Yakov Berkovich; Zvonimir Janko.:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin/Boston :
De Gruyter, Inc.,
2018.
|
Schriftenreihe: | De Gruyter Expositions in Mathematics Ser.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Beschreibung: | 290 Non-Dedekindian p-groups G with a noncyclic proper subgroup H such that each subgroup which is nonincident with H is normal in G. |
Beschreibung: | 1 online resource (410 pages) |
ISBN: | 3110533146 9783110533149 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1054067465 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 180922s2018 mau o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d YDX |d STF |d OCLCF |d OCLCQ |d N$T |d OCLCO |d K6U |d OCLCQ |d OCLCO | ||
066 | |c (S | ||
019 | |a 1052782971 |a 1054367921 | ||
020 | |a 3110533146 | ||
020 | |a 9783110533149 |q (electronic bk.) | ||
035 | |a (OCoLC)1054067465 |z (OCoLC)1052782971 |z (OCoLC)1054367921 | ||
050 | 4 | |a QA177 |b .B47 2018 | |
082 | 7 | |a 512/.23 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Berkovich, Yakov G. | |
245 | 1 | 0 | |a Yakov Berkovich; Zvonimir Janko. |
260 | |a Berlin/Boston : |b De Gruyter, Inc., |c 2018. | ||
300 | |a 1 online resource (410 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Expositions in Mathematics Ser. ; |v v. 65 | |
588 | 0 | |a Print version record. | |
505 | 0 | |6 880-01 |a Intro; Contents; List of definitions and notations; Preface; 257 Nonabelian p-groups with exactly one minimal nonabelian subgroup of exponent> p; 258 2-groups with some prescribed minimal nonabelian subgroups; 259 Nonabelian p-groups, p> 2, all of whose minimal nonabelian subgroups are isomorphic to Mp3; 260 p-groups with many modular subgroups Mpn; 261 Nonabelian p-groups of exponent> p with a small number of maximal abelian subgroups of exponent> p; 262 Nonabelian p-groups all of whose subgroups are powerful. | |
505 | 8 | |a 270 p-groups all of whose Ak-subgroups for a fixed k> 1 are metacyclic 271 Two theorems of Blackburn; 272 Nonabelian p-groups all of whose maximal abelian subgroups, except one, are either cyclic or elementary abelian; 273 Nonabelian p-groups all of whose noncyclic maximal abelian subgroups are elementary abelian; 274 Non-Dedekindian p-groups in which any two nonnormal subgroups normalize each other; 275 Nonabelian p-groups with exactly p normal closures of minimal nonabelian subgroups; 276 2-groups all of whose maximal subgroups, except one, are Dedekindian. | |
505 | 8 | |a 277 p-groups with exactly two conjugate classes of nonnormal maximal cyclic subgroups 278 Nonmetacyclic p-groups all of whose maximal metacyclic subgroups have index p; 279 Subgroup characterization of some p-groups of maximal class and close to them; 280 Nonabelian p-groups all of whose maximal subgroups, except one, are minimal nonmetacyclic; 281 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups have a cyclic intersection; 282 p-groups with large normal closures of nonnormal subgroups; 283 Nonabelian p-groups with many cyclic centralizers. | |
505 | 8 | |a 284 Nonabelian p-groups, p> 2, of exponent> p2 all of whose minimal nonabelian subgroups are of order p3 285 A generalization of Lemma 57.1; 286 Groups ofexponent p with many normal subgroups; 287 p-groups in which the intersection of any two nonincident subgroups is normal; 288 Nonabelian p-groups in which for every minimal nonabelian M M(x) = Z(M); 289 Non-Dedekindian p-groups all of whose maximal nonnormal subgroups are conjugate. | |
500 | |a 290 Non-Dedekindian p-groups G with a noncyclic proper subgroup H such that each subgroup which is nonincident with H is normal in G. | ||
650 | 0 | |a Finite groups. |0 http://id.loc.gov/authorities/subjects/sh85048354 | |
650 | 0 | |a Group theory. |0 http://id.loc.gov/authorities/subjects/sh85057512 | |
650 | 6 | |a Groupes finis. | |
650 | 6 | |a Théorie des groupes. | |
650 | 7 | |a Finite groups |2 fast | |
650 | 7 | |a Group theory |2 fast | |
700 | 1 | |a Janko, Zvonimir. | |
776 | 0 | 8 | |i Print version: |a Berkovich, Yakov G. |t Yakov Berkovich; Zvonimir Janko: Groups of Prime Power Order. Volume 6. |d Berlin/Boston : De Gruyter, Inc., ©2018 |z 9783110530971 |
830 | 0 | |a De Gruyter Expositions in Mathematics Ser. | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893815 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893815 |3 Volltext |
880 | 8 | |6 505-01/(S |a 263 Nonabelian 2-groups G with CG(x) ≤ H for all H ∈ Γ1 and x ∈ H − Z(G) 264 Nonabelian 2-groups of exponent ≥ 16 all of whose minimal nonabelian subgroups, except one, have order 8; 265 p-groups all of whose regular subgroups are either absolutely regular or of exponent p; 266 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups with a nontrivial intersection are non-isomorphic; 267 Thompson's A × B lemma; 268 On automorphisms of some p-groups; 269 On critical subgroups of p-groups. | |
938 | |a ProQuest Ebook Central |b EBLB |n EBL5516054 | ||
938 | |a YBP Library Services |b YANK |n 13232800 | ||
938 | |a YBP Library Services |b YANK |n 15703447 | ||
938 | |a De Gruyter |b DEGR |n 9783110533149 | ||
938 | |a EBSCOhost |b EBSC |n 1893815 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1054067465 |
---|---|
_version_ | 1826942269251387392 |
adam_text | |
any_adam_object | |
author | Berkovich, Yakov G. |
author2 | Janko, Zvonimir |
author2_role | |
author2_variant | z j zj |
author_facet | Berkovich, Yakov G. Janko, Zvonimir |
author_role | |
author_sort | Berkovich, Yakov G. |
author_variant | y g b yg ygb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 .B47 2018 |
callnumber-search | QA177 .B47 2018 |
callnumber-sort | QA 3177 B47 42018 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Intro; Contents; List of definitions and notations; Preface; 257 Nonabelian p-groups with exactly one minimal nonabelian subgroup of exponent> p; 258 2-groups with some prescribed minimal nonabelian subgroups; 259 Nonabelian p-groups, p> 2, all of whose minimal nonabelian subgroups are isomorphic to Mp3; 260 p-groups with many modular subgroups Mpn; 261 Nonabelian p-groups of exponent> p with a small number of maximal abelian subgroups of exponent> p; 262 Nonabelian p-groups all of whose subgroups are powerful. 270 p-groups all of whose Ak-subgroups for a fixed k> 1 are metacyclic 271 Two theorems of Blackburn; 272 Nonabelian p-groups all of whose maximal abelian subgroups, except one, are either cyclic or elementary abelian; 273 Nonabelian p-groups all of whose noncyclic maximal abelian subgroups are elementary abelian; 274 Non-Dedekindian p-groups in which any two nonnormal subgroups normalize each other; 275 Nonabelian p-groups with exactly p normal closures of minimal nonabelian subgroups; 276 2-groups all of whose maximal subgroups, except one, are Dedekindian. 277 p-groups with exactly two conjugate classes of nonnormal maximal cyclic subgroups 278 Nonmetacyclic p-groups all of whose maximal metacyclic subgroups have index p; 279 Subgroup characterization of some p-groups of maximal class and close to them; 280 Nonabelian p-groups all of whose maximal subgroups, except one, are minimal nonmetacyclic; 281 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups have a cyclic intersection; 282 p-groups with large normal closures of nonnormal subgroups; 283 Nonabelian p-groups with many cyclic centralizers. 284 Nonabelian p-groups, p> 2, of exponent> p2 all of whose minimal nonabelian subgroups are of order p3 285 A generalization of Lemma 57.1; 286 Groups ofexponent p with many normal subgroups; 287 p-groups in which the intersection of any two nonincident subgroups is normal; 288 Nonabelian p-groups in which for every minimal nonabelian M M(x) = Z(M); 289 Non-Dedekindian p-groups all of whose maximal nonnormal subgroups are conjugate. |
ctrlnum | (OCoLC)1054067465 |
dewey-full | 512/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.23 |
dewey-search | 512/.23 |
dewey-sort | 3512 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04829cam a2200577Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-on1054067465</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">180922s2018 mau o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1052782971</subfield><subfield code="a">1054367921</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110533146</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110533149</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1054067465</subfield><subfield code="z">(OCoLC)1052782971</subfield><subfield code="z">(OCoLC)1054367921</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA177</subfield><subfield code="b">.B47 2018</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.23</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berkovich, Yakov G.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Yakov Berkovich; Zvonimir Janko.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin/Boston :</subfield><subfield code="b">De Gruyter, Inc.,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (410 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Expositions in Mathematics Ser. ;</subfield><subfield code="v">v. 65</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Intro; Contents; List of definitions and notations; Preface; 257 Nonabelian p-groups with exactly one minimal nonabelian subgroup of exponent> p; 258 2-groups with some prescribed minimal nonabelian subgroups; 259 Nonabelian p-groups, p> 2, all of whose minimal nonabelian subgroups are isomorphic to Mp3; 260 p-groups with many modular subgroups Mpn; 261 Nonabelian p-groups of exponent> p with a small number of maximal abelian subgroups of exponent> p; 262 Nonabelian p-groups all of whose subgroups are powerful.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">270 p-groups all of whose Ak-subgroups for a fixed k> 1 are metacyclic 271 Two theorems of Blackburn; 272 Nonabelian p-groups all of whose maximal abelian subgroups, except one, are either cyclic or elementary abelian; 273 Nonabelian p-groups all of whose noncyclic maximal abelian subgroups are elementary abelian; 274 Non-Dedekindian p-groups in which any two nonnormal subgroups normalize each other; 275 Nonabelian p-groups with exactly p normal closures of minimal nonabelian subgroups; 276 2-groups all of whose maximal subgroups, except one, are Dedekindian.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">277 p-groups with exactly two conjugate classes of nonnormal maximal cyclic subgroups 278 Nonmetacyclic p-groups all of whose maximal metacyclic subgroups have index p; 279 Subgroup characterization of some p-groups of maximal class and close to them; 280 Nonabelian p-groups all of whose maximal subgroups, except one, are minimal nonmetacyclic; 281 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups have a cyclic intersection; 282 p-groups with large normal closures of nonnormal subgroups; 283 Nonabelian p-groups with many cyclic centralizers.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">284 Nonabelian p-groups, p> 2, of exponent> p2 all of whose minimal nonabelian subgroups are of order p3 285 A generalization of Lemma 57.1; 286 Groups ofexponent p with many normal subgroups; 287 p-groups in which the intersection of any two nonincident subgroups is normal; 288 Nonabelian p-groups in which for every minimal nonabelian M M(x) = Z(M); 289 Non-Dedekindian p-groups all of whose maximal nonnormal subgroups are conjugate.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">290 Non-Dedekindian p-groups G with a noncyclic proper subgroup H such that each subgroup which is nonincident with H is normal in G.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048354</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85057512</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janko, Zvonimir.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Berkovich, Yakov G.</subfield><subfield code="t">Yakov Berkovich; Zvonimir Janko: Groups of Prime Power Order. Volume 6.</subfield><subfield code="d">Berlin/Boston : De Gruyter, Inc., ©2018</subfield><subfield code="z">9783110530971</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Expositions in Mathematics Ser.</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893815</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893815</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-01/(S</subfield><subfield code="a">263 Nonabelian 2-groups G with CG(x) ≤ H for all H ∈ Γ1 and x ∈ H − Z(G) 264 Nonabelian 2-groups of exponent ≥ 16 all of whose minimal nonabelian subgroups, except one, have order 8; 265 p-groups all of whose regular subgroups are either absolutely regular or of exponent p; 266 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups with a nontrivial intersection are non-isomorphic; 267 Thompson's A × B lemma; 268 On automorphisms of some p-groups; 269 On critical subgroups of p-groups.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5516054</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13232800</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15703447</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110533149</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1893815</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1054067465 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:25:19Z |
institution | BVB |
isbn | 3110533146 9783110533149 |
language | English |
oclc_num | 1054067465 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (410 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter, Inc., |
record_format | marc |
series | De Gruyter Expositions in Mathematics Ser. |
series2 | De Gruyter Expositions in Mathematics Ser. ; |
spelling | Berkovich, Yakov G. Yakov Berkovich; Zvonimir Janko. Berlin/Boston : De Gruyter, Inc., 2018. 1 online resource (410 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter Expositions in Mathematics Ser. ; v. 65 Print version record. 880-01 Intro; Contents; List of definitions and notations; Preface; 257 Nonabelian p-groups with exactly one minimal nonabelian subgroup of exponent> p; 258 2-groups with some prescribed minimal nonabelian subgroups; 259 Nonabelian p-groups, p> 2, all of whose minimal nonabelian subgroups are isomorphic to Mp3; 260 p-groups with many modular subgroups Mpn; 261 Nonabelian p-groups of exponent> p with a small number of maximal abelian subgroups of exponent> p; 262 Nonabelian p-groups all of whose subgroups are powerful. 270 p-groups all of whose Ak-subgroups for a fixed k> 1 are metacyclic 271 Two theorems of Blackburn; 272 Nonabelian p-groups all of whose maximal abelian subgroups, except one, are either cyclic or elementary abelian; 273 Nonabelian p-groups all of whose noncyclic maximal abelian subgroups are elementary abelian; 274 Non-Dedekindian p-groups in which any two nonnormal subgroups normalize each other; 275 Nonabelian p-groups with exactly p normal closures of minimal nonabelian subgroups; 276 2-groups all of whose maximal subgroups, except one, are Dedekindian. 277 p-groups with exactly two conjugate classes of nonnormal maximal cyclic subgroups 278 Nonmetacyclic p-groups all of whose maximal metacyclic subgroups have index p; 279 Subgroup characterization of some p-groups of maximal class and close to them; 280 Nonabelian p-groups all of whose maximal subgroups, except one, are minimal nonmetacyclic; 281 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups have a cyclic intersection; 282 p-groups with large normal closures of nonnormal subgroups; 283 Nonabelian p-groups with many cyclic centralizers. 284 Nonabelian p-groups, p> 2, of exponent> p2 all of whose minimal nonabelian subgroups are of order p3 285 A generalization of Lemma 57.1; 286 Groups ofexponent p with many normal subgroups; 287 p-groups in which the intersection of any two nonincident subgroups is normal; 288 Nonabelian p-groups in which for every minimal nonabelian M M(x) = Z(M); 289 Non-Dedekindian p-groups all of whose maximal nonnormal subgroups are conjugate. 290 Non-Dedekindian p-groups G with a noncyclic proper subgroup H such that each subgroup which is nonincident with H is normal in G. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Groupes finis. Théorie des groupes. Finite groups fast Group theory fast Janko, Zvonimir. Print version: Berkovich, Yakov G. Yakov Berkovich; Zvonimir Janko: Groups of Prime Power Order. Volume 6. Berlin/Boston : De Gruyter, Inc., ©2018 9783110530971 De Gruyter Expositions in Mathematics Ser. 505-01/(S 263 Nonabelian 2-groups G with CG(x) ≤ H for all H ∈ Γ1 and x ∈ H − Z(G) 264 Nonabelian 2-groups of exponent ≥ 16 all of whose minimal nonabelian subgroups, except one, have order 8; 265 p-groups all of whose regular subgroups are either absolutely regular or of exponent p; 266 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups with a nontrivial intersection are non-isomorphic; 267 Thompson's A × B lemma; 268 On automorphisms of some p-groups; 269 On critical subgroups of p-groups. |
spellingShingle | Berkovich, Yakov G. Yakov Berkovich; Zvonimir Janko. De Gruyter Expositions in Mathematics Ser. Intro; Contents; List of definitions and notations; Preface; 257 Nonabelian p-groups with exactly one minimal nonabelian subgroup of exponent> p; 258 2-groups with some prescribed minimal nonabelian subgroups; 259 Nonabelian p-groups, p> 2, all of whose minimal nonabelian subgroups are isomorphic to Mp3; 260 p-groups with many modular subgroups Mpn; 261 Nonabelian p-groups of exponent> p with a small number of maximal abelian subgroups of exponent> p; 262 Nonabelian p-groups all of whose subgroups are powerful. 270 p-groups all of whose Ak-subgroups for a fixed k> 1 are metacyclic 271 Two theorems of Blackburn; 272 Nonabelian p-groups all of whose maximal abelian subgroups, except one, are either cyclic or elementary abelian; 273 Nonabelian p-groups all of whose noncyclic maximal abelian subgroups are elementary abelian; 274 Non-Dedekindian p-groups in which any two nonnormal subgroups normalize each other; 275 Nonabelian p-groups with exactly p normal closures of minimal nonabelian subgroups; 276 2-groups all of whose maximal subgroups, except one, are Dedekindian. 277 p-groups with exactly two conjugate classes of nonnormal maximal cyclic subgroups 278 Nonmetacyclic p-groups all of whose maximal metacyclic subgroups have index p; 279 Subgroup characterization of some p-groups of maximal class and close to them; 280 Nonabelian p-groups all of whose maximal subgroups, except one, are minimal nonmetacyclic; 281 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups have a cyclic intersection; 282 p-groups with large normal closures of nonnormal subgroups; 283 Nonabelian p-groups with many cyclic centralizers. 284 Nonabelian p-groups, p> 2, of exponent> p2 all of whose minimal nonabelian subgroups are of order p3 285 A generalization of Lemma 57.1; 286 Groups ofexponent p with many normal subgroups; 287 p-groups in which the intersection of any two nonincident subgroups is normal; 288 Nonabelian p-groups in which for every minimal nonabelian M M(x) = Z(M); 289 Non-Dedekindian p-groups all of whose maximal nonnormal subgroups are conjugate. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Groupes finis. Théorie des groupes. Finite groups fast Group theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85048354 http://id.loc.gov/authorities/subjects/sh85057512 |
title | Yakov Berkovich; Zvonimir Janko. |
title_auth | Yakov Berkovich; Zvonimir Janko. |
title_exact_search | Yakov Berkovich; Zvonimir Janko. |
title_full | Yakov Berkovich; Zvonimir Janko. |
title_fullStr | Yakov Berkovich; Zvonimir Janko. |
title_full_unstemmed | Yakov Berkovich; Zvonimir Janko. |
title_short | Yakov Berkovich; Zvonimir Janko. |
title_sort | yakov berkovich zvonimir janko |
topic | Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Groupes finis. Théorie des groupes. Finite groups fast Group theory fast |
topic_facet | Finite groups. Group theory. Groupes finis. Théorie des groupes. Finite groups Group theory |
work_keys_str_mv | AT berkovichyakovg yakovberkovichzvonimirjanko AT jankozvonimir yakovberkovichzvonimirjanko |