Quasi-Hopf algebras :: a categorical approach /
This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art.
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY :
Cambridge University Press,
[2019]
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
171. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781108632652 1108632653 9781108582780 1108582788 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1091029413 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 190401s2019 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDX |d EBLCP |d HTM |d UAB |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d S9M |d OCLCL | ||
019 | |a 1089758305 |a 1090813754 |a 1151666246 |a 1151946705 | ||
020 | |a 9781108632652 |q (electronic bk.) | ||
020 | |a 1108632653 |q (electronic bk.) | ||
020 | |a 9781108582780 |q (ebook) | ||
020 | |a 1108582788 |q (ebook) | ||
020 | |z 9781108427012 | ||
020 | |z 1108427014 | ||
035 | |a (OCoLC)1091029413 |z (OCoLC)1089758305 |z (OCoLC)1090813754 |z (OCoLC)1151666246 |z (OCoLC)1151946705 | ||
050 | 4 | |a QA613.8 |b .B85 2019eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.55 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Bulacu, Daniel, |d 1973- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjCbdMKPxPyRKt9CYfmgXd |0 http://id.loc.gov/authorities/names/n2018044727 | |
245 | 1 | 0 | |a Quasi-Hopf algebras : |b a categorical approach / |c Daniel Bulacu (Universitatea din Bucureti, Romania), Stefaan Caenepeel (Vrije Universiteit, Amsterdam), Florin Panaite (Institute of Mathematics of the Romanian Academy), Freddy van Oystaeyen (Universiteit Antwerpen, Belgium). |
264 | 1 | |a Cambridge ; |a New York, NY : |b Cambridge University Press, |c [2019] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v 171 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Half-title; Series information; Title page; Copyright information; Dedication; Contents; Preface; 1 Monoidal and Braided Categories; 1.1 Monoidal Categories; 1.2 Examples of Monoidal Categories; 1.2.1 The Category of Sets; 1.2.2 The Category of Vector Spaces; 1.2.3 The Category of Bimodules; 1.2.4 The Category of G-graded Vector Spaces; 1.2.5 The Category of Endo-functors; 1.2.6 A Strict Category Associated to a Monoidal Category; 1.3 Monoidal Functors; 1.4 Mac Lane's Strictification Theorem for Monoidal Categories; 1.5 (Pre- )Braided Monoidal Categories; 1.6 Rigid Monoidal Categories | |
505 | 8 | |a 1.7 The Left and Right Dual Functors1.8 Braided Rigid Monoidal Categories; 1.9 Notes; 2 Algebras and Coalgebras in Monoidal Categories; 2.1 Algebras in Monoidal Categories; 2.2 Coalgebras in Monoidal Categories; 2.3 The Dual Coalgebra/Algebra of an Algebra/Coalgebra; 2.4 Categories of Representations; 2.5 Categories of Corepresentations; 2.6 Braided Bialgebras; 2.7 Braided Hopf Algebras; 2.8 Notes; 3 Quasi-bialgebras and Quasi-Hopf Algebras; 3.1 Quasi-bialgebras; 3.2 Quasi-Hopf Algebras; 3.3 Examples of Quasi-bialgebras and Quasi-Hopf Algebras | |
505 | 8 | |a 3.4 The Rigid Monoidal Structure of HMfd and MHfd3.5 The Reconstruction Theorem for Quasi-Hopf Algebras; 3.6 Sovereign Quasi-Hopf Algebras; 3.7 Dual Quasi-Hopf Algebras; 3.8 Further Examples of (Dual) Quasi-Hopf Algebras; 3.9 Notes; 4 Module (Co)Algebras and (Bi)Comodule Algebras; 4.1 Module Algebras over Quasi-bialgebras; 4.2 Module Coalgebras over Quasi-bialgebras; 4.3 Comodule Algebras over Quasi-bialgebras; 4.4 Bicomodule Algebras and Two-sided Coactions; 4.5 Notes; 5 Crossed Products; 5.1 Smash Products; 5.2 Quasi-smash Products and Generalized Smash Products | |
505 | 8 | |a 5.3 Endomorphism H-module Algebras5.4 Two-sided Smash and Crossed Products; 5.5 H*-Hopf Bimodules; 5.6 Diagonal Crossed Products; 5.7 L-R-smash Products; 5.8 A Duality Theorem for Quasi-Hopf Algebras; 5.9 Notes; 6 Quasi-Hopf Bimodule Categories; 6.1 Quasi-Hopf Bimodules; 6.2 The Dual of a Quasi-Hopf Bimodule; 6.3 Structure Theorems for Quasi-Hopf Bimodules; 6.4 The Categories [sub(H)]M[sub(H)sup(H)] and [sub(H)]M; 6.5 A Structure Theorem for Comodule Algebras; 6.6 Coalgebras in [sub(H)]M[sub(H)sup(H)]; 6.7 Notes; 7 Finite-Dimensional Quasi-Hopf Algebras; 7.1 Frobenius Algebras | |
520 | |a This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art. | ||
650 | 0 | |a Hopf algebras. |0 http://id.loc.gov/authorities/subjects/sh85061931 | |
650 | 0 | |a Tensor products. |0 http://id.loc.gov/authorities/subjects/sh85133938 | |
650 | 0 | |a Tensor algebra. |0 http://id.loc.gov/authorities/subjects/sh85133937 | |
650 | 6 | |a Algèbres de Hopf. | |
650 | 6 | |a Produits tensoriels. | |
650 | 6 | |a Algèbre tensorielle. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Álgebra tensorial |2 embne | |
650 | 0 | 7 | |a Productos tensoriales |2 embucm |
650 | 7 | |a Hopf algebras |2 fast | |
650 | 7 | |a Tensor algebra |2 fast | |
650 | 7 | |a Tensor products |2 fast | |
700 | 1 | |a Caenepeel, Stefaan, |d 1956- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjFctBTJH7TJDR67pKmRPP |0 http://id.loc.gov/authorities/names/n88137515 | |
700 | 1 | |a Panaite, Florin, |d 1970- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjJ7WBGCYyqjQ8hyWH68BX |0 http://id.loc.gov/authorities/names/n2018044729 | |
700 | 1 | |a Oystaeyen, F. Van, |d 1947- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJc3MYgMFQcQgDchTFcMfq |0 http://id.loc.gov/authorities/names/n79007748 | |
758 | |i has work: |a Quasi-Hopf algebras (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGXWt9qRVH6hGB7FpgHq6X |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bulacu, Daniel, 1973- |t Quasi-Hopf algebras. |d Cambridge ; New York, NY : Cambridge University Press, [2019] |z 9781108427012 |w (DLC) 2018034517 |w (OCoLC)1045209078 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v 171. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2026061 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH37001991 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH34805844 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5745424 | ||
938 | |a EBSCOhost |b EBSC |n 2026061 | ||
938 | |a YBP Library Services |b YANK |n 16136665 | ||
938 | |a YBP Library Services |b YANK |n 15307814 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1091029413 |
---|---|
_version_ | 1816882488507629568 |
adam_text | |
any_adam_object | |
author | Bulacu, Daniel, 1973- Caenepeel, Stefaan, 1956- Panaite, Florin, 1970- Oystaeyen, F. Van, 1947- |
author_GND | http://id.loc.gov/authorities/names/n2018044727 http://id.loc.gov/authorities/names/n88137515 http://id.loc.gov/authorities/names/n2018044729 http://id.loc.gov/authorities/names/n79007748 |
author_facet | Bulacu, Daniel, 1973- Caenepeel, Stefaan, 1956- Panaite, Florin, 1970- Oystaeyen, F. Van, 1947- |
author_role | aut aut aut aut |
author_sort | Bulacu, Daniel, 1973- |
author_variant | d b db s c sc f p fp f v o fv fvo |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613.8 .B85 2019eb |
callnumber-search | QA613.8 .B85 2019eb |
callnumber-sort | QA 3613.8 B85 42019EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Half-title; Series information; Title page; Copyright information; Dedication; Contents; Preface; 1 Monoidal and Braided Categories; 1.1 Monoidal Categories; 1.2 Examples of Monoidal Categories; 1.2.1 The Category of Sets; 1.2.2 The Category of Vector Spaces; 1.2.3 The Category of Bimodules; 1.2.4 The Category of G-graded Vector Spaces; 1.2.5 The Category of Endo-functors; 1.2.6 A Strict Category Associated to a Monoidal Category; 1.3 Monoidal Functors; 1.4 Mac Lane's Strictification Theorem for Monoidal Categories; 1.5 (Pre- )Braided Monoidal Categories; 1.6 Rigid Monoidal Categories 1.7 The Left and Right Dual Functors1.8 Braided Rigid Monoidal Categories; 1.9 Notes; 2 Algebras and Coalgebras in Monoidal Categories; 2.1 Algebras in Monoidal Categories; 2.2 Coalgebras in Monoidal Categories; 2.3 The Dual Coalgebra/Algebra of an Algebra/Coalgebra; 2.4 Categories of Representations; 2.5 Categories of Corepresentations; 2.6 Braided Bialgebras; 2.7 Braided Hopf Algebras; 2.8 Notes; 3 Quasi-bialgebras and Quasi-Hopf Algebras; 3.1 Quasi-bialgebras; 3.2 Quasi-Hopf Algebras; 3.3 Examples of Quasi-bialgebras and Quasi-Hopf Algebras 3.4 The Rigid Monoidal Structure of HMfd and MHfd3.5 The Reconstruction Theorem for Quasi-Hopf Algebras; 3.6 Sovereign Quasi-Hopf Algebras; 3.7 Dual Quasi-Hopf Algebras; 3.8 Further Examples of (Dual) Quasi-Hopf Algebras; 3.9 Notes; 4 Module (Co)Algebras and (Bi)Comodule Algebras; 4.1 Module Algebras over Quasi-bialgebras; 4.2 Module Coalgebras over Quasi-bialgebras; 4.3 Comodule Algebras over Quasi-bialgebras; 4.4 Bicomodule Algebras and Two-sided Coactions; 4.5 Notes; 5 Crossed Products; 5.1 Smash Products; 5.2 Quasi-smash Products and Generalized Smash Products 5.3 Endomorphism H-module Algebras5.4 Two-sided Smash and Crossed Products; 5.5 H*-Hopf Bimodules; 5.6 Diagonal Crossed Products; 5.7 L-R-smash Products; 5.8 A Duality Theorem for Quasi-Hopf Algebras; 5.9 Notes; 6 Quasi-Hopf Bimodule Categories; 6.1 Quasi-Hopf Bimodules; 6.2 The Dual of a Quasi-Hopf Bimodule; 6.3 Structure Theorems for Quasi-Hopf Bimodules; 6.4 The Categories [sub(H)]M[sub(H)sup(H)] and [sub(H)]M; 6.5 A Structure Theorem for Comodule Algebras; 6.6 Coalgebras in [sub(H)]M[sub(H)sup(H)]; 6.7 Notes; 7 Finite-Dimensional Quasi-Hopf Algebras; 7.1 Frobenius Algebras |
ctrlnum | (OCoLC)1091029413 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06258cam a2200745 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1091029413</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">190401s2019 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">HTM</subfield><subfield code="d">UAB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1089758305</subfield><subfield code="a">1090813754</subfield><subfield code="a">1151666246</subfield><subfield code="a">1151946705</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108632652</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108632653</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108582780</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108582788</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781108427012</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1108427014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1091029413</subfield><subfield code="z">(OCoLC)1089758305</subfield><subfield code="z">(OCoLC)1090813754</subfield><subfield code="z">(OCoLC)1151666246</subfield><subfield code="z">(OCoLC)1151946705</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA613.8</subfield><subfield code="b">.B85 2019eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bulacu, Daniel,</subfield><subfield code="d">1973-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCbdMKPxPyRKt9CYfmgXd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2018044727</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-Hopf algebras :</subfield><subfield code="b">a categorical approach /</subfield><subfield code="c">Daniel Bulacu (Universitatea din Bucureti, Romania), Stefaan Caenepeel (Vrije Universiteit, Amsterdam), Florin Panaite (Institute of Mathematics of the Romanian Academy), Freddy van Oystaeyen (Universiteit Antwerpen, Belgium).</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ;</subfield><subfield code="a">New York, NY :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">171</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half-title; Series information; Title page; Copyright information; Dedication; Contents; Preface; 1 Monoidal and Braided Categories; 1.1 Monoidal Categories; 1.2 Examples of Monoidal Categories; 1.2.1 The Category of Sets; 1.2.2 The Category of Vector Spaces; 1.2.3 The Category of Bimodules; 1.2.4 The Category of G-graded Vector Spaces; 1.2.5 The Category of Endo-functors; 1.2.6 A Strict Category Associated to a Monoidal Category; 1.3 Monoidal Functors; 1.4 Mac Lane's Strictification Theorem for Monoidal Categories; 1.5 (Pre- )Braided Monoidal Categories; 1.6 Rigid Monoidal Categories</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.7 The Left and Right Dual Functors1.8 Braided Rigid Monoidal Categories; 1.9 Notes; 2 Algebras and Coalgebras in Monoidal Categories; 2.1 Algebras in Monoidal Categories; 2.2 Coalgebras in Monoidal Categories; 2.3 The Dual Coalgebra/Algebra of an Algebra/Coalgebra; 2.4 Categories of Representations; 2.5 Categories of Corepresentations; 2.6 Braided Bialgebras; 2.7 Braided Hopf Algebras; 2.8 Notes; 3 Quasi-bialgebras and Quasi-Hopf Algebras; 3.1 Quasi-bialgebras; 3.2 Quasi-Hopf Algebras; 3.3 Examples of Quasi-bialgebras and Quasi-Hopf Algebras</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 The Rigid Monoidal Structure of HMfd and MHfd3.5 The Reconstruction Theorem for Quasi-Hopf Algebras; 3.6 Sovereign Quasi-Hopf Algebras; 3.7 Dual Quasi-Hopf Algebras; 3.8 Further Examples of (Dual) Quasi-Hopf Algebras; 3.9 Notes; 4 Module (Co)Algebras and (Bi)Comodule Algebras; 4.1 Module Algebras over Quasi-bialgebras; 4.2 Module Coalgebras over Quasi-bialgebras; 4.3 Comodule Algebras over Quasi-bialgebras; 4.4 Bicomodule Algebras and Two-sided Coactions; 4.5 Notes; 5 Crossed Products; 5.1 Smash Products; 5.2 Quasi-smash Products and Generalized Smash Products</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3 Endomorphism H-module Algebras5.4 Two-sided Smash and Crossed Products; 5.5 H*-Hopf Bimodules; 5.6 Diagonal Crossed Products; 5.7 L-R-smash Products; 5.8 A Duality Theorem for Quasi-Hopf Algebras; 5.9 Notes; 6 Quasi-Hopf Bimodule Categories; 6.1 Quasi-Hopf Bimodules; 6.2 The Dual of a Quasi-Hopf Bimodule; 6.3 Structure Theorems for Quasi-Hopf Bimodules; 6.4 The Categories [sub(H)]M[sub(H)sup(H)] and [sub(H)]M; 6.5 A Structure Theorem for Comodule Algebras; 6.6 Coalgebras in [sub(H)]M[sub(H)sup(H)]; 6.7 Notes; 7 Finite-Dimensional Quasi-Hopf Algebras; 7.1 Frobenius Algebras</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hopf algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061931</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Tensor products.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85133938</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Tensor algebra.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85133937</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Hopf.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Produits tensoriels.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre tensorielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra tensorial</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Productos tensoriales</subfield><subfield code="2">embucm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hopf algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensor algebra</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensor products</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Caenepeel, Stefaan,</subfield><subfield code="d">1956-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjFctBTJH7TJDR67pKmRPP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88137515</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panaite, Florin,</subfield><subfield code="d">1970-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjJ7WBGCYyqjQ8hyWH68BX</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2018044729</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oystaeyen, F. Van,</subfield><subfield code="d">1947-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJc3MYgMFQcQgDchTFcMfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79007748</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Quasi-Hopf algebras (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGXWt9qRVH6hGB7FpgHq6X</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bulacu, Daniel, 1973-</subfield><subfield code="t">Quasi-Hopf algebras.</subfield><subfield code="d">Cambridge ; New York, NY : Cambridge University Press, [2019]</subfield><subfield code="z">9781108427012</subfield><subfield code="w">(DLC) 2018034517</subfield><subfield code="w">(OCoLC)1045209078</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">171.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2026061</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37001991</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34805844</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5745424</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2026061</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">16136665</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15307814</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1091029413 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:25Z |
institution | BVB |
isbn | 9781108632652 1108632653 9781108582780 1108582788 |
language | English |
oclc_num | 1091029413 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Bulacu, Daniel, 1973- author. https://id.oclc.org/worldcat/entity/E39PCjCbdMKPxPyRKt9CYfmgXd http://id.loc.gov/authorities/names/n2018044727 Quasi-Hopf algebras : a categorical approach / Daniel Bulacu (Universitatea din Bucureti, Romania), Stefaan Caenepeel (Vrije Universiteit, Amsterdam), Florin Panaite (Institute of Mathematics of the Romanian Academy), Freddy van Oystaeyen (Universiteit Antwerpen, Belgium). Cambridge ; New York, NY : Cambridge University Press, [2019] 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; 171 Includes bibliographical references and index. Print version record. Cover; Half-title; Series information; Title page; Copyright information; Dedication; Contents; Preface; 1 Monoidal and Braided Categories; 1.1 Monoidal Categories; 1.2 Examples of Monoidal Categories; 1.2.1 The Category of Sets; 1.2.2 The Category of Vector Spaces; 1.2.3 The Category of Bimodules; 1.2.4 The Category of G-graded Vector Spaces; 1.2.5 The Category of Endo-functors; 1.2.6 A Strict Category Associated to a Monoidal Category; 1.3 Monoidal Functors; 1.4 Mac Lane's Strictification Theorem for Monoidal Categories; 1.5 (Pre- )Braided Monoidal Categories; 1.6 Rigid Monoidal Categories 1.7 The Left and Right Dual Functors1.8 Braided Rigid Monoidal Categories; 1.9 Notes; 2 Algebras and Coalgebras in Monoidal Categories; 2.1 Algebras in Monoidal Categories; 2.2 Coalgebras in Monoidal Categories; 2.3 The Dual Coalgebra/Algebra of an Algebra/Coalgebra; 2.4 Categories of Representations; 2.5 Categories of Corepresentations; 2.6 Braided Bialgebras; 2.7 Braided Hopf Algebras; 2.8 Notes; 3 Quasi-bialgebras and Quasi-Hopf Algebras; 3.1 Quasi-bialgebras; 3.2 Quasi-Hopf Algebras; 3.3 Examples of Quasi-bialgebras and Quasi-Hopf Algebras 3.4 The Rigid Monoidal Structure of HMfd and MHfd3.5 The Reconstruction Theorem for Quasi-Hopf Algebras; 3.6 Sovereign Quasi-Hopf Algebras; 3.7 Dual Quasi-Hopf Algebras; 3.8 Further Examples of (Dual) Quasi-Hopf Algebras; 3.9 Notes; 4 Module (Co)Algebras and (Bi)Comodule Algebras; 4.1 Module Algebras over Quasi-bialgebras; 4.2 Module Coalgebras over Quasi-bialgebras; 4.3 Comodule Algebras over Quasi-bialgebras; 4.4 Bicomodule Algebras and Two-sided Coactions; 4.5 Notes; 5 Crossed Products; 5.1 Smash Products; 5.2 Quasi-smash Products and Generalized Smash Products 5.3 Endomorphism H-module Algebras5.4 Two-sided Smash and Crossed Products; 5.5 H*-Hopf Bimodules; 5.6 Diagonal Crossed Products; 5.7 L-R-smash Products; 5.8 A Duality Theorem for Quasi-Hopf Algebras; 5.9 Notes; 6 Quasi-Hopf Bimodule Categories; 6.1 Quasi-Hopf Bimodules; 6.2 The Dual of a Quasi-Hopf Bimodule; 6.3 Structure Theorems for Quasi-Hopf Bimodules; 6.4 The Categories [sub(H)]M[sub(H)sup(H)] and [sub(H)]M; 6.5 A Structure Theorem for Comodule Algebras; 6.6 Coalgebras in [sub(H)]M[sub(H)sup(H)]; 6.7 Notes; 7 Finite-Dimensional Quasi-Hopf Algebras; 7.1 Frobenius Algebras This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art. Hopf algebras. http://id.loc.gov/authorities/subjects/sh85061931 Tensor products. http://id.loc.gov/authorities/subjects/sh85133938 Tensor algebra. http://id.loc.gov/authorities/subjects/sh85133937 Algèbres de Hopf. Produits tensoriels. Algèbre tensorielle. MATHEMATICS Algebra Intermediate. bisacsh Álgebra tensorial embne Productos tensoriales embucm Hopf algebras fast Tensor algebra fast Tensor products fast Caenepeel, Stefaan, 1956- author. https://id.oclc.org/worldcat/entity/E39PCjFctBTJH7TJDR67pKmRPP http://id.loc.gov/authorities/names/n88137515 Panaite, Florin, 1970- author. https://id.oclc.org/worldcat/entity/E39PCjJ7WBGCYyqjQ8hyWH68BX http://id.loc.gov/authorities/names/n2018044729 Oystaeyen, F. Van, 1947- author. https://id.oclc.org/worldcat/entity/E39PBJc3MYgMFQcQgDchTFcMfq http://id.loc.gov/authorities/names/n79007748 has work: Quasi-Hopf algebras (Text) https://id.oclc.org/worldcat/entity/E39PCGXWt9qRVH6hGB7FpgHq6X https://id.oclc.org/worldcat/ontology/hasWork Print version: Bulacu, Daniel, 1973- Quasi-Hopf algebras. Cambridge ; New York, NY : Cambridge University Press, [2019] 9781108427012 (DLC) 2018034517 (OCoLC)1045209078 Encyclopedia of mathematics and its applications ; 171. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2026061 Volltext |
spellingShingle | Bulacu, Daniel, 1973- Caenepeel, Stefaan, 1956- Panaite, Florin, 1970- Oystaeyen, F. Van, 1947- Quasi-Hopf algebras : a categorical approach / Encyclopedia of mathematics and its applications ; Cover; Half-title; Series information; Title page; Copyright information; Dedication; Contents; Preface; 1 Monoidal and Braided Categories; 1.1 Monoidal Categories; 1.2 Examples of Monoidal Categories; 1.2.1 The Category of Sets; 1.2.2 The Category of Vector Spaces; 1.2.3 The Category of Bimodules; 1.2.4 The Category of G-graded Vector Spaces; 1.2.5 The Category of Endo-functors; 1.2.6 A Strict Category Associated to a Monoidal Category; 1.3 Monoidal Functors; 1.4 Mac Lane's Strictification Theorem for Monoidal Categories; 1.5 (Pre- )Braided Monoidal Categories; 1.6 Rigid Monoidal Categories 1.7 The Left and Right Dual Functors1.8 Braided Rigid Monoidal Categories; 1.9 Notes; 2 Algebras and Coalgebras in Monoidal Categories; 2.1 Algebras in Monoidal Categories; 2.2 Coalgebras in Monoidal Categories; 2.3 The Dual Coalgebra/Algebra of an Algebra/Coalgebra; 2.4 Categories of Representations; 2.5 Categories of Corepresentations; 2.6 Braided Bialgebras; 2.7 Braided Hopf Algebras; 2.8 Notes; 3 Quasi-bialgebras and Quasi-Hopf Algebras; 3.1 Quasi-bialgebras; 3.2 Quasi-Hopf Algebras; 3.3 Examples of Quasi-bialgebras and Quasi-Hopf Algebras 3.4 The Rigid Monoidal Structure of HMfd and MHfd3.5 The Reconstruction Theorem for Quasi-Hopf Algebras; 3.6 Sovereign Quasi-Hopf Algebras; 3.7 Dual Quasi-Hopf Algebras; 3.8 Further Examples of (Dual) Quasi-Hopf Algebras; 3.9 Notes; 4 Module (Co)Algebras and (Bi)Comodule Algebras; 4.1 Module Algebras over Quasi-bialgebras; 4.2 Module Coalgebras over Quasi-bialgebras; 4.3 Comodule Algebras over Quasi-bialgebras; 4.4 Bicomodule Algebras and Two-sided Coactions; 4.5 Notes; 5 Crossed Products; 5.1 Smash Products; 5.2 Quasi-smash Products and Generalized Smash Products 5.3 Endomorphism H-module Algebras5.4 Two-sided Smash and Crossed Products; 5.5 H*-Hopf Bimodules; 5.6 Diagonal Crossed Products; 5.7 L-R-smash Products; 5.8 A Duality Theorem for Quasi-Hopf Algebras; 5.9 Notes; 6 Quasi-Hopf Bimodule Categories; 6.1 Quasi-Hopf Bimodules; 6.2 The Dual of a Quasi-Hopf Bimodule; 6.3 Structure Theorems for Quasi-Hopf Bimodules; 6.4 The Categories [sub(H)]M[sub(H)sup(H)] and [sub(H)]M; 6.5 A Structure Theorem for Comodule Algebras; 6.6 Coalgebras in [sub(H)]M[sub(H)sup(H)]; 6.7 Notes; 7 Finite-Dimensional Quasi-Hopf Algebras; 7.1 Frobenius Algebras Hopf algebras. http://id.loc.gov/authorities/subjects/sh85061931 Tensor products. http://id.loc.gov/authorities/subjects/sh85133938 Tensor algebra. http://id.loc.gov/authorities/subjects/sh85133937 Algèbres de Hopf. Produits tensoriels. Algèbre tensorielle. MATHEMATICS Algebra Intermediate. bisacsh Álgebra tensorial embne Productos tensoriales embucm Hopf algebras fast Tensor algebra fast Tensor products fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85061931 http://id.loc.gov/authorities/subjects/sh85133938 http://id.loc.gov/authorities/subjects/sh85133937 |
title | Quasi-Hopf algebras : a categorical approach / |
title_auth | Quasi-Hopf algebras : a categorical approach / |
title_exact_search | Quasi-Hopf algebras : a categorical approach / |
title_full | Quasi-Hopf algebras : a categorical approach / Daniel Bulacu (Universitatea din Bucureti, Romania), Stefaan Caenepeel (Vrije Universiteit, Amsterdam), Florin Panaite (Institute of Mathematics of the Romanian Academy), Freddy van Oystaeyen (Universiteit Antwerpen, Belgium). |
title_fullStr | Quasi-Hopf algebras : a categorical approach / Daniel Bulacu (Universitatea din Bucureti, Romania), Stefaan Caenepeel (Vrije Universiteit, Amsterdam), Florin Panaite (Institute of Mathematics of the Romanian Academy), Freddy van Oystaeyen (Universiteit Antwerpen, Belgium). |
title_full_unstemmed | Quasi-Hopf algebras : a categorical approach / Daniel Bulacu (Universitatea din Bucureti, Romania), Stefaan Caenepeel (Vrije Universiteit, Amsterdam), Florin Panaite (Institute of Mathematics of the Romanian Academy), Freddy van Oystaeyen (Universiteit Antwerpen, Belgium). |
title_short | Quasi-Hopf algebras : |
title_sort | quasi hopf algebras a categorical approach |
title_sub | a categorical approach / |
topic | Hopf algebras. http://id.loc.gov/authorities/subjects/sh85061931 Tensor products. http://id.loc.gov/authorities/subjects/sh85133938 Tensor algebra. http://id.loc.gov/authorities/subjects/sh85133937 Algèbres de Hopf. Produits tensoriels. Algèbre tensorielle. MATHEMATICS Algebra Intermediate. bisacsh Álgebra tensorial embne Productos tensoriales embucm Hopf algebras fast Tensor algebra fast Tensor products fast |
topic_facet | Hopf algebras. Tensor products. Tensor algebra. Algèbres de Hopf. Produits tensoriels. Algèbre tensorielle. MATHEMATICS Algebra Intermediate. Álgebra tensorial Productos tensoriales Hopf algebras Tensor algebra Tensor products |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2026061 |
work_keys_str_mv | AT bulacudaniel quasihopfalgebrasacategoricalapproach AT caenepeelstefaan quasihopfalgebrasacategoricalapproach AT panaiteflorin quasihopfalgebrasacategoricalapproach AT oystaeyenfvan quasihopfalgebrasacategoricalapproach |