Partial differential equations in fluid mechanics /:
A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students.
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom :
Cambridge University Press,
2018.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
452. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781316997031 1316997030 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1050360643 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 180831s2018 enk ob 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d EBLCP |d YDX |d OCLCF |d LVT |d AU@ |d UKAHL |d UAB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCA |d OCLCO |d OCLCL |d OCLCQ | ||
066 | |c (S | ||
019 | |a 1050600599 | ||
020 | |a 9781316997031 |q (electronic bk.) | ||
020 | |a 1316997030 |q (electronic bk.) | ||
020 | |z 1108460968 | ||
020 | |z 9781108460965 | ||
035 | |a (OCoLC)1050360643 |z (OCoLC)1050600599 | ||
050 | 4 | |a QA374 | |
072 | 7 | |a TEC |x 014000 |2 bisacsh | |
082 | 7 | |a 532 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Partial differential equations in fluid mechanics / |c edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo. |
264 | 1 | |a Cambridge, United Kingdom : |b Cambridge University Press, |c 2018. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 452 | |
504 | |a Includes bibliographical references. | ||
588 | |a Online resource; title from PDF title page (EBSCO, viewed September 6, 2018). | ||
505 | 0 | |a Cover; Series information; Title page; Copyright information; Table of contents; List of contributors; Preface; 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier-Stokes equations; Abstract; 1.1 Introduction and uniform estimates; 1.2 Kato criterion for convergence to the regular solution; 1.3 Mathematical and physical interpretation of Theorem 1.3; 1.3.1 Recirculation; 1.3.2 The Prandtl equations and the Stewartson triple-deck ansatz; 1.3.3 Von Karman turbulent Layer; 1.3.4 Energy limit and d'Alembert paradox | |
505 | 8 | |a 1.4 Kato's criterion, anomalous energy dissipation, and turbulenceReferences; 2 Time-periodic flow of a viscous liquid past a body; Abstract; 2.1 Introduction; 2.2 Notation; 2.3 Preliminaries; 2.4 An Embedding Theorem; 2.5 Linearized Problem; 2.6 Fully Nonlinear Problem; Acknowledgements; References; 3 The Rayleigh-Taylor instability in buoyancy-driven variable density turbulence; Abstract; 3.1 Background to the Rayleigh-Taylor instability; 3.2 The 3D Cahn-Hilliard-Navier-Stokes equations; 3.3 The variable density model for two incompressible miscible fluids; 3.3.1 The mathematical model | |
505 | 8 | |a 5 Quasi-invariance for the Navier-Stokes equations5.1 Introduction; 5.2 Navier-Stokes equations; 5.3 Burgers equation; 5.4 Use of critical dependent variables; 5.5 Cole-Hopf transform and Feynman-Kac formula; 5.6 Dynamic scaling transform; 5.6.1 Change of probability measures; 5.6.2 Leray equations; 5.6.3 Navier-Stokes equations; 5.7 Summary; Appendix A Wiener process; References; 6 Leray's fundamental work on the Navier-Stokes equations: a modern review of "Sur le mouvement d'un liquide visqueux emplissant l'espace"; Abstract; 6.1 Introduction; 6.1.1 Preliminaries; 6.1.2 The Oseen kernel T | |
505 | 8 | |a 6.2 The Stokes equations6.2.1 A general forcing F; 6.2.2 A forcing of the form F = −(Y · ∇)Y; Notes; 6.3 Strong solutions of the Navier-Stokes equations; 6.3.1 Properties of strong solutions; 6.3.2 Local existence and uniqueness of strong solutions; 6.3.3 Characterisation of singularities; 6.3.4 Semi-strong solutions; Notes; 6.4 Weak solutions of the Navier-Stokes equations; 6.4.1 Well-posedness for the regularised equations; 6.4.2 Global existence of a weak solution; 6.4.3 Structure of the weak solution; Notes; Acknowledgements; 6.5 Appendix; 6.5.1 The heat equation and the heat kernel | |
520 | |a A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students. | ||
650 | 0 | |a Fluid mechanics. |0 http://id.loc.gov/authorities/subjects/sh85049383 | |
650 | 0 | |a Differential equations, Partial. |0 http://id.loc.gov/authorities/subjects/sh85037912 | |
650 | 6 | |a Mécanique des fluides. | |
650 | 6 | |a Équations aux dérivées partielles. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Hydraulics. |2 bisacsh | |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 7 | |a Fluid mechanics |2 fast | |
700 | 1 | |a Fefferman, Charles, |d 1949- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJth33tYPcPpC7RRCYvJXd |0 http://id.loc.gov/authorities/names/n92108870 | |
700 | 1 | |a Robinson, James C. |q (James Cooper), |d 1969- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjMvYgkwGTwmMrQKrb9Yyd |0 http://id.loc.gov/authorities/names/n00015114 | |
700 | 1 | |a Rodrigo, Jose L., |e editor. | |
758 | |i has work: |a Partial differential equations in fluid mechanics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH6pMcmD87tcwHgc8RfFVd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Partial differential equations in fluid mechanics. |d Cambridge, United Kingdom : Cambridge University Press, 2018 |z 1108460968 |z 9781108460965 |w (OCoLC)1042353796 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 452. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1875106 |3 Volltext |
880 | 8 | |6 505-00/(S |a 3.3.2 The roles played by θ = ln ρ and ∇θ3.3.3 Summary of the D[sub(m)]-method used for the Navier-Stokes equations; 3.4 Some L[sup(2m)]-estimates on ∇θ and ω; 3.4.1 Definitions; 3.4.2 The evolution of D[sub(1,θ)]; References; 4 On localization and quantitative uniqueness for elliptic partial differential equations; Abstract; 4.1 Introduction; 4.2 A lower bound for the decay of Δu = W∇u + V u; 4.3 A construction of a localized solution; 4.4 A construction of a solution vanishing of high order; 4.5 The equation Δu = Vu; Acknowledgments; References | |
938 | |a Askews and Holts Library Services |b ASKH |n AH37002044 | ||
938 | |a YBP Library Services |b YANK |n 15307980 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35135998 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5500403 | ||
938 | |a EBSCOhost |b EBSC |n 1875106 | ||
938 | |a YBP Library Services |b YANK |n 15676637 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1050360643 |
---|---|
_version_ | 1816882469982437376 |
adam_text | |
any_adam_object | |
author2 | Fefferman, Charles, 1949- Robinson, James C. (James Cooper), 1969- Rodrigo, Jose L. |
author2_role | edt edt edt |
author2_variant | c f cf j c r jc jcr j l r jl jlr |
author_GND | http://id.loc.gov/authorities/names/n92108870 http://id.loc.gov/authorities/names/n00015114 |
author_facet | Fefferman, Charles, 1949- Robinson, James C. (James Cooper), 1969- Rodrigo, Jose L. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA374 |
callnumber-raw | QA374 |
callnumber-search | QA374 |
callnumber-sort | QA 3374 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Series information; Title page; Copyright information; Table of contents; List of contributors; Preface; 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier-Stokes equations; Abstract; 1.1 Introduction and uniform estimates; 1.2 Kato criterion for convergence to the regular solution; 1.3 Mathematical and physical interpretation of Theorem 1.3; 1.3.1 Recirculation; 1.3.2 The Prandtl equations and the Stewartson triple-deck ansatz; 1.3.3 Von Karman turbulent Layer; 1.3.4 Energy limit and d'Alembert paradox 1.4 Kato's criterion, anomalous energy dissipation, and turbulenceReferences; 2 Time-periodic flow of a viscous liquid past a body; Abstract; 2.1 Introduction; 2.2 Notation; 2.3 Preliminaries; 2.4 An Embedding Theorem; 2.5 Linearized Problem; 2.6 Fully Nonlinear Problem; Acknowledgements; References; 3 The Rayleigh-Taylor instability in buoyancy-driven variable density turbulence; Abstract; 3.1 Background to the Rayleigh-Taylor instability; 3.2 The 3D Cahn-Hilliard-Navier-Stokes equations; 3.3 The variable density model for two incompressible miscible fluids; 3.3.1 The mathematical model 5 Quasi-invariance for the Navier-Stokes equations5.1 Introduction; 5.2 Navier-Stokes equations; 5.3 Burgers equation; 5.4 Use of critical dependent variables; 5.5 Cole-Hopf transform and Feynman-Kac formula; 5.6 Dynamic scaling transform; 5.6.1 Change of probability measures; 5.6.2 Leray equations; 5.6.3 Navier-Stokes equations; 5.7 Summary; Appendix A Wiener process; References; 6 Leray's fundamental work on the Navier-Stokes equations: a modern review of "Sur le mouvement d'un liquide visqueux emplissant l'espace"; Abstract; 6.1 Introduction; 6.1.1 Preliminaries; 6.1.2 The Oseen kernel T 6.2 The Stokes equations6.2.1 A general forcing F; 6.2.2 A forcing of the form F = −(Y · ∇)Y; Notes; 6.3 Strong solutions of the Navier-Stokes equations; 6.3.1 Properties of strong solutions; 6.3.2 Local existence and uniqueness of strong solutions; 6.3.3 Characterisation of singularities; 6.3.4 Semi-strong solutions; Notes; 6.4 Weak solutions of the Navier-Stokes equations; 6.4.1 Well-posedness for the regularised equations; 6.4.2 Global existence of a weak solution; 6.4.3 Structure of the weak solution; Notes; Acknowledgements; 6.5 Appendix; 6.5.1 The heat equation and the heat kernel |
ctrlnum | (OCoLC)1050360643 |
dewey-full | 532 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532 |
dewey-search | 532 |
dewey-sort | 3532 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06256cam a2200673 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1050360643</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">180831s2018 enk ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">LVT</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1050600599</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316997031</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316997030</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1108460968</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781108460965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050360643</subfield><subfield code="z">(OCoLC)1050600599</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA374</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">532</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Partial differential equations in fluid mechanics /</subfield><subfield code="c">edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">452</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed September 6, 2018).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Series information; Title page; Copyright information; Table of contents; List of contributors; Preface; 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier-Stokes equations; Abstract; 1.1 Introduction and uniform estimates; 1.2 Kato criterion for convergence to the regular solution; 1.3 Mathematical and physical interpretation of Theorem 1.3; 1.3.1 Recirculation; 1.3.2 The Prandtl equations and the Stewartson triple-deck ansatz; 1.3.3 Von Karman turbulent Layer; 1.3.4 Energy limit and d'Alembert paradox</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.4 Kato's criterion, anomalous energy dissipation, and turbulenceReferences; 2 Time-periodic flow of a viscous liquid past a body; Abstract; 2.1 Introduction; 2.2 Notation; 2.3 Preliminaries; 2.4 An Embedding Theorem; 2.5 Linearized Problem; 2.6 Fully Nonlinear Problem; Acknowledgements; References; 3 The Rayleigh-Taylor instability in buoyancy-driven variable density turbulence; Abstract; 3.1 Background to the Rayleigh-Taylor instability; 3.2 The 3D Cahn-Hilliard-Navier-Stokes equations; 3.3 The variable density model for two incompressible miscible fluids; 3.3.1 The mathematical model</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 Quasi-invariance for the Navier-Stokes equations5.1 Introduction; 5.2 Navier-Stokes equations; 5.3 Burgers equation; 5.4 Use of critical dependent variables; 5.5 Cole-Hopf transform and Feynman-Kac formula; 5.6 Dynamic scaling transform; 5.6.1 Change of probability measures; 5.6.2 Leray equations; 5.6.3 Navier-Stokes equations; 5.7 Summary; Appendix A Wiener process; References; 6 Leray's fundamental work on the Navier-Stokes equations: a modern review of "Sur le mouvement d'un liquide visqueux emplissant l'espace"; Abstract; 6.1 Introduction; 6.1.1 Preliminaries; 6.1.2 The Oseen kernel T</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2 The Stokes equations6.2.1 A general forcing F; 6.2.2 A forcing of the form F = −(Y · ∇)Y; Notes; 6.3 Strong solutions of the Navier-Stokes equations; 6.3.1 Properties of strong solutions; 6.3.2 Local existence and uniqueness of strong solutions; 6.3.3 Characterisation of singularities; 6.3.4 Semi-strong solutions; Notes; 6.4 Weak solutions of the Navier-Stokes equations; 6.4.1 Well-posedness for the regularised equations; 6.4.2 Global existence of a weak solution; 6.4.3 Structure of the weak solution; Notes; Acknowledgements; 6.5 Appendix; 6.5.1 The heat equation and the heat kernel</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fluid mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85049383</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037912</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique des fluides.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Hydraulics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fluid mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fefferman, Charles,</subfield><subfield code="d">1949-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJth33tYPcPpC7RRCYvJXd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92108870</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, James C.</subfield><subfield code="q">(James Cooper),</subfield><subfield code="d">1969-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjMvYgkwGTwmMrQKrb9Yyd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00015114</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodrigo, Jose L.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Partial differential equations in fluid mechanics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH6pMcmD87tcwHgc8RfFVd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Partial differential equations in fluid mechanics.</subfield><subfield code="d">Cambridge, United Kingdom : Cambridge University Press, 2018</subfield><subfield code="z">1108460968</subfield><subfield code="z">9781108460965</subfield><subfield code="w">(OCoLC)1042353796</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">452.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1875106</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">3.3.2 The roles played by θ = ln ρ and ∇θ3.3.3 Summary of the D[sub(m)]-method used for the Navier-Stokes equations; 3.4 Some L[sup(2m)]-estimates on ∇θ and ω; 3.4.1 Definitions; 3.4.2 The evolution of D[sub(1,θ)]; References; 4 On localization and quantitative uniqueness for elliptic partial differential equations; Abstract; 4.1 Introduction; 4.2 A lower bound for the decay of Δu = W∇u + V u; 4.3 A construction of a localized solution; 4.4 A construction of a solution vanishing of high order; 4.5 The equation Δu = Vu; Acknowledgments; References</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37002044</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15307980</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35135998</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5500403</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1875106</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15676637</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1050360643 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:07Z |
institution | BVB |
isbn | 9781316997031 1316997030 |
language | English |
oclc_num | 1050360643 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Partial differential equations in fluid mechanics / edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo. Cambridge, United Kingdom : Cambridge University Press, 2018. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 452 Includes bibliographical references. Online resource; title from PDF title page (EBSCO, viewed September 6, 2018). Cover; Series information; Title page; Copyright information; Table of contents; List of contributors; Preface; 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier-Stokes equations; Abstract; 1.1 Introduction and uniform estimates; 1.2 Kato criterion for convergence to the regular solution; 1.3 Mathematical and physical interpretation of Theorem 1.3; 1.3.1 Recirculation; 1.3.2 The Prandtl equations and the Stewartson triple-deck ansatz; 1.3.3 Von Karman turbulent Layer; 1.3.4 Energy limit and d'Alembert paradox 1.4 Kato's criterion, anomalous energy dissipation, and turbulenceReferences; 2 Time-periodic flow of a viscous liquid past a body; Abstract; 2.1 Introduction; 2.2 Notation; 2.3 Preliminaries; 2.4 An Embedding Theorem; 2.5 Linearized Problem; 2.6 Fully Nonlinear Problem; Acknowledgements; References; 3 The Rayleigh-Taylor instability in buoyancy-driven variable density turbulence; Abstract; 3.1 Background to the Rayleigh-Taylor instability; 3.2 The 3D Cahn-Hilliard-Navier-Stokes equations; 3.3 The variable density model for two incompressible miscible fluids; 3.3.1 The mathematical model 5 Quasi-invariance for the Navier-Stokes equations5.1 Introduction; 5.2 Navier-Stokes equations; 5.3 Burgers equation; 5.4 Use of critical dependent variables; 5.5 Cole-Hopf transform and Feynman-Kac formula; 5.6 Dynamic scaling transform; 5.6.1 Change of probability measures; 5.6.2 Leray equations; 5.6.3 Navier-Stokes equations; 5.7 Summary; Appendix A Wiener process; References; 6 Leray's fundamental work on the Navier-Stokes equations: a modern review of "Sur le mouvement d'un liquide visqueux emplissant l'espace"; Abstract; 6.1 Introduction; 6.1.1 Preliminaries; 6.1.2 The Oseen kernel T 6.2 The Stokes equations6.2.1 A general forcing F; 6.2.2 A forcing of the form F = −(Y · ∇)Y; Notes; 6.3 Strong solutions of the Navier-Stokes equations; 6.3.1 Properties of strong solutions; 6.3.2 Local existence and uniqueness of strong solutions; 6.3.3 Characterisation of singularities; 6.3.4 Semi-strong solutions; Notes; 6.4 Weak solutions of the Navier-Stokes equations; 6.4.1 Well-posedness for the regularised equations; 6.4.2 Global existence of a weak solution; 6.4.3 Structure of the weak solution; Notes; Acknowledgements; 6.5 Appendix; 6.5.1 The heat equation and the heat kernel A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students. Fluid mechanics. http://id.loc.gov/authorities/subjects/sh85049383 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Mécanique des fluides. Équations aux dérivées partielles. TECHNOLOGY & ENGINEERING Hydraulics. bisacsh Differential equations, Partial fast Fluid mechanics fast Fefferman, Charles, 1949- editor. https://id.oclc.org/worldcat/entity/E39PBJth33tYPcPpC7RRCYvJXd http://id.loc.gov/authorities/names/n92108870 Robinson, James C. (James Cooper), 1969- editor. https://id.oclc.org/worldcat/entity/E39PCjMvYgkwGTwmMrQKrb9Yyd http://id.loc.gov/authorities/names/n00015114 Rodrigo, Jose L., editor. has work: Partial differential equations in fluid mechanics (Text) https://id.oclc.org/worldcat/entity/E39PCH6pMcmD87tcwHgc8RfFVd https://id.oclc.org/worldcat/ontology/hasWork Print version: Partial differential equations in fluid mechanics. Cambridge, United Kingdom : Cambridge University Press, 2018 1108460968 9781108460965 (OCoLC)1042353796 London Mathematical Society lecture note series ; 452. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1875106 Volltext 505-00/(S 3.3.2 The roles played by θ = ln ρ and ∇θ3.3.3 Summary of the D[sub(m)]-method used for the Navier-Stokes equations; 3.4 Some L[sup(2m)]-estimates on ∇θ and ω; 3.4.1 Definitions; 3.4.2 The evolution of D[sub(1,θ)]; References; 4 On localization and quantitative uniqueness for elliptic partial differential equations; Abstract; 4.1 Introduction; 4.2 A lower bound for the decay of Δu = W∇u + V u; 4.3 A construction of a localized solution; 4.4 A construction of a solution vanishing of high order; 4.5 The equation Δu = Vu; Acknowledgments; References |
spellingShingle | Partial differential equations in fluid mechanics / London Mathematical Society lecture note series ; Cover; Series information; Title page; Copyright information; Table of contents; List of contributors; Preface; 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier-Stokes equations; Abstract; 1.1 Introduction and uniform estimates; 1.2 Kato criterion for convergence to the regular solution; 1.3 Mathematical and physical interpretation of Theorem 1.3; 1.3.1 Recirculation; 1.3.2 The Prandtl equations and the Stewartson triple-deck ansatz; 1.3.3 Von Karman turbulent Layer; 1.3.4 Energy limit and d'Alembert paradox 1.4 Kato's criterion, anomalous energy dissipation, and turbulenceReferences; 2 Time-periodic flow of a viscous liquid past a body; Abstract; 2.1 Introduction; 2.2 Notation; 2.3 Preliminaries; 2.4 An Embedding Theorem; 2.5 Linearized Problem; 2.6 Fully Nonlinear Problem; Acknowledgements; References; 3 The Rayleigh-Taylor instability in buoyancy-driven variable density turbulence; Abstract; 3.1 Background to the Rayleigh-Taylor instability; 3.2 The 3D Cahn-Hilliard-Navier-Stokes equations; 3.3 The variable density model for two incompressible miscible fluids; 3.3.1 The mathematical model 5 Quasi-invariance for the Navier-Stokes equations5.1 Introduction; 5.2 Navier-Stokes equations; 5.3 Burgers equation; 5.4 Use of critical dependent variables; 5.5 Cole-Hopf transform and Feynman-Kac formula; 5.6 Dynamic scaling transform; 5.6.1 Change of probability measures; 5.6.2 Leray equations; 5.6.3 Navier-Stokes equations; 5.7 Summary; Appendix A Wiener process; References; 6 Leray's fundamental work on the Navier-Stokes equations: a modern review of "Sur le mouvement d'un liquide visqueux emplissant l'espace"; Abstract; 6.1 Introduction; 6.1.1 Preliminaries; 6.1.2 The Oseen kernel T 6.2 The Stokes equations6.2.1 A general forcing F; 6.2.2 A forcing of the form F = −(Y · ∇)Y; Notes; 6.3 Strong solutions of the Navier-Stokes equations; 6.3.1 Properties of strong solutions; 6.3.2 Local existence and uniqueness of strong solutions; 6.3.3 Characterisation of singularities; 6.3.4 Semi-strong solutions; Notes; 6.4 Weak solutions of the Navier-Stokes equations; 6.4.1 Well-posedness for the regularised equations; 6.4.2 Global existence of a weak solution; 6.4.3 Structure of the weak solution; Notes; Acknowledgements; 6.5 Appendix; 6.5.1 The heat equation and the heat kernel Fluid mechanics. http://id.loc.gov/authorities/subjects/sh85049383 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Mécanique des fluides. Équations aux dérivées partielles. TECHNOLOGY & ENGINEERING Hydraulics. bisacsh Differential equations, Partial fast Fluid mechanics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85049383 http://id.loc.gov/authorities/subjects/sh85037912 |
title | Partial differential equations in fluid mechanics / |
title_auth | Partial differential equations in fluid mechanics / |
title_exact_search | Partial differential equations in fluid mechanics / |
title_full | Partial differential equations in fluid mechanics / edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo. |
title_fullStr | Partial differential equations in fluid mechanics / edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo. |
title_full_unstemmed | Partial differential equations in fluid mechanics / edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo. |
title_short | Partial differential equations in fluid mechanics / |
title_sort | partial differential equations in fluid mechanics |
topic | Fluid mechanics. http://id.loc.gov/authorities/subjects/sh85049383 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Mécanique des fluides. Équations aux dérivées partielles. TECHNOLOGY & ENGINEERING Hydraulics. bisacsh Differential equations, Partial fast Fluid mechanics fast |
topic_facet | Fluid mechanics. Differential equations, Partial. Mécanique des fluides. Équations aux dérivées partielles. TECHNOLOGY & ENGINEERING Hydraulics. Differential equations, Partial Fluid mechanics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1875106 |
work_keys_str_mv | AT feffermancharles partialdifferentialequationsinfluidmechanics AT robinsonjamesc partialdifferentialequationsinfluidmechanics AT rodrigojosel partialdifferentialequationsinfluidmechanics |