Periodic locally compact groups :: a study of a class of totally disconnected topological groups /
"This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the intro...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
[2019]
|
Schriftenreihe: | De Gruyter studies in mathematics ;
71. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | "This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classification and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin's pioneering work generalizing to locally compact groups Iwasawa's early investigations of the lattice of subgroups of abstract groups."--Provided by publisher. |
Beschreibung: | 1 online resource (liii, 301 pages) : illustrations. |
Bibliographie: | Includes bibliographical references (pages 289-294) and index. |
ISBN: | 9783110599190 3110599198 9783110599084 3110599082 |
ISSN: | 0179-0986 ; |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1078913511 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr bn||||||||| | ||
008 | 181207t20192019gw ob 001 0 eng d | ||
010 | |a 2018951343 | ||
040 | |a DEGRU |b eng |e rda |e pn |c DEGRU |d YDX |d EBLCP |d YDXIT |d N$T |d OCLCF |d UBY |d OCLCQ |d K6U |d OCLCQ |d NHM |d VT2 |d SDF |d OCLCO |d OCLCQ |d OCLCO |d DEGRU |d OCLCL |d SXB | ||
016 | 7 | |a 019176497 |2 Uk | |
019 | |a 1078947474 |a 1138981093 |a 1175704335 |a 1228539092 |a 1235832203 | ||
020 | |a 9783110599190 |q (electronic book ; |q PDF) | ||
020 | |a 3110599198 |q (electronic book ; |q PDF) | ||
020 | |a 9783110599084 |q (electronic bk. ; |q EPUB) | ||
020 | |a 3110599082 |q (electronic bk. ; |q EPUB) | ||
020 | |z 9783110598476 |q (hardback) | ||
020 | |z 3110598477 |q (hardback) | ||
024 | 7 | |a 10.1515/9783110599190 |2 doi | |
035 | |a (OCoLC)1078913511 |z (OCoLC)1078947474 |z (OCoLC)1138981093 |z (OCoLC)1175704335 |z (OCoLC)1228539092 |z (OCoLC)1235832203 | ||
050 | 4 | |a QA387 |b .H47 2019 | |
072 | 7 | |a MAT002010 |2 bisacsh | |
072 | 7 | |a MAT014000 |2 bisacsh | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.55 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Herfort, Wolfgang, |e author. | |
245 | 1 | 0 | |a Periodic locally compact groups : |b a study of a class of totally disconnected topological groups / |c Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo. |
264 | 1 | |a Berlin ; |a Boston : |b De Gruyter, |c [2019] | |
264 | 4 | |c ©2019 | |
300 | |a 1 online resource (liii, 301 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics, |x 0179-0986 ; |v volume 71 | |
504 | |a Includes bibliographical references (pages 289-294) and index. | ||
588 | 0 | |a Online resource; title from digital title page (De Gruyter, viewed August 13, 2020). | |
520 | 8 | |a "This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classification and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin's pioneering work generalizing to locally compact groups Iwasawa's early investigations of the lattice of subgroups of abstract groups."--Provided by publisher. | |
505 | 0 | 0 | |t Part I: Background information on locally compact groups. |t Locally compact spaces and groups ; |t Periodic locally compact groups and their Sylow theory ; |t Abelian periodic groups ; |t Scalar automorphisms and the mastergraph ; |t Inductively monothetic groups -- |t Part II: Near abelian groups. |t The definition of near abelian groups ; |t Important consequences of the definitions ; |t Trivial near abelian groups ; |t The class of near abelian groups ; |t The Sylow structure of periodic nontrivial near abelian groups and their prime graphs ; |t A list of examples -- |t Part III: Applications. |t Classifying topologically quasihamiltonian groups ; |t Locally compact groups with a modular subgroup lattice ; |t Strongly topologically quasihamiltonian groups. |
650 | 0 | |a Locally compact groups. |0 http://id.loc.gov/authorities/subjects/sh85077962 | |
650 | 0 | |a Abelian groups. |0 http://id.loc.gov/authorities/subjects/sh85000128 | |
650 | 6 | |a Groupes localement compacts. | |
650 | 6 | |a Groupes abéliens. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Abelian groups |2 fast | |
650 | 7 | |a Locally compact groups |2 fast | |
655 | 4 | |a Electronic book. | |
700 | 1 | |a Hofmann, Karl Heinrich, |e author. | |
700 | 1 | |a Russo, Francesco G., |e author. | |
758 | |i has work: |a Periodic locally compact groups (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG7w7JyGdb4twwffvcgjfq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Herfort, Wolfgang. |t Periodic locally compact groups. |d Berlin ; Boston : De Gruyter, [2019] |z 9783110598476 |w (DLC) 2018951343 |w (OCoLC)1082900665 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 71. |0 http://id.loc.gov/authorities/names/n83742913 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1990469 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1990469 |3 Volltext |
938 | |a De Gruyter |b DEGR |n 9783110599190 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5625143 | ||
938 | |a EBSCOhost |b EBSC |n 1990469 | ||
938 | |a YBP Library Services |b YANK |n 15143838 | ||
938 | |a YBP Library Services |b YANK |n 15906354 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1078913511 |
---|---|
_version_ | 1829095290369474560 |
adam_text | |
any_adam_object | |
author | Herfort, Wolfgang Hofmann, Karl Heinrich Russo, Francesco G. |
author_facet | Herfort, Wolfgang Hofmann, Karl Heinrich Russo, Francesco G. |
author_role | aut aut aut |
author_sort | Herfort, Wolfgang |
author_variant | w h wh k h h kh khh f g r fg fgr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 .H47 2019 |
callnumber-search | QA387 .H47 2019 |
callnumber-sort | QA 3387 H47 42019 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Part I: Background information on locally compact groups. Locally compact spaces and groups ; Periodic locally compact groups and their Sylow theory ; Abelian periodic groups ; Scalar automorphisms and the mastergraph ; Inductively monothetic groups -- Part II: Near abelian groups. The definition of near abelian groups ; Important consequences of the definitions ; Trivial near abelian groups ; The class of near abelian groups ; The Sylow structure of periodic nontrivial near abelian groups and their prime graphs ; A list of examples -- Part III: Applications. Classifying topologically quasihamiltonian groups ; Locally compact groups with a modular subgroup lattice ; Strongly topologically quasihamiltonian groups. |
ctrlnum | (OCoLC)1078913511 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04871cam a2200709 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1078913511</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr bn|||||||||</controlfield><controlfield tag="008">181207t20192019gw ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2018951343</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DEGRU</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DEGRU</subfield><subfield code="d">YDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDXIT</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UBY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NHM</subfield><subfield code="d">VT2</subfield><subfield code="d">SDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEGRU</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019176497</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1078947474</subfield><subfield code="a">1138981093</subfield><subfield code="a">1175704335</subfield><subfield code="a">1228539092</subfield><subfield code="a">1235832203</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110599190</subfield><subfield code="q">(electronic book ;</subfield><subfield code="q">PDF)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110599198</subfield><subfield code="q">(electronic book ;</subfield><subfield code="q">PDF)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110599084</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">EPUB)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110599082</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">EPUB)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110598476</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110598477</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110599190</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1078913511</subfield><subfield code="z">(OCoLC)1078947474</subfield><subfield code="z">(OCoLC)1138981093</subfield><subfield code="z">(OCoLC)1175704335</subfield><subfield code="z">(OCoLC)1228539092</subfield><subfield code="z">(OCoLC)1235832203</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA387</subfield><subfield code="b">.H47 2019</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT002010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herfort, Wolfgang,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Periodic locally compact groups :</subfield><subfield code="b">a study of a class of totally disconnected topological groups /</subfield><subfield code="c">Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (liii, 301 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics,</subfield><subfield code="x">0179-0986 ;</subfield><subfield code="v">volume 71</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 289-294) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (De Gruyter, viewed August 13, 2020).</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">"This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classification and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin's pioneering work generalizing to locally compact groups Iwasawa's early investigations of the lattice of subgroups of abstract groups."--Provided by publisher.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Part I: Background information on locally compact groups.</subfield><subfield code="t">Locally compact spaces and groups ;</subfield><subfield code="t">Periodic locally compact groups and their Sylow theory ;</subfield><subfield code="t">Abelian periodic groups ;</subfield><subfield code="t">Scalar automorphisms and the mastergraph ;</subfield><subfield code="t">Inductively monothetic groups --</subfield><subfield code="t">Part II: Near abelian groups.</subfield><subfield code="t">The definition of near abelian groups ;</subfield><subfield code="t">Important consequences of the definitions ;</subfield><subfield code="t">Trivial near abelian groups ;</subfield><subfield code="t">The class of near abelian groups ;</subfield><subfield code="t">The Sylow structure of periodic nontrivial near abelian groups and their prime graphs ;</subfield><subfield code="t">A list of examples --</subfield><subfield code="t">Part III: Applications.</subfield><subfield code="t">Classifying topologically quasihamiltonian groups ;</subfield><subfield code="t">Locally compact groups with a modular subgroup lattice ;</subfield><subfield code="t">Strongly topologically quasihamiltonian groups.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Locally compact groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85077962</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Abelian groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85000128</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes localement compacts.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes abéliens.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Abelian groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Locally compact groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hofmann, Karl Heinrich,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Francesco G.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Periodic locally compact groups (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG7w7JyGdb4twwffvcgjfq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Herfort, Wolfgang.</subfield><subfield code="t">Periodic locally compact groups.</subfield><subfield code="d">Berlin ; Boston : De Gruyter, [2019]</subfield><subfield code="z">9783110598476</subfield><subfield code="w">(DLC) 2018951343</subfield><subfield code="w">(OCoLC)1082900665</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">71.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1990469</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1990469</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110599190</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5625143</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1990469</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15143838</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15906354</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-on1078913511 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:46:40Z |
institution | BVB |
isbn | 9783110599190 3110599198 9783110599084 3110599082 |
issn | 0179-0986 ; |
language | English |
lccn | 2018951343 |
oclc_num | 1078913511 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (liii, 301 pages) : illustrations. |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter Studies in Mathematics, |
spelling | Herfort, Wolfgang, author. Periodic locally compact groups : a study of a class of totally disconnected topological groups / Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo. Berlin ; Boston : De Gruyter, [2019] ©2019 1 online resource (liii, 301 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter Studies in Mathematics, 0179-0986 ; volume 71 Includes bibliographical references (pages 289-294) and index. Online resource; title from digital title page (De Gruyter, viewed August 13, 2020). "This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classification and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin's pioneering work generalizing to locally compact groups Iwasawa's early investigations of the lattice of subgroups of abstract groups."--Provided by publisher. Part I: Background information on locally compact groups. Locally compact spaces and groups ; Periodic locally compact groups and their Sylow theory ; Abelian periodic groups ; Scalar automorphisms and the mastergraph ; Inductively monothetic groups -- Part II: Near abelian groups. The definition of near abelian groups ; Important consequences of the definitions ; Trivial near abelian groups ; The class of near abelian groups ; The Sylow structure of periodic nontrivial near abelian groups and their prime graphs ; A list of examples -- Part III: Applications. Classifying topologically quasihamiltonian groups ; Locally compact groups with a modular subgroup lattice ; Strongly topologically quasihamiltonian groups. Locally compact groups. http://id.loc.gov/authorities/subjects/sh85077962 Abelian groups. http://id.loc.gov/authorities/subjects/sh85000128 Groupes localement compacts. Groupes abéliens. MATHEMATICS Algebra Intermediate. bisacsh Abelian groups fast Locally compact groups fast Electronic book. Hofmann, Karl Heinrich, author. Russo, Francesco G., author. has work: Periodic locally compact groups (Text) https://id.oclc.org/worldcat/entity/E39PCG7w7JyGdb4twwffvcgjfq https://id.oclc.org/worldcat/ontology/hasWork Print version: Herfort, Wolfgang. Periodic locally compact groups. Berlin ; Boston : De Gruyter, [2019] 9783110598476 (DLC) 2018951343 (OCoLC)1082900665 De Gruyter studies in mathematics ; 71. http://id.loc.gov/authorities/names/n83742913 |
spellingShingle | Herfort, Wolfgang Hofmann, Karl Heinrich Russo, Francesco G. Periodic locally compact groups : a study of a class of totally disconnected topological groups / De Gruyter studies in mathematics ; Part I: Background information on locally compact groups. Locally compact spaces and groups ; Periodic locally compact groups and their Sylow theory ; Abelian periodic groups ; Scalar automorphisms and the mastergraph ; Inductively monothetic groups -- Part II: Near abelian groups. The definition of near abelian groups ; Important consequences of the definitions ; Trivial near abelian groups ; The class of near abelian groups ; The Sylow structure of periodic nontrivial near abelian groups and their prime graphs ; A list of examples -- Part III: Applications. Classifying topologically quasihamiltonian groups ; Locally compact groups with a modular subgroup lattice ; Strongly topologically quasihamiltonian groups. Locally compact groups. http://id.loc.gov/authorities/subjects/sh85077962 Abelian groups. http://id.loc.gov/authorities/subjects/sh85000128 Groupes localement compacts. Groupes abéliens. MATHEMATICS Algebra Intermediate. bisacsh Abelian groups fast Locally compact groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85077962 http://id.loc.gov/authorities/subjects/sh85000128 |
title | Periodic locally compact groups : a study of a class of totally disconnected topological groups / |
title_alt | Part I: Background information on locally compact groups. Locally compact spaces and groups ; Periodic locally compact groups and their Sylow theory ; Abelian periodic groups ; Scalar automorphisms and the mastergraph ; Inductively monothetic groups -- Part II: Near abelian groups. The definition of near abelian groups ; Important consequences of the definitions ; Trivial near abelian groups ; The class of near abelian groups ; The Sylow structure of periodic nontrivial near abelian groups and their prime graphs ; A list of examples -- Part III: Applications. Classifying topologically quasihamiltonian groups ; Locally compact groups with a modular subgroup lattice ; Strongly topologically quasihamiltonian groups. |
title_auth | Periodic locally compact groups : a study of a class of totally disconnected topological groups / |
title_exact_search | Periodic locally compact groups : a study of a class of totally disconnected topological groups / |
title_full | Periodic locally compact groups : a study of a class of totally disconnected topological groups / Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo. |
title_fullStr | Periodic locally compact groups : a study of a class of totally disconnected topological groups / Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo. |
title_full_unstemmed | Periodic locally compact groups : a study of a class of totally disconnected topological groups / Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo. |
title_short | Periodic locally compact groups : |
title_sort | periodic locally compact groups a study of a class of totally disconnected topological groups |
title_sub | a study of a class of totally disconnected topological groups / |
topic | Locally compact groups. http://id.loc.gov/authorities/subjects/sh85077962 Abelian groups. http://id.loc.gov/authorities/subjects/sh85000128 Groupes localement compacts. Groupes abéliens. MATHEMATICS Algebra Intermediate. bisacsh Abelian groups fast Locally compact groups fast |
topic_facet | Locally compact groups. Abelian groups. Groupes localement compacts. Groupes abéliens. MATHEMATICS Algebra Intermediate. Abelian groups Locally compact groups Electronic book. |
work_keys_str_mv | AT herfortwolfgang periodiclocallycompactgroupsastudyofaclassoftotallydisconnectedtopologicalgroups AT hofmannkarlheinrich periodiclocallycompactgroupsastudyofaclassoftotallydisconnectedtopologicalgroups AT russofrancescog periodiclocallycompactgroupsastudyofaclassoftotallydisconnectedtopologicalgroups |