IBM Watson projects :: eight exciting projects that put artificial intelligence into practice for optimal business performance.
IBM Watson Projects demonstrate projects focused on cognitive computing & analytical capabilities of IBM Watson. You will explore designing smart business solutions and understand the effectiveness of a supply chain using projects including healthcare dialog system, sentimental analysis on socia...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt,
2018.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | IBM Watson Projects demonstrate projects focused on cognitive computing & analytical capabilities of IBM Watson. You will explore designing smart business solutions and understand the effectiveness of a supply chain using projects including healthcare dialog system, sentimental analysis on social media, personalized recommendation systems and more. |
Beschreibung: | 1 online resource (332 pages) |
ISBN: | 9781789346695 178934669X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1056912561 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 181013s2018 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d N$T |d TEFOD |d N$T |d UKMGB |d OCLCF |d MERUC |d LVT |d YDX |d OCLCQ |d OCLCO |d NZAUC |d OCLCQ |d OCLCO | ||
016 | 7 | |a 019078540 |2 Uk | |
019 | |a 1056196609 | ||
020 | |a 9781789346695 |q (electronic bk.) | ||
020 | |a 178934669X |q (electronic bk.) | ||
035 | |a (OCoLC)1056912561 |z (OCoLC)1056196609 | ||
037 | |a 3F7E6EF9-D51F-43D4-9453-0371716A6C11 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a Q335 | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 006.3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Miller, James. | |
245 | 1 | 0 | |a IBM Watson projects : |b eight exciting projects that put artificial intelligence into practice for optimal business performance. |
260 | |a Birmingham : |b Packt, |c 2018. | ||
300 | |a 1 online resource (332 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed October 17, 2018). | |
505 | 0 | |a Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: The Essentials of IBM Watson -- Definition and objectives -- IBM Cloud prerequisites -- Exploring the Watson interface -- The menu bar -- Menu icon -- IBM Cloud -- Catalog -- Docs -- Support -- Manage -- Profile -- avatar -- Online glossary, let's chat, and feedback -- What about Watson? -- The Watson dashboard -- Menu bar -- Quick start information bar -- Search, add, filter, and sort -- Content panel area -- Basic tasks refresher -- The first step -- Explore -- Watson prompts -- Predict -- Assemble -- Social media -- Refine -- Saving the original -- Add -- some data -- Refine -- Summary -- Chapter 2: A Basic Watson Project -- The problem defined -- Getting started -- Gathering data -- Building your Watson project -- Loading your data -- Data review -- What does this mean? -- Improving your score with Refine -- Refine or Explore -- Creating a prediction -- Top predictors -- Main Insight page -- Details page -- An insight -- Reviewing the results -- Summary -- Chapter 3: An Automated Supply Chain Scenario -- The problem defined -- Getting started -- Gathering and reviewing data -- Building the Watson project -- Loading your data -- Reviewing the data -- Refining the data -- Creating a prediction -- Supply chain prediction -- Predictors -- Main insights -- Reviewing the results -- Sharing with a dashboard -- Adding a new visualization -- Summary -- Chapter 4: Healthcare Dialoguing -- The problem defined -- What is dialoguing? -- Leveraging (new) data to identify risk -- Getting started -- Gathering and reviewing data -- Building the project -- Reviewing the results -- Exploring the dialog data -- Collecting the data -- Moving on -- Recap -- Results -- Data quality of the prediction -- Data quality report. | |
505 | 8 | |a More predictive strength -- More detail -- Assembling a story -- Testing your story -- Summary -- Chapter 5: Social Media Sentiment Analysis -- The problem defined -- Social media and IBM Watson Analytics -- Getting started -- Creating a Watson Analytics social media project -- Building the project -- Project creation step by step -- Adding topics -- Social media investigative themes -- Adding dates -- Languages -- Sources -- Reviewing the results -- Deeper dive -- conversation clusters -- Navigation -- Topics -- Another look -- Sentiment -- Sentiment terms -- Geography -- Sources and sites -- Influential authors -- Author interests -- Games and shopping -- Behavior -- Demographics -- The sentiment dictionary -- The data -- Summary -- Chapter 6: Pattern Recognition and Classification -- The problem defined -- Data peeking -- Starting a pattern recognition and classification project -- Investigation -- Coach me -- More with Watson Analytics -- The insight bar -- Modifying a visualization -- Additional filtering -- Item-based calculations -- Navigate -- Compare -- Simply trending -- Developing the pattern recognition and classification project -- Quality -- The Watson Analytics data quality report -- Creating the prediction -- The prediction workflow -- Understanding the workflow step by step -- Reviewing the results -- Displaying top predictors and predictive strength -- Summary -- Chapter 7: Retail and Personalized Recommendations -- The problem defined -- Product recommendation engines -- Recommendations from Watson Analytics -- The data at a glance -- Starting the project -- Range filter -- Save me -- Developing the project -- Reviewing the results -- Targets -- Summary ribbon -- The top predictors -- Sharing the insights -- Summary -- Chapter 8: Integration for Sales Forecasting -- The problem defined -- Product forecasting. | |
505 | 8 | |a Systematic forecasting -- IBM Planning Analytics -- Our data -- Creating the forecast -- Starting the project -- Developing the project -- Visualizations and data requirements -- More questioning -- Time Series -- Other visualization options -- Reviewing the results -- Summary -- Chapter 9: Anomaly Detection in Banking Using AI -- Defining the problem -- Banking use cases -- Corruption -- Cash -- Billing -- Check tampering -- Skimming -- Larceny -- Financial statement fraud -- Starting the project -- The data -- Developing the project -- The first question -- Using Excel for sorting and filtering the data -- Back to Watson -- Check numbers -- Reviewing the results -- Collecting -- Telling the story -- Summary -- Chapter 10: What's Next -- Chapter-by-chapter summary -- Chapter 1 -- The Essentials of IBM Watson -- Chapter 2 -- A Basic Watson Project -- Chapter 3 -- An Automated Supply Chain Scenario -- Chapter 4 -- Healthcare Dialoguing -- Chapter 5 -- Social Media Sentiment Analysis -- Chapter 6 -- Pattern Recognition And Classification -- Chapter 7 -- Retail And Personalized Recommendations -- Chapter 8 -- Integration for Sales Forecasting -- Chapter 9 -- Anomaly Detection in Banking With AI -- Suggested next steps -- Packt Publishing books, blogs, and video courses -- Learning IBM Watson Analytics -- LinkedIn groups -- Product documentation -- IBM websites -- Experiment -- Summary -- Other Books You May Enjoy -- Index. | |
520 | |a IBM Watson Projects demonstrate projects focused on cognitive computing & analytical capabilities of IBM Watson. You will explore designing smart business solutions and understand the effectiveness of a supply chain using projects including healthcare dialog system, sentimental analysis on social media, personalized recommendation systems and more. | ||
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 6 | |a Intelligence artificielle. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a Mathematical theory of computation. |2 bicssc | |
650 | 7 | |a Artificial intelligence. |2 bicssc | |
650 | 7 | |a Machine learning. |2 bicssc | |
650 | 7 | |a Natural language & machine translation. |2 bicssc | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1905962 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL5532276 | ||
938 | |a EBSCOhost |b EBSC |n 1905962 | ||
938 | |a YBP Library Services |b YANK |n 15738725 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1056912561 |
---|---|
_version_ | 1816882474285793280 |
adam_text | |
any_adam_object | |
author | Miller, James |
author_facet | Miller, James |
author_role | |
author_sort | Miller, James |
author_variant | j m jm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q335 |
callnumber-raw | Q335 |
callnumber-search | Q335 |
callnumber-sort | Q 3335 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: The Essentials of IBM Watson -- Definition and objectives -- IBM Cloud prerequisites -- Exploring the Watson interface -- The menu bar -- Menu icon -- IBM Cloud -- Catalog -- Docs -- Support -- Manage -- Profile -- avatar -- Online glossary, let's chat, and feedback -- What about Watson? -- The Watson dashboard -- Menu bar -- Quick start information bar -- Search, add, filter, and sort -- Content panel area -- Basic tasks refresher -- The first step -- Explore -- Watson prompts -- Predict -- Assemble -- Social media -- Refine -- Saving the original -- Add -- some data -- Refine -- Summary -- Chapter 2: A Basic Watson Project -- The problem defined -- Getting started -- Gathering data -- Building your Watson project -- Loading your data -- Data review -- What does this mean? -- Improving your score with Refine -- Refine or Explore -- Creating a prediction -- Top predictors -- Main Insight page -- Details page -- An insight -- Reviewing the results -- Summary -- Chapter 3: An Automated Supply Chain Scenario -- The problem defined -- Getting started -- Gathering and reviewing data -- Building the Watson project -- Loading your data -- Reviewing the data -- Refining the data -- Creating a prediction -- Supply chain prediction -- Predictors -- Main insights -- Reviewing the results -- Sharing with a dashboard -- Adding a new visualization -- Summary -- Chapter 4: Healthcare Dialoguing -- The problem defined -- What is dialoguing? -- Leveraging (new) data to identify risk -- Getting started -- Gathering and reviewing data -- Building the project -- Reviewing the results -- Exploring the dialog data -- Collecting the data -- Moving on -- Recap -- Results -- Data quality of the prediction -- Data quality report. More predictive strength -- More detail -- Assembling a story -- Testing your story -- Summary -- Chapter 5: Social Media Sentiment Analysis -- The problem defined -- Social media and IBM Watson Analytics -- Getting started -- Creating a Watson Analytics social media project -- Building the project -- Project creation step by step -- Adding topics -- Social media investigative themes -- Adding dates -- Languages -- Sources -- Reviewing the results -- Deeper dive -- conversation clusters -- Navigation -- Topics -- Another look -- Sentiment -- Sentiment terms -- Geography -- Sources and sites -- Influential authors -- Author interests -- Games and shopping -- Behavior -- Demographics -- The sentiment dictionary -- The data -- Summary -- Chapter 6: Pattern Recognition and Classification -- The problem defined -- Data peeking -- Starting a pattern recognition and classification project -- Investigation -- Coach me -- More with Watson Analytics -- The insight bar -- Modifying a visualization -- Additional filtering -- Item-based calculations -- Navigate -- Compare -- Simply trending -- Developing the pattern recognition and classification project -- Quality -- The Watson Analytics data quality report -- Creating the prediction -- The prediction workflow -- Understanding the workflow step by step -- Reviewing the results -- Displaying top predictors and predictive strength -- Summary -- Chapter 7: Retail and Personalized Recommendations -- The problem defined -- Product recommendation engines -- Recommendations from Watson Analytics -- The data at a glance -- Starting the project -- Range filter -- Save me -- Developing the project -- Reviewing the results -- Targets -- Summary ribbon -- The top predictors -- Sharing the insights -- Summary -- Chapter 8: Integration for Sales Forecasting -- The problem defined -- Product forecasting. Systematic forecasting -- IBM Planning Analytics -- Our data -- Creating the forecast -- Starting the project -- Developing the project -- Visualizations and data requirements -- More questioning -- Time Series -- Other visualization options -- Reviewing the results -- Summary -- Chapter 9: Anomaly Detection in Banking Using AI -- Defining the problem -- Banking use cases -- Corruption -- Cash -- Billing -- Check tampering -- Skimming -- Larceny -- Financial statement fraud -- Starting the project -- The data -- Developing the project -- The first question -- Using Excel for sorting and filtering the data -- Back to Watson -- Check numbers -- Reviewing the results -- Collecting -- Telling the story -- Summary -- Chapter 10: What's Next -- Chapter-by-chapter summary -- Chapter 1 -- The Essentials of IBM Watson -- Chapter 2 -- A Basic Watson Project -- Chapter 3 -- An Automated Supply Chain Scenario -- Chapter 4 -- Healthcare Dialoguing -- Chapter 5 -- Social Media Sentiment Analysis -- Chapter 6 -- Pattern Recognition And Classification -- Chapter 7 -- Retail And Personalized Recommendations -- Chapter 8 -- Integration for Sales Forecasting -- Chapter 9 -- Anomaly Detection in Banking With AI -- Suggested next steps -- Packt Publishing books, blogs, and video courses -- Learning IBM Watson Analytics -- LinkedIn groups -- Product documentation -- IBM websites -- Experiment -- Summary -- Other Books You May Enjoy -- Index. |
ctrlnum | (OCoLC)1056912561 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07656cam a2200565 a 4500</leader><controlfield tag="001">ZDB-4-EBA-on1056912561</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">181013s2018 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">TEFOD</subfield><subfield code="d">N$T</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">MERUC</subfield><subfield code="d">LVT</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NZAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019078540</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1056196609</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789346695</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">178934669X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1056912561</subfield><subfield code="z">(OCoLC)1056196609</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">3F7E6EF9-D51F-43D4-9453-0371716A6C11</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q335</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, James.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">IBM Watson projects :</subfield><subfield code="b">eight exciting projects that put artificial intelligence into practice for optimal business performance.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (332 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed October 17, 2018).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: The Essentials of IBM Watson -- Definition and objectives -- IBM Cloud prerequisites -- Exploring the Watson interface -- The menu bar -- Menu icon -- IBM Cloud -- Catalog -- Docs -- Support -- Manage -- Profile -- avatar -- Online glossary, let's chat, and feedback -- What about Watson? -- The Watson dashboard -- Menu bar -- Quick start information bar -- Search, add, filter, and sort -- Content panel area -- Basic tasks refresher -- The first step -- Explore -- Watson prompts -- Predict -- Assemble -- Social media -- Refine -- Saving the original -- Add -- some data -- Refine -- Summary -- Chapter 2: A Basic Watson Project -- The problem defined -- Getting started -- Gathering data -- Building your Watson project -- Loading your data -- Data review -- What does this mean? -- Improving your score with Refine -- Refine or Explore -- Creating a prediction -- Top predictors -- Main Insight page -- Details page -- An insight -- Reviewing the results -- Summary -- Chapter 3: An Automated Supply Chain Scenario -- The problem defined -- Getting started -- Gathering and reviewing data -- Building the Watson project -- Loading your data -- Reviewing the data -- Refining the data -- Creating a prediction -- Supply chain prediction -- Predictors -- Main insights -- Reviewing the results -- Sharing with a dashboard -- Adding a new visualization -- Summary -- Chapter 4: Healthcare Dialoguing -- The problem defined -- What is dialoguing? -- Leveraging (new) data to identify risk -- Getting started -- Gathering and reviewing data -- Building the project -- Reviewing the results -- Exploring the dialog data -- Collecting the data -- Moving on -- Recap -- Results -- Data quality of the prediction -- Data quality report.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">More predictive strength -- More detail -- Assembling a story -- Testing your story -- Summary -- Chapter 5: Social Media Sentiment Analysis -- The problem defined -- Social media and IBM Watson Analytics -- Getting started -- Creating a Watson Analytics social media project -- Building the project -- Project creation step by step -- Adding topics -- Social media investigative themes -- Adding dates -- Languages -- Sources -- Reviewing the results -- Deeper dive -- conversation clusters -- Navigation -- Topics -- Another look -- Sentiment -- Sentiment terms -- Geography -- Sources and sites -- Influential authors -- Author interests -- Games and shopping -- Behavior -- Demographics -- The sentiment dictionary -- The data -- Summary -- Chapter 6: Pattern Recognition and Classification -- The problem defined -- Data peeking -- Starting a pattern recognition and classification project -- Investigation -- Coach me -- More with Watson Analytics -- The insight bar -- Modifying a visualization -- Additional filtering -- Item-based calculations -- Navigate -- Compare -- Simply trending -- Developing the pattern recognition and classification project -- Quality -- The Watson Analytics data quality report -- Creating the prediction -- The prediction workflow -- Understanding the workflow step by step -- Reviewing the results -- Displaying top predictors and predictive strength -- Summary -- Chapter 7: Retail and Personalized Recommendations -- The problem defined -- Product recommendation engines -- Recommendations from Watson Analytics -- The data at a glance -- Starting the project -- Range filter -- Save me -- Developing the project -- Reviewing the results -- Targets -- Summary ribbon -- The top predictors -- Sharing the insights -- Summary -- Chapter 8: Integration for Sales Forecasting -- The problem defined -- Product forecasting.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Systematic forecasting -- IBM Planning Analytics -- Our data -- Creating the forecast -- Starting the project -- Developing the project -- Visualizations and data requirements -- More questioning -- Time Series -- Other visualization options -- Reviewing the results -- Summary -- Chapter 9: Anomaly Detection in Banking Using AI -- Defining the problem -- Banking use cases -- Corruption -- Cash -- Billing -- Check tampering -- Skimming -- Larceny -- Financial statement fraud -- Starting the project -- The data -- Developing the project -- The first question -- Using Excel for sorting and filtering the data -- Back to Watson -- Check numbers -- Reviewing the results -- Collecting -- Telling the story -- Summary -- Chapter 10: What's Next -- Chapter-by-chapter summary -- Chapter 1 -- The Essentials of IBM Watson -- Chapter 2 -- A Basic Watson Project -- Chapter 3 -- An Automated Supply Chain Scenario -- Chapter 4 -- Healthcare Dialoguing -- Chapter 5 -- Social Media Sentiment Analysis -- Chapter 6 -- Pattern Recognition And Classification -- Chapter 7 -- Retail And Personalized Recommendations -- Chapter 8 -- Integration for Sales Forecasting -- Chapter 9 -- Anomaly Detection in Banking With AI -- Suggested next steps -- Packt Publishing books, blogs, and video courses -- Learning IBM Watson Analytics -- LinkedIn groups -- Product documentation -- IBM websites -- Experiment -- Summary -- Other Books You May Enjoy -- Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">IBM Watson Projects demonstrate projects focused on cognitive computing & analytical capabilities of IBM Watson. You will explore designing smart business solutions and understand the effectiveness of a supply chain using projects including healthcare dialog system, sentimental analysis on social media, personalized recommendation systems and more.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical theory of computation.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural language & machine translation.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1905962</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5532276</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1905962</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15738725</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1056912561 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:11Z |
institution | BVB |
isbn | 9781789346695 178934669X |
language | English |
oclc_num | 1056912561 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (332 pages) |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt, |
record_format | marc |
spelling | Miller, James. IBM Watson projects : eight exciting projects that put artificial intelligence into practice for optimal business performance. Birmingham : Packt, 2018. 1 online resource (332 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from PDF title page (EBSCO, viewed October 17, 2018). Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: The Essentials of IBM Watson -- Definition and objectives -- IBM Cloud prerequisites -- Exploring the Watson interface -- The menu bar -- Menu icon -- IBM Cloud -- Catalog -- Docs -- Support -- Manage -- Profile -- avatar -- Online glossary, let's chat, and feedback -- What about Watson? -- The Watson dashboard -- Menu bar -- Quick start information bar -- Search, add, filter, and sort -- Content panel area -- Basic tasks refresher -- The first step -- Explore -- Watson prompts -- Predict -- Assemble -- Social media -- Refine -- Saving the original -- Add -- some data -- Refine -- Summary -- Chapter 2: A Basic Watson Project -- The problem defined -- Getting started -- Gathering data -- Building your Watson project -- Loading your data -- Data review -- What does this mean? -- Improving your score with Refine -- Refine or Explore -- Creating a prediction -- Top predictors -- Main Insight page -- Details page -- An insight -- Reviewing the results -- Summary -- Chapter 3: An Automated Supply Chain Scenario -- The problem defined -- Getting started -- Gathering and reviewing data -- Building the Watson project -- Loading your data -- Reviewing the data -- Refining the data -- Creating a prediction -- Supply chain prediction -- Predictors -- Main insights -- Reviewing the results -- Sharing with a dashboard -- Adding a new visualization -- Summary -- Chapter 4: Healthcare Dialoguing -- The problem defined -- What is dialoguing? -- Leveraging (new) data to identify risk -- Getting started -- Gathering and reviewing data -- Building the project -- Reviewing the results -- Exploring the dialog data -- Collecting the data -- Moving on -- Recap -- Results -- Data quality of the prediction -- Data quality report. More predictive strength -- More detail -- Assembling a story -- Testing your story -- Summary -- Chapter 5: Social Media Sentiment Analysis -- The problem defined -- Social media and IBM Watson Analytics -- Getting started -- Creating a Watson Analytics social media project -- Building the project -- Project creation step by step -- Adding topics -- Social media investigative themes -- Adding dates -- Languages -- Sources -- Reviewing the results -- Deeper dive -- conversation clusters -- Navigation -- Topics -- Another look -- Sentiment -- Sentiment terms -- Geography -- Sources and sites -- Influential authors -- Author interests -- Games and shopping -- Behavior -- Demographics -- The sentiment dictionary -- The data -- Summary -- Chapter 6: Pattern Recognition and Classification -- The problem defined -- Data peeking -- Starting a pattern recognition and classification project -- Investigation -- Coach me -- More with Watson Analytics -- The insight bar -- Modifying a visualization -- Additional filtering -- Item-based calculations -- Navigate -- Compare -- Simply trending -- Developing the pattern recognition and classification project -- Quality -- The Watson Analytics data quality report -- Creating the prediction -- The prediction workflow -- Understanding the workflow step by step -- Reviewing the results -- Displaying top predictors and predictive strength -- Summary -- Chapter 7: Retail and Personalized Recommendations -- The problem defined -- Product recommendation engines -- Recommendations from Watson Analytics -- The data at a glance -- Starting the project -- Range filter -- Save me -- Developing the project -- Reviewing the results -- Targets -- Summary ribbon -- The top predictors -- Sharing the insights -- Summary -- Chapter 8: Integration for Sales Forecasting -- The problem defined -- Product forecasting. Systematic forecasting -- IBM Planning Analytics -- Our data -- Creating the forecast -- Starting the project -- Developing the project -- Visualizations and data requirements -- More questioning -- Time Series -- Other visualization options -- Reviewing the results -- Summary -- Chapter 9: Anomaly Detection in Banking Using AI -- Defining the problem -- Banking use cases -- Corruption -- Cash -- Billing -- Check tampering -- Skimming -- Larceny -- Financial statement fraud -- Starting the project -- The data -- Developing the project -- The first question -- Using Excel for sorting and filtering the data -- Back to Watson -- Check numbers -- Reviewing the results -- Collecting -- Telling the story -- Summary -- Chapter 10: What's Next -- Chapter-by-chapter summary -- Chapter 1 -- The Essentials of IBM Watson -- Chapter 2 -- A Basic Watson Project -- Chapter 3 -- An Automated Supply Chain Scenario -- Chapter 4 -- Healthcare Dialoguing -- Chapter 5 -- Social Media Sentiment Analysis -- Chapter 6 -- Pattern Recognition And Classification -- Chapter 7 -- Retail And Personalized Recommendations -- Chapter 8 -- Integration for Sales Forecasting -- Chapter 9 -- Anomaly Detection in Banking With AI -- Suggested next steps -- Packt Publishing books, blogs, and video courses -- Learning IBM Watson Analytics -- LinkedIn groups -- Product documentation -- IBM websites -- Experiment -- Summary -- Other Books You May Enjoy -- Index. IBM Watson Projects demonstrate projects focused on cognitive computing & analytical capabilities of IBM Watson. You will explore designing smart business solutions and understand the effectiveness of a supply chain using projects including healthcare dialog system, sentimental analysis on social media, personalized recommendation systems and more. Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Intelligence artificielle. artificial intelligence. aat Mathematical theory of computation. bicssc Artificial intelligence. bicssc Machine learning. bicssc Natural language & machine translation. bicssc COMPUTERS General. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Artificial intelligence fast FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1905962 Volltext |
spellingShingle | Miller, James IBM Watson projects : eight exciting projects that put artificial intelligence into practice for optimal business performance. Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: The Essentials of IBM Watson -- Definition and objectives -- IBM Cloud prerequisites -- Exploring the Watson interface -- The menu bar -- Menu icon -- IBM Cloud -- Catalog -- Docs -- Support -- Manage -- Profile -- avatar -- Online glossary, let's chat, and feedback -- What about Watson? -- The Watson dashboard -- Menu bar -- Quick start information bar -- Search, add, filter, and sort -- Content panel area -- Basic tasks refresher -- The first step -- Explore -- Watson prompts -- Predict -- Assemble -- Social media -- Refine -- Saving the original -- Add -- some data -- Refine -- Summary -- Chapter 2: A Basic Watson Project -- The problem defined -- Getting started -- Gathering data -- Building your Watson project -- Loading your data -- Data review -- What does this mean? -- Improving your score with Refine -- Refine or Explore -- Creating a prediction -- Top predictors -- Main Insight page -- Details page -- An insight -- Reviewing the results -- Summary -- Chapter 3: An Automated Supply Chain Scenario -- The problem defined -- Getting started -- Gathering and reviewing data -- Building the Watson project -- Loading your data -- Reviewing the data -- Refining the data -- Creating a prediction -- Supply chain prediction -- Predictors -- Main insights -- Reviewing the results -- Sharing with a dashboard -- Adding a new visualization -- Summary -- Chapter 4: Healthcare Dialoguing -- The problem defined -- What is dialoguing? -- Leveraging (new) data to identify risk -- Getting started -- Gathering and reviewing data -- Building the project -- Reviewing the results -- Exploring the dialog data -- Collecting the data -- Moving on -- Recap -- Results -- Data quality of the prediction -- Data quality report. More predictive strength -- More detail -- Assembling a story -- Testing your story -- Summary -- Chapter 5: Social Media Sentiment Analysis -- The problem defined -- Social media and IBM Watson Analytics -- Getting started -- Creating a Watson Analytics social media project -- Building the project -- Project creation step by step -- Adding topics -- Social media investigative themes -- Adding dates -- Languages -- Sources -- Reviewing the results -- Deeper dive -- conversation clusters -- Navigation -- Topics -- Another look -- Sentiment -- Sentiment terms -- Geography -- Sources and sites -- Influential authors -- Author interests -- Games and shopping -- Behavior -- Demographics -- The sentiment dictionary -- The data -- Summary -- Chapter 6: Pattern Recognition and Classification -- The problem defined -- Data peeking -- Starting a pattern recognition and classification project -- Investigation -- Coach me -- More with Watson Analytics -- The insight bar -- Modifying a visualization -- Additional filtering -- Item-based calculations -- Navigate -- Compare -- Simply trending -- Developing the pattern recognition and classification project -- Quality -- The Watson Analytics data quality report -- Creating the prediction -- The prediction workflow -- Understanding the workflow step by step -- Reviewing the results -- Displaying top predictors and predictive strength -- Summary -- Chapter 7: Retail and Personalized Recommendations -- The problem defined -- Product recommendation engines -- Recommendations from Watson Analytics -- The data at a glance -- Starting the project -- Range filter -- Save me -- Developing the project -- Reviewing the results -- Targets -- Summary ribbon -- The top predictors -- Sharing the insights -- Summary -- Chapter 8: Integration for Sales Forecasting -- The problem defined -- Product forecasting. Systematic forecasting -- IBM Planning Analytics -- Our data -- Creating the forecast -- Starting the project -- Developing the project -- Visualizations and data requirements -- More questioning -- Time Series -- Other visualization options -- Reviewing the results -- Summary -- Chapter 9: Anomaly Detection in Banking Using AI -- Defining the problem -- Banking use cases -- Corruption -- Cash -- Billing -- Check tampering -- Skimming -- Larceny -- Financial statement fraud -- Starting the project -- The data -- Developing the project -- The first question -- Using Excel for sorting and filtering the data -- Back to Watson -- Check numbers -- Reviewing the results -- Collecting -- Telling the story -- Summary -- Chapter 10: What's Next -- Chapter-by-chapter summary -- Chapter 1 -- The Essentials of IBM Watson -- Chapter 2 -- A Basic Watson Project -- Chapter 3 -- An Automated Supply Chain Scenario -- Chapter 4 -- Healthcare Dialoguing -- Chapter 5 -- Social Media Sentiment Analysis -- Chapter 6 -- Pattern Recognition And Classification -- Chapter 7 -- Retail And Personalized Recommendations -- Chapter 8 -- Integration for Sales Forecasting -- Chapter 9 -- Anomaly Detection in Banking With AI -- Suggested next steps -- Packt Publishing books, blogs, and video courses -- Learning IBM Watson Analytics -- LinkedIn groups -- Product documentation -- IBM websites -- Experiment -- Summary -- Other Books You May Enjoy -- Index. Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Intelligence artificielle. artificial intelligence. aat Mathematical theory of computation. bicssc Artificial intelligence. bicssc Machine learning. bicssc Natural language & machine translation. bicssc COMPUTERS General. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Artificial intelligence fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85008180 |
title | IBM Watson projects : eight exciting projects that put artificial intelligence into practice for optimal business performance. |
title_auth | IBM Watson projects : eight exciting projects that put artificial intelligence into practice for optimal business performance. |
title_exact_search | IBM Watson projects : eight exciting projects that put artificial intelligence into practice for optimal business performance. |
title_full | IBM Watson projects : eight exciting projects that put artificial intelligence into practice for optimal business performance. |
title_fullStr | IBM Watson projects : eight exciting projects that put artificial intelligence into practice for optimal business performance. |
title_full_unstemmed | IBM Watson projects : eight exciting projects that put artificial intelligence into practice for optimal business performance. |
title_short | IBM Watson projects : |
title_sort | ibm watson projects eight exciting projects that put artificial intelligence into practice for optimal business performance |
title_sub | eight exciting projects that put artificial intelligence into practice for optimal business performance. |
topic | Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Intelligence artificielle. artificial intelligence. aat Mathematical theory of computation. bicssc Artificial intelligence. bicssc Machine learning. bicssc Natural language & machine translation. bicssc COMPUTERS General. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Artificial intelligence fast |
topic_facet | Artificial intelligence. Intelligence artificielle. artificial intelligence. Mathematical theory of computation. Machine learning. Natural language & machine translation. COMPUTERS General. COMPUTERS Intelligence (AI) & Semantics. Artificial intelligence |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1905962 |
work_keys_str_mv | AT millerjames ibmwatsonprojectseightexcitingprojectsthatputartificialintelligenceintopracticeforoptimalbusinessperformance |