Synthetic vision :: using volume learning and visual DNA /
In Synthetic Vision: Using Volume Learning and Visual DNA, a holistic model of the human visual system is developed into a working model in C++, informed by the latest neuroscience, DNN, and computer vision research. The author's synthetic visual pathway model includes the eye, LGN, visual cort...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston ; Berlin :
De/G Press,
[2018]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In Synthetic Vision: Using Volume Learning and Visual DNA, a holistic model of the human visual system is developed into a working model in C++, informed by the latest neuroscience, DNN, and computer vision research. The author's synthetic visual pathway model includes the eye, LGN, visual cortex, and the high level PFC learning centers. The corresponding visual genome model (VGM), begun in 2014, is introduced herein as the basis for a visual genome project analogous to the Human Genome Project funded by the US government. The VGM introduces volume learning principles and Visual DNA (VDNA) taking a multivariate approach beyond deep neural networks. Volume learning is modeled as programmable learning and reasoning agents, providing rich methods for structured agent classification networks. Volume learning incorporates a massive volume of multivariate features in various data space projections, collected into strands of Visual DNA, analogous to human DNA genes. VGM lays a foundation for a visual genome project to sequence VDNA as visual genomes in a public database, using collaborative research to move synthetic vision science forward and enable new applications. Bibliographical references are provided to key neuroscience, computer vision, and deep learning research, which form the basis for the biologically plausible VGM model and the synthetic visual pathway. The book also includes graphical illustrations and C++ API reference materials to enable VGM application programming. Open source code licenses are available for engineers and scientists. Scott Krig founded Krig Research to provide some of the world's first vision and imaging systems worldwide for military, industry, government, and academic use. Krig has worked for major corporations and startups in the areas of machine learning, computer vision, imaging, graphics, robotics and automation, computer security and cryptography. He has authored international patents in the areas of computer architecture, communications, computer security, digital imaging, and computer vision, and studied at Stanford. Scott Krig is the author of the English/Chinese Springer book Computer Vision Metrics, Survey, Taxonomy and Analysis of Computer Vision, Visual Neuroscience, and Deep Learning, Textbook Edition, as well as other books, articles, and papers. |
Beschreibung: | 1 online resource (xviii, 350 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781501505966 1501505963 9781501506291 1501506293 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1049623648 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 180821s2018 maua fob 001 0 eng d | ||
040 | |a DEGRU |b eng |e rda |e pn |c DEGRU |d YDX |d OCLCF |d N$T |d EBLCP |d OCLCQ |d CUY |d NRC |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d DEGRU | ||
019 | |a 1076408949 | ||
020 | |a 9781501505966 |q (electronic bk.) | ||
020 | |a 1501505963 |q (electronic bk.) | ||
020 | |a 9781501506291 |q (electronic bk.) | ||
020 | |a 1501506293 |q (electronic bk.) | ||
020 | |z 9781501515170 | ||
020 | |z 1501515179 | ||
024 | 7 | |a 10.1515/9781501505966 |2 doi | |
035 | |a (OCoLC)1049623648 |z (OCoLC)1076408949 | ||
050 | 4 | |a TA1634 |b .K75 2018 | |
072 | 7 | |a COM011000 |2 bisacsh | |
072 | 7 | |a COM016000 |2 bisacsh | |
072 | 7 | |a COM044000 |2 bisacsh | |
072 | 7 | |a COM082000 |2 bisacsh | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
082 | 7 | |a 006.37 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Krig, Scott, |e author. |0 http://id.loc.gov/authorities/names/no2015027897 | |
245 | 1 | 0 | |a Synthetic vision : |b using volume learning and visual DNA / |c Scott Krig. |
264 | 1 | |a Boston ; |a Berlin : |b De/G Press, |c [2018] | |
264 | 4 | |c ©2018 | |
300 | |a 1 online resource (xviii, 350 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |2 rdaft | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |t Frontmatter -- |t About De/G PRESS -- |t Acknowledgments -- |t Contents -- |t Preface -- |t Chapter 1: Synthetic Vision Using Volume Learning and Visual DNA -- |t Chapter 2: Eye/LGN Model -- |t Chapter 3: Memory Model and Visual Cortex -- |t Chapter 4: Learning and Reasoning Agents -- |t Chapter 5: VGM Platform Overview -- |t Chapter 6: Volume Projection Metrics -- |t Chapter 7: Color 2D Region Metrics -- |t Chapter 8: Shape Metrics -- |t Chapter 9: Texture Metrics -- |t Chapter 10: Region Glyph Metrics -- |t Chapter 11: Applications, Training, Results -- |t Chapter 12: Visual Genome Project -- |t Bibliography -- |t Index. |
520 | |a In Synthetic Vision: Using Volume Learning and Visual DNA, a holistic model of the human visual system is developed into a working model in C++, informed by the latest neuroscience, DNN, and computer vision research. The author's synthetic visual pathway model includes the eye, LGN, visual cortex, and the high level PFC learning centers. The corresponding visual genome model (VGM), begun in 2014, is introduced herein as the basis for a visual genome project analogous to the Human Genome Project funded by the US government. The VGM introduces volume learning principles and Visual DNA (VDNA) taking a multivariate approach beyond deep neural networks. Volume learning is modeled as programmable learning and reasoning agents, providing rich methods for structured agent classification networks. Volume learning incorporates a massive volume of multivariate features in various data space projections, collected into strands of Visual DNA, analogous to human DNA genes. VGM lays a foundation for a visual genome project to sequence VDNA as visual genomes in a public database, using collaborative research to move synthetic vision science forward and enable new applications. Bibliographical references are provided to key neuroscience, computer vision, and deep learning research, which form the basis for the biologically plausible VGM model and the synthetic visual pathway. The book also includes graphical illustrations and C++ API reference materials to enable VGM application programming. Open source code licenses are available for engineers and scientists. Scott Krig founded Krig Research to provide some of the world's first vision and imaging systems worldwide for military, industry, government, and academic use. Krig has worked for major corporations and startups in the areas of machine learning, computer vision, imaging, graphics, robotics and automation, computer security and cryptography. He has authored international patents in the areas of computer architecture, communications, computer security, digital imaging, and computer vision, and studied at Stanford. Scott Krig is the author of the English/Chinese Springer book Computer Vision Metrics, Survey, Taxonomy and Analysis of Computer Vision, Visual Neuroscience, and Deep Learning, Textbook Edition, as well as other books, articles, and papers. | ||
588 | 0 | |a Online resource; title from PDF title page (publisher's Web site, viewed 21. Aug 2018). | |
650 | 0 | |a Computer vision. |0 http://id.loc.gov/authorities/subjects/sh85029549 | |
650 | 6 | |a Vision par ordinateur. | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a Computer vision |2 fast | |
776 | 0 | 8 | |i Print version: |a Krig, Scott. |t Synthetic vision. |d Boston : Walter de Gruyter, [2018] |z 9781501515170 |w (DLC) 2018287155 |w (OCoLC)991799519 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1857417 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH36176414 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33145906 | ||
938 | |a De Gruyter |b DEGR |n 9781501505966 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5156087 | ||
938 | |a EBSCOhost |b EBSC |n 1857417 | ||
938 | |a YBP Library Services |b YANK |n 16185967 | ||
938 | |a YBP Library Services |b YANK |n 13671447 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1049623648 |
---|---|
_version_ | 1816882469061787648 |
adam_text | |
any_adam_object | |
author | Krig, Scott |
author_GND | http://id.loc.gov/authorities/names/no2015027897 |
author_facet | Krig, Scott |
author_role | aut |
author_sort | Krig, Scott |
author_variant | s k sk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA1634 |
callnumber-raw | TA1634 .K75 2018 |
callnumber-search | TA1634 .K75 2018 |
callnumber-sort | TA 41634 K75 42018 |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | Frontmatter -- About De/G PRESS -- Acknowledgments -- Contents -- Preface -- Chapter 1: Synthetic Vision Using Volume Learning and Visual DNA -- Chapter 2: Eye/LGN Model -- Chapter 3: Memory Model and Visual Cortex -- Chapter 4: Learning and Reasoning Agents -- Chapter 5: VGM Platform Overview -- Chapter 6: Volume Projection Metrics -- Chapter 7: Color 2D Region Metrics -- Chapter 8: Shape Metrics -- Chapter 9: Texture Metrics -- Chapter 10: Region Glyph Metrics -- Chapter 11: Applications, Training, Results -- Chapter 12: Visual Genome Project -- Bibliography -- Index. |
ctrlnum | (OCoLC)1049623648 |
dewey-full | 006.37 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.37 |
dewey-search | 006.37 |
dewey-sort | 16.37 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05420cam a2200637Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1049623648</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">180821s2018 maua fob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DEGRU</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DEGRU</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUY</subfield><subfield code="d">NRC</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEGRU</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1076408949</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781501505966</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1501505963</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781501506291</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1501506293</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781501515170</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1501515179</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781501505966</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1049623648</subfield><subfield code="z">(OCoLC)1076408949</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA1634</subfield><subfield code="b">.K75 2018</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM011000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM044000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM082000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.37</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krig, Scott,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2015027897</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synthetic vision :</subfield><subfield code="b">using volume learning and visual DNA /</subfield><subfield code="c">Scott Krig.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston ;</subfield><subfield code="a">Berlin :</subfield><subfield code="b">De/G Press,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 350 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rdaft</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">About De/G PRESS --</subfield><subfield code="t">Acknowledgments --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Chapter 1: Synthetic Vision Using Volume Learning and Visual DNA --</subfield><subfield code="t">Chapter 2: Eye/LGN Model --</subfield><subfield code="t">Chapter 3: Memory Model and Visual Cortex --</subfield><subfield code="t">Chapter 4: Learning and Reasoning Agents --</subfield><subfield code="t">Chapter 5: VGM Platform Overview --</subfield><subfield code="t">Chapter 6: Volume Projection Metrics --</subfield><subfield code="t">Chapter 7: Color 2D Region Metrics --</subfield><subfield code="t">Chapter 8: Shape Metrics --</subfield><subfield code="t">Chapter 9: Texture Metrics --</subfield><subfield code="t">Chapter 10: Region Glyph Metrics --</subfield><subfield code="t">Chapter 11: Applications, Training, Results --</subfield><subfield code="t">Chapter 12: Visual Genome Project --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In Synthetic Vision: Using Volume Learning and Visual DNA, a holistic model of the human visual system is developed into a working model in C++, informed by the latest neuroscience, DNN, and computer vision research. The author's synthetic visual pathway model includes the eye, LGN, visual cortex, and the high level PFC learning centers. The corresponding visual genome model (VGM), begun in 2014, is introduced herein as the basis for a visual genome project analogous to the Human Genome Project funded by the US government. The VGM introduces volume learning principles and Visual DNA (VDNA) taking a multivariate approach beyond deep neural networks. Volume learning is modeled as programmable learning and reasoning agents, providing rich methods for structured agent classification networks. Volume learning incorporates a massive volume of multivariate features in various data space projections, collected into strands of Visual DNA, analogous to human DNA genes. VGM lays a foundation for a visual genome project to sequence VDNA as visual genomes in a public database, using collaborative research to move synthetic vision science forward and enable new applications. Bibliographical references are provided to key neuroscience, computer vision, and deep learning research, which form the basis for the biologically plausible VGM model and the synthetic visual pathway. The book also includes graphical illustrations and C++ API reference materials to enable VGM application programming. Open source code licenses are available for engineers and scientists. Scott Krig founded Krig Research to provide some of the world's first vision and imaging systems worldwide for military, industry, government, and academic use. Krig has worked for major corporations and startups in the areas of machine learning, computer vision, imaging, graphics, robotics and automation, computer security and cryptography. He has authored international patents in the areas of computer architecture, communications, computer security, digital imaging, and computer vision, and studied at Stanford. Scott Krig is the author of the English/Chinese Springer book Computer Vision Metrics, Survey, Taxonomy and Analysis of Computer Vision, Visual Neuroscience, and Deep Learning, Textbook Edition, as well as other books, articles, and papers.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (publisher's Web site, viewed 21. Aug 2018).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer vision.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Vision par ordinateur.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer vision</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Krig, Scott.</subfield><subfield code="t">Synthetic vision.</subfield><subfield code="d">Boston : Walter de Gruyter, [2018]</subfield><subfield code="z">9781501515170</subfield><subfield code="w">(DLC) 2018287155</subfield><subfield code="w">(OCoLC)991799519</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1857417</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36176414</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33145906</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9781501505966</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5156087</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1857417</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">16185967</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13671447</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1049623648 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:29:06Z |
institution | BVB |
isbn | 9781501505966 1501505963 9781501506291 1501506293 |
language | English |
oclc_num | 1049623648 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xviii, 350 pages) |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De/G Press, |
record_format | marc |
spelling | Krig, Scott, author. http://id.loc.gov/authorities/names/no2015027897 Synthetic vision : using volume learning and visual DNA / Scott Krig. Boston ; Berlin : De/G Press, [2018] ©2018 1 online resource (xviii, 350 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file rdaft Includes bibliographical references and index. Frontmatter -- About De/G PRESS -- Acknowledgments -- Contents -- Preface -- Chapter 1: Synthetic Vision Using Volume Learning and Visual DNA -- Chapter 2: Eye/LGN Model -- Chapter 3: Memory Model and Visual Cortex -- Chapter 4: Learning and Reasoning Agents -- Chapter 5: VGM Platform Overview -- Chapter 6: Volume Projection Metrics -- Chapter 7: Color 2D Region Metrics -- Chapter 8: Shape Metrics -- Chapter 9: Texture Metrics -- Chapter 10: Region Glyph Metrics -- Chapter 11: Applications, Training, Results -- Chapter 12: Visual Genome Project -- Bibliography -- Index. In Synthetic Vision: Using Volume Learning and Visual DNA, a holistic model of the human visual system is developed into a working model in C++, informed by the latest neuroscience, DNN, and computer vision research. The author's synthetic visual pathway model includes the eye, LGN, visual cortex, and the high level PFC learning centers. The corresponding visual genome model (VGM), begun in 2014, is introduced herein as the basis for a visual genome project analogous to the Human Genome Project funded by the US government. The VGM introduces volume learning principles and Visual DNA (VDNA) taking a multivariate approach beyond deep neural networks. Volume learning is modeled as programmable learning and reasoning agents, providing rich methods for structured agent classification networks. Volume learning incorporates a massive volume of multivariate features in various data space projections, collected into strands of Visual DNA, analogous to human DNA genes. VGM lays a foundation for a visual genome project to sequence VDNA as visual genomes in a public database, using collaborative research to move synthetic vision science forward and enable new applications. Bibliographical references are provided to key neuroscience, computer vision, and deep learning research, which form the basis for the biologically plausible VGM model and the synthetic visual pathway. The book also includes graphical illustrations and C++ API reference materials to enable VGM application programming. Open source code licenses are available for engineers and scientists. Scott Krig founded Krig Research to provide some of the world's first vision and imaging systems worldwide for military, industry, government, and academic use. Krig has worked for major corporations and startups in the areas of machine learning, computer vision, imaging, graphics, robotics and automation, computer security and cryptography. He has authored international patents in the areas of computer architecture, communications, computer security, digital imaging, and computer vision, and studied at Stanford. Scott Krig is the author of the English/Chinese Springer book Computer Vision Metrics, Survey, Taxonomy and Analysis of Computer Vision, Visual Neuroscience, and Deep Learning, Textbook Edition, as well as other books, articles, and papers. Online resource; title from PDF title page (publisher's Web site, viewed 21. Aug 2018). Computer vision. http://id.loc.gov/authorities/subjects/sh85029549 Vision par ordinateur. COMPUTERS General. bisacsh Computer vision fast Print version: Krig, Scott. Synthetic vision. Boston : Walter de Gruyter, [2018] 9781501515170 (DLC) 2018287155 (OCoLC)991799519 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1857417 Volltext |
spellingShingle | Krig, Scott Synthetic vision : using volume learning and visual DNA / Frontmatter -- About De/G PRESS -- Acknowledgments -- Contents -- Preface -- Chapter 1: Synthetic Vision Using Volume Learning and Visual DNA -- Chapter 2: Eye/LGN Model -- Chapter 3: Memory Model and Visual Cortex -- Chapter 4: Learning and Reasoning Agents -- Chapter 5: VGM Platform Overview -- Chapter 6: Volume Projection Metrics -- Chapter 7: Color 2D Region Metrics -- Chapter 8: Shape Metrics -- Chapter 9: Texture Metrics -- Chapter 10: Region Glyph Metrics -- Chapter 11: Applications, Training, Results -- Chapter 12: Visual Genome Project -- Bibliography -- Index. Computer vision. http://id.loc.gov/authorities/subjects/sh85029549 Vision par ordinateur. COMPUTERS General. bisacsh Computer vision fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029549 |
title | Synthetic vision : using volume learning and visual DNA / |
title_alt | Frontmatter -- About De/G PRESS -- Acknowledgments -- Contents -- Preface -- Chapter 1: Synthetic Vision Using Volume Learning and Visual DNA -- Chapter 2: Eye/LGN Model -- Chapter 3: Memory Model and Visual Cortex -- Chapter 4: Learning and Reasoning Agents -- Chapter 5: VGM Platform Overview -- Chapter 6: Volume Projection Metrics -- Chapter 7: Color 2D Region Metrics -- Chapter 8: Shape Metrics -- Chapter 9: Texture Metrics -- Chapter 10: Region Glyph Metrics -- Chapter 11: Applications, Training, Results -- Chapter 12: Visual Genome Project -- Bibliography -- Index. |
title_auth | Synthetic vision : using volume learning and visual DNA / |
title_exact_search | Synthetic vision : using volume learning and visual DNA / |
title_full | Synthetic vision : using volume learning and visual DNA / Scott Krig. |
title_fullStr | Synthetic vision : using volume learning and visual DNA / Scott Krig. |
title_full_unstemmed | Synthetic vision : using volume learning and visual DNA / Scott Krig. |
title_short | Synthetic vision : |
title_sort | synthetic vision using volume learning and visual dna |
title_sub | using volume learning and visual DNA / |
topic | Computer vision. http://id.loc.gov/authorities/subjects/sh85029549 Vision par ordinateur. COMPUTERS General. bisacsh Computer vision fast |
topic_facet | Computer vision. Vision par ordinateur. COMPUTERS General. Computer vision |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1857417 |
work_keys_str_mv | AT krigscott syntheticvisionusingvolumelearningandvisualdna |