Univalent Functions :: a Primer /
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The wor...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
[2018]
|
Schriftenreihe: | De Gruyter studies in mathematics ;
69. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer. |
Beschreibung: | 1 online resource (265 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110560961 3110560968 9783110560992 3110560992 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1032679559 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 180423t20182018gw fob z001 0 eng d | ||
040 | |a DEGRU |b eng |e rda |e pn |c DEGRU |d YDX |d EBLCP |d DEGRU |d YDX |d N$T |d WYU |d OCLCQ |d UKAHL |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO | ||
066 | |c (S | ||
019 | |a 1054639476 | ||
020 | |a 9783110560961 |q (electronic book) | ||
020 | |a 3110560968 |q (electronic book) | ||
020 | |a 9783110560992 | ||
020 | |a 3110560992 | ||
020 | |z 3110560097 | ||
020 | |z 9783110560091 | ||
024 | 7 | |a 10.1515/9783110560961 |2 doi | |
035 | |a (OCoLC)1032679559 |z (OCoLC)1054639476 | ||
050 | 4 | |a QA331 |b .T365 2018 | |
072 | 7 | |a MAT040000 |2 bisacsh | |
082 | 7 | |a 515/.9 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Thomas, Derek K., |e author. | |
245 | 1 | 0 | |a Univalent Functions : |b a Primer / |c Derek K. Thomas, Nikola Tuneski, Allu Vasudevarao. |
264 | 1 | |a Berlin ; |a Boston : |b De Gruyter, |c [2018] | |
264 | 4 | |c ©2018 | |
300 | |a 1 online resource (265 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a De Gruyter Studies in Mathematics ; |v volume 69 | |
504 | |a Includes bibliographical references and index. | ||
546 | |a In English. | ||
588 | 0 | |a Online resource; title from PDF title page (publisher's Web site, viewed 23. Apr 2018). | |
520 | |a The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer. | ||
505 | 0 | 0 | |6 880-01 |t Univalent functions -- the elementary theory -- |t Definitions of major subclasses -- |t Fundamental lemmas -- |t Starlike and convex functions -- |t Starlike and convex functions of order [alpha] -- |t Strongly starlike and convex functions -- |t Alpha-convex functions -- |t Gamma-starlike functions -- |t Close-to-convex functions -- |t Bazilevic̆ functions -- |t B1([alpha]) Bazilevic̆ functions -- |t The class U([lambda]) -- |t Convolutions -- |t Meromorphic univalent functions -- |t Loewner theory -- |t Other topics -- |t Open problems -- |t Concluding remarks. |
650 | 0 | |a Univalent functions. |0 http://id.loc.gov/authorities/subjects/sh85141068 | |
650 | 4 | |a Funktionentheorie. | |
650 | 4 | |a Konvexe Funktion. | |
650 | 4 | |a Meromorphe Funktion. | |
650 | 4 | |a Schlichte Funktion. | |
650 | 6 | |a Fonctions univalentes. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Univalent functions |2 fast | |
700 | 1 | |a Tuneski, Nikola, |e author. | |
700 | 1 | |a Vasudevarao, Allu, |e author. | |
776 | 0 | |c EPUB |z 9783110560121 | |
776 | 0 | |c print |z 9783110560091 | |
830 | 0 | |a De Gruyter studies in mathematics ; |v 69. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1791418 |3 Volltext |
880 | 0 | 0 | |6 505-01/(S |t Frontmatter -- |t Preface -- |t Contents -- |t List of Symbols -- |t 1. Univalent Functions -- the Elementary Theory -- |t 2. Definitions of Major Subclasses -- |t 3. Fundamental Lemmas -- |t 4. Starlike and Convex Functions -- |t 5. Starlike and Convex Functions of Order α -- |t 6. Strongly Starlike and Convex Functions -- |t 7. Alpha-Convex Functions -- |t 8. Gamma-Starlike Functions -- |t 9. Close-to-Convex Functions -- |t 10. Bazilevič Functions -- |t 11. B1(α) Bazilevič Functions -- |t 12. The Class U(λ) -- |t 13. Convolutions -- |t 14. Meromorphic Univalent Functions -- |t 15. Loewner Theory -- |t 16. Other Topics -- |t 17. Open Problems -- |t Concluding Remarks -- |t Bibliography -- |t Index. |
938 | |a EBSCOhost |b EBSC |n 1791418 | ||
938 | |a YBP Library Services |b YANK |n 14517603 | ||
938 | |a De Gruyter |b DEGR |n 9783110560961 | ||
938 | |a YBP Library Services |b YANK |n 15453778 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5156979 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35152505 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33643294 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1032679559 |
---|---|
_version_ | 1816882420485455872 |
adam_text | |
any_adam_object | |
author | Thomas, Derek K. Tuneski, Nikola Vasudevarao, Allu |
author_facet | Thomas, Derek K. Tuneski, Nikola Vasudevarao, Allu |
author_role | aut aut aut |
author_sort | Thomas, Derek K. |
author_variant | d k t dk dkt n t nt a v av |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 .T365 2018 |
callnumber-search | QA331 .T365 2018 |
callnumber-sort | QA 3331 T365 42018 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Univalent functions -- the elementary theory -- Definitions of major subclasses -- Fundamental lemmas -- Starlike and convex functions -- Starlike and convex functions of order [alpha] -- Strongly starlike and convex functions -- Alpha-convex functions -- Gamma-starlike functions -- Close-to-convex functions -- Bazilevic̆ functions -- B1([alpha]) Bazilevic̆ functions -- The class U([lambda]) -- Convolutions -- Meromorphic univalent functions -- Loewner theory -- Other topics -- Open problems -- Concluding remarks. |
ctrlnum | (OCoLC)1032679559 |
dewey-full | 515/.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.9 |
dewey-search | 515/.9 |
dewey-sort | 3515 19 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04563cam a2200745Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1032679559</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">180423t20182018gw fob z001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DEGRU</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DEGRU</subfield><subfield code="d">YDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEGRU</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1054639476</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110560961</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110560968</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110560992</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110560992</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110560097</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110560091</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110560961</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1032679559</subfield><subfield code="z">(OCoLC)1054639476</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA331</subfield><subfield code="b">.T365 2018</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thomas, Derek K.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Univalent Functions :</subfield><subfield code="b">a Primer /</subfield><subfield code="c">Derek K. Thomas, Nikola Tuneski, Allu Vasudevarao.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (265 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics ;</subfield><subfield code="v">volume 69</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (publisher's Web site, viewed 23. Apr 2018).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="6">880-01</subfield><subfield code="t">Univalent functions -- the elementary theory --</subfield><subfield code="t">Definitions of major subclasses --</subfield><subfield code="t">Fundamental lemmas --</subfield><subfield code="t">Starlike and convex functions --</subfield><subfield code="t">Starlike and convex functions of order [alpha] --</subfield><subfield code="t">Strongly starlike and convex functions --</subfield><subfield code="t">Alpha-convex functions --</subfield><subfield code="t">Gamma-starlike functions --</subfield><subfield code="t">Close-to-convex functions --</subfield><subfield code="t">Bazilevic̆ functions --</subfield><subfield code="t">B1([alpha]) Bazilevic̆ functions --</subfield><subfield code="t">The class U([lambda]) --</subfield><subfield code="t">Convolutions --</subfield><subfield code="t">Meromorphic univalent functions --</subfield><subfield code="t">Loewner theory --</subfield><subfield code="t">Other topics --</subfield><subfield code="t">Open problems --</subfield><subfield code="t">Concluding remarks.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Univalent functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85141068</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Funktionentheorie.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Konvexe Funktion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meromorphe Funktion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schlichte Funktion.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions univalentes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Univalent functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuneski, Nikola,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vasudevarao, Allu,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">EPUB</subfield><subfield code="z">9783110560121</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">print</subfield><subfield code="z">9783110560091</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">69.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1791418</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2="0"><subfield code="6">505-01/(S</subfield><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Contents --</subfield><subfield code="t">List of Symbols --</subfield><subfield code="t">1. Univalent Functions -- the Elementary Theory --</subfield><subfield code="t">2. Definitions of Major Subclasses --</subfield><subfield code="t">3. Fundamental Lemmas --</subfield><subfield code="t">4. Starlike and Convex Functions --</subfield><subfield code="t">5. Starlike and Convex Functions of Order α --</subfield><subfield code="t">6. Strongly Starlike and Convex Functions --</subfield><subfield code="t">7. Alpha-Convex Functions --</subfield><subfield code="t">8. Gamma-Starlike Functions --</subfield><subfield code="t">9. Close-to-Convex Functions --</subfield><subfield code="t">10. Bazilevič Functions --</subfield><subfield code="t">11. B1(α) Bazilevič Functions --</subfield><subfield code="t">12. The Class U(λ) --</subfield><subfield code="t">13. Convolutions --</subfield><subfield code="t">14. Meromorphic Univalent Functions --</subfield><subfield code="t">15. Loewner Theory --</subfield><subfield code="t">16. Other Topics --</subfield><subfield code="t">17. Open Problems --</subfield><subfield code="t">Concluding Remarks --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1791418</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14517603</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110560961</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15453778</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5156979</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35152505</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33643294</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1032679559 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:28:19Z |
institution | BVB |
isbn | 9783110560961 3110560968 9783110560992 3110560992 |
language | English |
oclc_num | 1032679559 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (265 pages) |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter Studies in Mathematics ; |
spelling | Thomas, Derek K., author. Univalent Functions : a Primer / Derek K. Thomas, Nikola Tuneski, Allu Vasudevarao. Berlin ; Boston : De Gruyter, [2018] ©2018 1 online resource (265 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda De Gruyter Studies in Mathematics ; volume 69 Includes bibliographical references and index. In English. Online resource; title from PDF title page (publisher's Web site, viewed 23. Apr 2018). The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer. 880-01 Univalent functions -- the elementary theory -- Definitions of major subclasses -- Fundamental lemmas -- Starlike and convex functions -- Starlike and convex functions of order [alpha] -- Strongly starlike and convex functions -- Alpha-convex functions -- Gamma-starlike functions -- Close-to-convex functions -- Bazilevic̆ functions -- B1([alpha]) Bazilevic̆ functions -- The class U([lambda]) -- Convolutions -- Meromorphic univalent functions -- Loewner theory -- Other topics -- Open problems -- Concluding remarks. Univalent functions. http://id.loc.gov/authorities/subjects/sh85141068 Funktionentheorie. Konvexe Funktion. Meromorphe Funktion. Schlichte Funktion. Fonctions univalentes. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Univalent functions fast Tuneski, Nikola, author. Vasudevarao, Allu, author. EPUB 9783110560121 print 9783110560091 De Gruyter studies in mathematics ; 69. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1791418 Volltext 505-01/(S Frontmatter -- Preface -- Contents -- List of Symbols -- 1. Univalent Functions -- the Elementary Theory -- 2. Definitions of Major Subclasses -- 3. Fundamental Lemmas -- 4. Starlike and Convex Functions -- 5. Starlike and Convex Functions of Order α -- 6. Strongly Starlike and Convex Functions -- 7. Alpha-Convex Functions -- 8. Gamma-Starlike Functions -- 9. Close-to-Convex Functions -- 10. Bazilevič Functions -- 11. B1(α) Bazilevič Functions -- 12. The Class U(λ) -- 13. Convolutions -- 14. Meromorphic Univalent Functions -- 15. Loewner Theory -- 16. Other Topics -- 17. Open Problems -- Concluding Remarks -- Bibliography -- Index. |
spellingShingle | Thomas, Derek K. Tuneski, Nikola Vasudevarao, Allu Univalent Functions : a Primer / De Gruyter studies in mathematics ; Univalent functions -- the elementary theory -- Definitions of major subclasses -- Fundamental lemmas -- Starlike and convex functions -- Starlike and convex functions of order [alpha] -- Strongly starlike and convex functions -- Alpha-convex functions -- Gamma-starlike functions -- Close-to-convex functions -- Bazilevic̆ functions -- B1([alpha]) Bazilevic̆ functions -- The class U([lambda]) -- Convolutions -- Meromorphic univalent functions -- Loewner theory -- Other topics -- Open problems -- Concluding remarks. Univalent functions. http://id.loc.gov/authorities/subjects/sh85141068 Funktionentheorie. Konvexe Funktion. Meromorphe Funktion. Schlichte Funktion. Fonctions univalentes. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Univalent functions fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85141068 |
title | Univalent Functions : a Primer / |
title_alt | Univalent functions -- the elementary theory -- Definitions of major subclasses -- Fundamental lemmas -- Starlike and convex functions -- Starlike and convex functions of order [alpha] -- Strongly starlike and convex functions -- Alpha-convex functions -- Gamma-starlike functions -- Close-to-convex functions -- Bazilevic̆ functions -- B1([alpha]) Bazilevic̆ functions -- The class U([lambda]) -- Convolutions -- Meromorphic univalent functions -- Loewner theory -- Other topics -- Open problems -- Concluding remarks. |
title_auth | Univalent Functions : a Primer / |
title_exact_search | Univalent Functions : a Primer / |
title_full | Univalent Functions : a Primer / Derek K. Thomas, Nikola Tuneski, Allu Vasudevarao. |
title_fullStr | Univalent Functions : a Primer / Derek K. Thomas, Nikola Tuneski, Allu Vasudevarao. |
title_full_unstemmed | Univalent Functions : a Primer / Derek K. Thomas, Nikola Tuneski, Allu Vasudevarao. |
title_short | Univalent Functions : |
title_sort | univalent functions a primer |
title_sub | a Primer / |
topic | Univalent functions. http://id.loc.gov/authorities/subjects/sh85141068 Funktionentheorie. Konvexe Funktion. Meromorphe Funktion. Schlichte Funktion. Fonctions univalentes. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Univalent functions fast |
topic_facet | Univalent functions. Funktionentheorie. Konvexe Funktion. Meromorphe Funktion. Schlichte Funktion. Fonctions univalentes. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Univalent functions |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1791418 |
work_keys_str_mv | AT thomasderekk univalentfunctionsaprimer AT tuneskinikola univalentfunctionsaprimer AT vasudevaraoallu univalentfunctionsaprimer |