Inference and learning systems for uncertain relational data /:
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands :
IOS Press,
2018.
|
Schriftenreihe: | Studies on the Semantic Web ;
vol. 035. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781614998921 1614998922 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1049711879 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 180824s2018 ne ob 000 0 eng d | ||
040 | |a IOSPR |b eng |e rda |e pn |c IOSPR |d OCLCO |d N$T |d YDX |d N$T |d EBLCP |d MERUC |d OCLCF |d I3U |d OCLCQ |d STF |d OCLCQ |d K6U |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 1049802614 |a 1049909627 | ||
020 | |a 9781614998921 |q (electronic bk.) | ||
020 | |a 1614998922 |q (electronic bk.) | ||
020 | |z 9781614998914 |q (print) | ||
020 | |z 1614998914 | ||
035 | |a (OCoLC)1049711879 |z (OCoLC)1049802614 |z (OCoLC)1049909627 | ||
050 | 4 | |a QA76.63 | |
072 | 7 | |a COM |x 051000 |2 bisacsh | |
082 | 7 | |a 005.1/15 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Cota, Giuseppe, |e author. | |
245 | 1 | 0 | |a Inference and learning systems for uncertain relational data / |c Giuseppe Cota. |
264 | 1 | |a Amsterdam, Netherlands : |b IOS Press, |c 2018. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Studies on the semantic web ; |v vol. 035 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Online resource; title from PDF title page (IOS Press, viewed August 24, 2018). | |
505 | 0 | |a Intro; Title Page; Abstract; Acknowledgements; Contents; List of Figures; List of Tables; List of Algorithms; List of Acronyms; Introduction; Motivation; Aims of the Thesis; Structure of the Thesis; Structure; Thesis Contributions; Inference in Probabilistic Logic Programming; Inference in Probabilistic Description Logics; Learning Systems in Probabilistic Logic Programming; Learning Systems in Probabilistic Description Logics; How to read this thesis; Probabilistic Logics; Fundamentals of First-Order Logic and Logic Programming; Introduction; First-Order Logic; Syntax; Tarski's semantics. | |
505 | 8 | |a Logic ProgrammingProlog; Normal Logic Programs; First-Order Logic vs Logic Programs; Conclusions; Distribution Semantics; Introduction; Formal Definition; Conclusions; Probabilistic Logic Programming Languages; Introduction; Logic Programs with Annotated Disjunctions; LPADs Syntax; LPADs Semantics; ProbLog; ProbLog Syntax; Conclusions; Description Logics and OWL; Introduction; Description Logics; Syntax; Concept and Role Constructors; Concept Constructors; Role constructors; Knowledge Base; Nomenclature; Semantics; Decidability of Description Logics; Description Logics and First-Order Logic. | |
505 | 8 | |a The OWL Ontology LanguageOWL Syntax; OWL sublanguages; Tools for OWL; Conclusions; Reasoning in Description Logics; Reasoning Problems; Closed vs Open World Assumption; Reasoning Techniques; Pellet; Tableau Algorithm; Explanation finding; Pinpointing formula; Conclusions; Probabilistic Description Logics; Introduction; The Distribution Semantics for Description Logics: DISPONTE; Syntax; Semantics; Assumption of Independence; Related Work; Conclusions; Inference in Probabilistic Logics; Decision Diagrams; Introduction; Multivalued Decision Diagrams; Binary Decision Diagrams; Conclusions. | |
505 | 8 | |a Fundamentals of Exact Probabilistic Logical InferenceInference Approaches; Exact Probabilistic Logical Inference; Splitting Algorithm; Inference with Multi-valued Decision Diagrams; Inference with Binary Decision Diagrams; Conclusions; Inference in Probabilistic Logic Programming; Introduction; cplint; Exact Inference: the PITA module; Approximate Inference: the MCINTYRE module; Causal Inference with cplint; Causal Inference in PLP; Causal Exact Inference with cplint; Causal Approximate Inference with cplint; Notable Examples; Simpson's Paradox; Viral Marketing; Experiments. | |
505 | 8 | |a Hybrid Probabilistic Logic Programs with cplintSampling the Arguments of Unconditional Queries over Hybrid Programs; Conditional Queries over Hybrid Logic Programs; cplint on SWISH: a Web interface for cplint; SWISH; cplint on SWISH; Examples; Related Work; Work on causality inference; Work on Hybrid Probabilistic Logic Programs; Web application for PLP; Conclusions; Inference in Probabilistic Description Logics; Introduction; BUNDLE; How to use BUNDLE; TRILL; TRILLP; How to use TRILL and TRILLP; TRILL on SWISH; Inference Complexity; Experiments; Comparing the Systems; Related Work. | |
650 | 0 | |a Logic programming. |0 http://id.loc.gov/authorities/subjects/sh86003454 | |
650 | 6 | |a Programmation logique. | |
650 | 7 | |a COMPUTERS |x Programming |x General. |2 bisacsh | |
650 | 7 | |a Logic programming |2 fast | |
710 | 2 | |a IOS Press. |0 http://id.loc.gov/authorities/names/no2015091156 | |
830 | 0 | |a Studies on the Semantic Web ; |v vol. 035. |0 http://id.loc.gov/authorities/names/no2009156151 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1876775 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL5496116 | ||
938 | |a EBSCOhost |b EBSC |n 1876775 | ||
938 | |a YBP Library Services |b YANK |n 15665842 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1049711879 |
---|---|
_version_ | 1816882469157208064 |
adam_text | |
any_adam_object | |
author | Cota, Giuseppe |
author_corporate | IOS Press |
author_corporate_role | |
author_facet | Cota, Giuseppe IOS Press |
author_role | aut |
author_sort | Cota, Giuseppe |
author_variant | g c gc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.63 |
callnumber-search | QA76.63 |
callnumber-sort | QA 276.63 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Intro; Title Page; Abstract; Acknowledgements; Contents; List of Figures; List of Tables; List of Algorithms; List of Acronyms; Introduction; Motivation; Aims of the Thesis; Structure of the Thesis; Structure; Thesis Contributions; Inference in Probabilistic Logic Programming; Inference in Probabilistic Description Logics; Learning Systems in Probabilistic Logic Programming; Learning Systems in Probabilistic Description Logics; How to read this thesis; Probabilistic Logics; Fundamentals of First-Order Logic and Logic Programming; Introduction; First-Order Logic; Syntax; Tarski's semantics. Logic ProgrammingProlog; Normal Logic Programs; First-Order Logic vs Logic Programs; Conclusions; Distribution Semantics; Introduction; Formal Definition; Conclusions; Probabilistic Logic Programming Languages; Introduction; Logic Programs with Annotated Disjunctions; LPADs Syntax; LPADs Semantics; ProbLog; ProbLog Syntax; Conclusions; Description Logics and OWL; Introduction; Description Logics; Syntax; Concept and Role Constructors; Concept Constructors; Role constructors; Knowledge Base; Nomenclature; Semantics; Decidability of Description Logics; Description Logics and First-Order Logic. The OWL Ontology LanguageOWL Syntax; OWL sublanguages; Tools for OWL; Conclusions; Reasoning in Description Logics; Reasoning Problems; Closed vs Open World Assumption; Reasoning Techniques; Pellet; Tableau Algorithm; Explanation finding; Pinpointing formula; Conclusions; Probabilistic Description Logics; Introduction; The Distribution Semantics for Description Logics: DISPONTE; Syntax; Semantics; Assumption of Independence; Related Work; Conclusions; Inference in Probabilistic Logics; Decision Diagrams; Introduction; Multivalued Decision Diagrams; Binary Decision Diagrams; Conclusions. Fundamentals of Exact Probabilistic Logical InferenceInference Approaches; Exact Probabilistic Logical Inference; Splitting Algorithm; Inference with Multi-valued Decision Diagrams; Inference with Binary Decision Diagrams; Conclusions; Inference in Probabilistic Logic Programming; Introduction; cplint; Exact Inference: the PITA module; Approximate Inference: the MCINTYRE module; Causal Inference with cplint; Causal Inference in PLP; Causal Exact Inference with cplint; Causal Approximate Inference with cplint; Notable Examples; Simpson's Paradox; Viral Marketing; Experiments. Hybrid Probabilistic Logic Programs with cplintSampling the Arguments of Unconditional Queries over Hybrid Programs; Conditional Queries over Hybrid Logic Programs; cplint on SWISH: a Web interface for cplint; SWISH; cplint on SWISH; Examples; Related Work; Work on causality inference; Work on Hybrid Probabilistic Logic Programs; Web application for PLP; Conclusions; Inference in Probabilistic Description Logics; Introduction; BUNDLE; How to use BUNDLE; TRILL; TRILLP; How to use TRILL and TRILLP; TRILL on SWISH; Inference Complexity; Experiments; Comparing the Systems; Related Work. |
ctrlnum | (OCoLC)1049711879 |
dewey-full | 005.1/15 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.1/15 |
dewey-search | 005.1/15 |
dewey-sort | 15.1 215 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05014cam a2200541 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1049711879</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">180824s2018 ne ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IOSPR</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">IOSPR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCF</subfield><subfield code="d">I3U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1049802614</subfield><subfield code="a">1049909627</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614998921</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1614998922</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781614998914</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1614998914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1049711879</subfield><subfield code="z">(OCoLC)1049802614</subfield><subfield code="z">(OCoLC)1049909627</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.63</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">051000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.1/15</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cota, Giuseppe,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inference and learning systems for uncertain relational data /</subfield><subfield code="c">Giuseppe Cota.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands :</subfield><subfield code="b">IOS Press,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies on the semantic web ;</subfield><subfield code="v">vol. 035</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (IOS Press, viewed August 24, 2018).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro; Title Page; Abstract; Acknowledgements; Contents; List of Figures; List of Tables; List of Algorithms; List of Acronyms; Introduction; Motivation; Aims of the Thesis; Structure of the Thesis; Structure; Thesis Contributions; Inference in Probabilistic Logic Programming; Inference in Probabilistic Description Logics; Learning Systems in Probabilistic Logic Programming; Learning Systems in Probabilistic Description Logics; How to read this thesis; Probabilistic Logics; Fundamentals of First-Order Logic and Logic Programming; Introduction; First-Order Logic; Syntax; Tarski's semantics.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Logic ProgrammingProlog; Normal Logic Programs; First-Order Logic vs Logic Programs; Conclusions; Distribution Semantics; Introduction; Formal Definition; Conclusions; Probabilistic Logic Programming Languages; Introduction; Logic Programs with Annotated Disjunctions; LPADs Syntax; LPADs Semantics; ProbLog; ProbLog Syntax; Conclusions; Description Logics and OWL; Introduction; Description Logics; Syntax; Concept and Role Constructors; Concept Constructors; Role constructors; Knowledge Base; Nomenclature; Semantics; Decidability of Description Logics; Description Logics and First-Order Logic.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The OWL Ontology LanguageOWL Syntax; OWL sublanguages; Tools for OWL; Conclusions; Reasoning in Description Logics; Reasoning Problems; Closed vs Open World Assumption; Reasoning Techniques; Pellet; Tableau Algorithm; Explanation finding; Pinpointing formula; Conclusions; Probabilistic Description Logics; Introduction; The Distribution Semantics for Description Logics: DISPONTE; Syntax; Semantics; Assumption of Independence; Related Work; Conclusions; Inference in Probabilistic Logics; Decision Diagrams; Introduction; Multivalued Decision Diagrams; Binary Decision Diagrams; Conclusions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Fundamentals of Exact Probabilistic Logical InferenceInference Approaches; Exact Probabilistic Logical Inference; Splitting Algorithm; Inference with Multi-valued Decision Diagrams; Inference with Binary Decision Diagrams; Conclusions; Inference in Probabilistic Logic Programming; Introduction; cplint; Exact Inference: the PITA module; Approximate Inference: the MCINTYRE module; Causal Inference with cplint; Causal Inference in PLP; Causal Exact Inference with cplint; Causal Approximate Inference with cplint; Notable Examples; Simpson's Paradox; Viral Marketing; Experiments.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Hybrid Probabilistic Logic Programs with cplintSampling the Arguments of Unconditional Queries over Hybrid Programs; Conditional Queries over Hybrid Logic Programs; cplint on SWISH: a Web interface for cplint; SWISH; cplint on SWISH; Examples; Related Work; Work on causality inference; Work on Hybrid Probabilistic Logic Programs; Web application for PLP; Conclusions; Inference in Probabilistic Description Logics; Introduction; BUNDLE; How to use BUNDLE; TRILL; TRILLP; How to use TRILL and TRILLP; TRILL on SWISH; Inference Complexity; Experiments; Comparing the Systems; Related Work.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Logic programming.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh86003454</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Programmation logique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Programming</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic programming</subfield><subfield code="2">fast</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">IOS Press.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2015091156</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies on the Semantic Web ;</subfield><subfield code="v">vol. 035.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009156151</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1876775</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5496116</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1876775</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15665842</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1049711879 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:06Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2015091156 |
isbn | 9781614998921 1614998922 |
language | English |
oclc_num | 1049711879 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | IOS Press, |
record_format | marc |
series | Studies on the Semantic Web ; |
series2 | Studies on the semantic web ; |
spelling | Cota, Giuseppe, author. Inference and learning systems for uncertain relational data / Giuseppe Cota. Amsterdam, Netherlands : IOS Press, 2018. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Studies on the semantic web ; vol. 035 Includes bibliographical references. Online resource; title from PDF title page (IOS Press, viewed August 24, 2018). Intro; Title Page; Abstract; Acknowledgements; Contents; List of Figures; List of Tables; List of Algorithms; List of Acronyms; Introduction; Motivation; Aims of the Thesis; Structure of the Thesis; Structure; Thesis Contributions; Inference in Probabilistic Logic Programming; Inference in Probabilistic Description Logics; Learning Systems in Probabilistic Logic Programming; Learning Systems in Probabilistic Description Logics; How to read this thesis; Probabilistic Logics; Fundamentals of First-Order Logic and Logic Programming; Introduction; First-Order Logic; Syntax; Tarski's semantics. Logic ProgrammingProlog; Normal Logic Programs; First-Order Logic vs Logic Programs; Conclusions; Distribution Semantics; Introduction; Formal Definition; Conclusions; Probabilistic Logic Programming Languages; Introduction; Logic Programs with Annotated Disjunctions; LPADs Syntax; LPADs Semantics; ProbLog; ProbLog Syntax; Conclusions; Description Logics and OWL; Introduction; Description Logics; Syntax; Concept and Role Constructors; Concept Constructors; Role constructors; Knowledge Base; Nomenclature; Semantics; Decidability of Description Logics; Description Logics and First-Order Logic. The OWL Ontology LanguageOWL Syntax; OWL sublanguages; Tools for OWL; Conclusions; Reasoning in Description Logics; Reasoning Problems; Closed vs Open World Assumption; Reasoning Techniques; Pellet; Tableau Algorithm; Explanation finding; Pinpointing formula; Conclusions; Probabilistic Description Logics; Introduction; The Distribution Semantics for Description Logics: DISPONTE; Syntax; Semantics; Assumption of Independence; Related Work; Conclusions; Inference in Probabilistic Logics; Decision Diagrams; Introduction; Multivalued Decision Diagrams; Binary Decision Diagrams; Conclusions. Fundamentals of Exact Probabilistic Logical InferenceInference Approaches; Exact Probabilistic Logical Inference; Splitting Algorithm; Inference with Multi-valued Decision Diagrams; Inference with Binary Decision Diagrams; Conclusions; Inference in Probabilistic Logic Programming; Introduction; cplint; Exact Inference: the PITA module; Approximate Inference: the MCINTYRE module; Causal Inference with cplint; Causal Inference in PLP; Causal Exact Inference with cplint; Causal Approximate Inference with cplint; Notable Examples; Simpson's Paradox; Viral Marketing; Experiments. Hybrid Probabilistic Logic Programs with cplintSampling the Arguments of Unconditional Queries over Hybrid Programs; Conditional Queries over Hybrid Logic Programs; cplint on SWISH: a Web interface for cplint; SWISH; cplint on SWISH; Examples; Related Work; Work on causality inference; Work on Hybrid Probabilistic Logic Programs; Web application for PLP; Conclusions; Inference in Probabilistic Description Logics; Introduction; BUNDLE; How to use BUNDLE; TRILL; TRILLP; How to use TRILL and TRILLP; TRILL on SWISH; Inference Complexity; Experiments; Comparing the Systems; Related Work. Logic programming. http://id.loc.gov/authorities/subjects/sh86003454 Programmation logique. COMPUTERS Programming General. bisacsh Logic programming fast IOS Press. http://id.loc.gov/authorities/names/no2015091156 Studies on the Semantic Web ; vol. 035. http://id.loc.gov/authorities/names/no2009156151 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1876775 Volltext |
spellingShingle | Cota, Giuseppe Inference and learning systems for uncertain relational data / Studies on the Semantic Web ; Intro; Title Page; Abstract; Acknowledgements; Contents; List of Figures; List of Tables; List of Algorithms; List of Acronyms; Introduction; Motivation; Aims of the Thesis; Structure of the Thesis; Structure; Thesis Contributions; Inference in Probabilistic Logic Programming; Inference in Probabilistic Description Logics; Learning Systems in Probabilistic Logic Programming; Learning Systems in Probabilistic Description Logics; How to read this thesis; Probabilistic Logics; Fundamentals of First-Order Logic and Logic Programming; Introduction; First-Order Logic; Syntax; Tarski's semantics. Logic ProgrammingProlog; Normal Logic Programs; First-Order Logic vs Logic Programs; Conclusions; Distribution Semantics; Introduction; Formal Definition; Conclusions; Probabilistic Logic Programming Languages; Introduction; Logic Programs with Annotated Disjunctions; LPADs Syntax; LPADs Semantics; ProbLog; ProbLog Syntax; Conclusions; Description Logics and OWL; Introduction; Description Logics; Syntax; Concept and Role Constructors; Concept Constructors; Role constructors; Knowledge Base; Nomenclature; Semantics; Decidability of Description Logics; Description Logics and First-Order Logic. The OWL Ontology LanguageOWL Syntax; OWL sublanguages; Tools for OWL; Conclusions; Reasoning in Description Logics; Reasoning Problems; Closed vs Open World Assumption; Reasoning Techniques; Pellet; Tableau Algorithm; Explanation finding; Pinpointing formula; Conclusions; Probabilistic Description Logics; Introduction; The Distribution Semantics for Description Logics: DISPONTE; Syntax; Semantics; Assumption of Independence; Related Work; Conclusions; Inference in Probabilistic Logics; Decision Diagrams; Introduction; Multivalued Decision Diagrams; Binary Decision Diagrams; Conclusions. Fundamentals of Exact Probabilistic Logical InferenceInference Approaches; Exact Probabilistic Logical Inference; Splitting Algorithm; Inference with Multi-valued Decision Diagrams; Inference with Binary Decision Diagrams; Conclusions; Inference in Probabilistic Logic Programming; Introduction; cplint; Exact Inference: the PITA module; Approximate Inference: the MCINTYRE module; Causal Inference with cplint; Causal Inference in PLP; Causal Exact Inference with cplint; Causal Approximate Inference with cplint; Notable Examples; Simpson's Paradox; Viral Marketing; Experiments. Hybrid Probabilistic Logic Programs with cplintSampling the Arguments of Unconditional Queries over Hybrid Programs; Conditional Queries over Hybrid Logic Programs; cplint on SWISH: a Web interface for cplint; SWISH; cplint on SWISH; Examples; Related Work; Work on causality inference; Work on Hybrid Probabilistic Logic Programs; Web application for PLP; Conclusions; Inference in Probabilistic Description Logics; Introduction; BUNDLE; How to use BUNDLE; TRILL; TRILLP; How to use TRILL and TRILLP; TRILL on SWISH; Inference Complexity; Experiments; Comparing the Systems; Related Work. Logic programming. http://id.loc.gov/authorities/subjects/sh86003454 Programmation logique. COMPUTERS Programming General. bisacsh Logic programming fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh86003454 |
title | Inference and learning systems for uncertain relational data / |
title_auth | Inference and learning systems for uncertain relational data / |
title_exact_search | Inference and learning systems for uncertain relational data / |
title_full | Inference and learning systems for uncertain relational data / Giuseppe Cota. |
title_fullStr | Inference and learning systems for uncertain relational data / Giuseppe Cota. |
title_full_unstemmed | Inference and learning systems for uncertain relational data / Giuseppe Cota. |
title_short | Inference and learning systems for uncertain relational data / |
title_sort | inference and learning systems for uncertain relational data |
topic | Logic programming. http://id.loc.gov/authorities/subjects/sh86003454 Programmation logique. COMPUTERS Programming General. bisacsh Logic programming fast |
topic_facet | Logic programming. Programmation logique. COMPUTERS Programming General. Logic programming |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1876775 |
work_keys_str_mv | AT cotagiuseppe inferenceandlearningsystemsforuncertainrelationaldata AT iospress inferenceandlearningsystemsforuncertainrelationaldata |