bicssc Artificial intelligence. bicssc Computers Data Processing. bisacsh Computers Neural Networks. bisacsh Computers Intelligence (AI) & Semantics. bisacsh Algorithms fast Cluster analysis Computer programs fast Probabilities Data processing fast R (Computer program language) fast |
topic_facet | R (Computer program language) Cluster analysis Computer programs. Probabilities Data processing. Algorithms. Algorithms R (Langage de programmation) Probabilités Informatique. Algorithmes. algorithms. Data capture & analysis. Neural networks & fuzzy systems. Artificial intelligence. Computers Data Processing. Computers Neural Networks. Computers Intelligence (AI) & Semantics. Cluster analysis Computer programs Probabilities Data processing |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2092865 |
work_keys_str_mv | AT malikalok appliedunsupervisedlearningwithruncoverhiddenrelationshipsandpatternswithkmeansclusteringhierarchicalclusteringandpca AT tuckfieldbradford appliedunsupervisedlearningwithruncoverhiddenrelationshipsandpatternswithkmeansclusteringhierarchicalclusteringandpca |