Connectionist representations of tonal music :: discovering musical patterns by interpreting artificial neural networks /
Intended to introduce readers to the use of artificial neural networks in the study of music, this volume contains numerous case studies and research findings that address problems related to identifying scales, keys, classifying musical chords, and learning jazz chord progressions. A detailed analy...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Edmonton, AB :
AU Press, Athabasca University,
[2018]
|
Schriftenreihe: | desLibris. Books collection.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Intended to introduce readers to the use of artificial neural networks in the study of music, this volume contains numerous case studies and research findings that address problems related to identifying scales, keys, classifying musical chords, and learning jazz chord progressions. A detailed analysis of networks is provided for each case study which together demonstrate that focusing on the internal structure of trained networks could yield important contributions to the field of music cognition. |
Beschreibung: | Issued in print and electronic formats. |
Beschreibung: | 1 online resource. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781771992213 1771992212 9781771992220 1771992220 1771992204 9781771992206 |
Zugangseinschränkungen: | EPUB: Access restricted to LAC onsite clients. |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1030840415 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr mn |||||||| | ||
008 | 191227t20182018abcag ob 001 0 eng | ||
010 | |a 2019394420 | ||
040 | |a DLC |b eng |e rda |e pn |c DLC |d N$T |d EBLCP |d OCLCF |d UWO |d YDX |d NLC |d MERUC |d IDB |d UAB |d CELBN |d CEF |d INT |d VT2 |d OTZ |d DKU |d AGLDB |d CNTRU |d UKAHL |d SFB |d OCLCO |d NLC |d CANEL |d OCLCQ |d DLC |d NLC |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d DEGRU | ||
015 | |a 20179078682 |2 can | ||
016 | |a (AMICUS)000045280213 | ||
016 | |z 20179078674 (print) | ||
019 | |a 1030498445 |a 1030602066 |a 1030818554 |a 1030869633 |a 1055356222 |a 1115124418 |a 1136276684 |a 1137812137 |a 1192344585 |a 1224923244 |a 1235831588 |a 1262690869 |a 1290608437 |a 1381714113 | ||
020 | |a 9781771992213 |q (PDF) | ||
020 | |a 1771992212 |q (PDF) | ||
020 | |a 9781771992220 |q (epub) | ||
020 | |a 1771992220 |q (epub) | ||
020 | |z 9781771992206 |q (pbk.) | ||
020 | |z 1771992204 |q (pbk.) | ||
020 | |z 9781771992237 | ||
020 | |z 1771992239 | ||
020 | |a 1771992204 | ||
020 | |a 9781771992206 | ||
024 | 3 | |a 9781771992206 | |
028 | 6 | 0 | |a 455547 |b CaOOCEL |q (Books Online) |
035 | |a (OCoLC)1030840415 |z (OCoLC)1030498445 |z (OCoLC)1030602066 |z (OCoLC)1030818554 |z (OCoLC)1030869633 |z (OCoLC)1055356222 |z (OCoLC)1115124418 |z (OCoLC)1136276684 |z (OCoLC)1137812137 |z (OCoLC)1192344585 |z (OCoLC)1224923244 |z (OCoLC)1235831588 |z (OCoLC)1262690869 |z (OCoLC)1290608437 |z (OCoLC)1381714113 | ||
037 | |a 5330831 |b Proquest Ebook Central | ||
042 | |a pcc |a lac | ||
050 | 0 | 0 | |a ML3830 |
055 | 0 | 0 | |a ML3830 |b .D39 2018 |
072 | 7 | |a MUS |x 041000 |2 bisacsh | |
082 | 7 | |a 781.1/1 |2 23 | |
084 | |a cci1icc |2 lacc | ||
084 | |a coll13 |2 lacc | ||
084 | |a af101fs |2 lacc | ||
049 | |a MAIN | ||
100 | 1 | |a Dawson, Michael Robert William, |d 1959- |e author. |0 http://id.loc.gov/authorities/names/no99074527 | |
245 | 1 | 0 | |a Connectionist representations of tonal music : |b discovering musical patterns by interpreting artificial neural networks / |c Michael R.W. Dawson. |
264 | 1 | |a Edmonton, AB : |b AU Press, Athabasca University, |c [2018] | |
264 | 4 | |c ©2018 | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a Issued in print and electronic formats. | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Title from Athabasca University Press website ; viewed on 2019-12-27. | |
505 | 0 | |a Cover; Half Title; Title; Copyright; Contents; List of Figures; List of Tables; Acknowledgements; Overture: Alien Music; Chapter 1: Science, Music, and Cognitivism; 1.1 Mechanical Philosophy, Mathematics, and Music; 1.2 Mechanical Philosophy and Tuning; 1.3 Psychophysics of Music; 1.4 From Rationalism to Classical Cognitive Science; 1.5 Musical Cognitivism; 1.6 Summary; Chapter 2: Artificial Neural Networks and Music; 2.1 Some Connectionist Basics; 2.2 Romanticism and Connectionism; 2.3 Against Connectionist Romanticism; 2.4 The Value Unit Architecture; 2.5 Summary and Implications. | |
505 | 8 | |a Chapter 3: The Scale Tonic Perceptron3.1 Pitch-Class Representations of Scales; 3.2 Identifying the Tonics of Musical Scales; 3.3 Interpreting the Scale Tonic Perceptron; 3.4 Summary and Implications; Chapter 4: The Scale Mode Network; 4.1 The Multilayer Perceptron; 4.2 Identifying Scale Mode; 4.3 Interpreting the Scale Mode Network; 4.4 Tritone Imbalance and Key Mode; 4.5 Further Network Analysis; 4.6 Summary and Implications; Chapter 5: Networks for Key-Finding; 5.1 Key-Finding; 5.2 Key-Finding with Multilayered Perceptrons; 5.3 Interpreting the Network; 5.4 Coarse Codes for Key-Finding. | |
505 | 8 | |a 5.5 Key-Finding with Perceptrons5.6 Network Interpretation; 5.7 Summary and Implications; Chapter 6: Classifying Chords with Strange Circles; 6.1 Four Types of Triads; 6.2 Triad Classification Networks; 6.3 Interval Cycles and Strange Circles; 6.4 Added Note Tetrachords; 6.5 Classifying Tetrachords; 6.6 Interpreting the Tetrachord Network; 6.7 Summary and Implications; Chapter 7: Classifying Extended Tetrachords; 7.1 Extended Tetrachords; 7.2 Classifying Extended Tetrachords; 7.3 Interpreting the Extended Tetrachord Network; 7.4 Bands and Coarse Coding; 7.5 Summary and Implications. | |
505 | 8 | |a Chapter 8: Jazz Progression Networks8.1 The ii-V-I Progression; 8.2 The Importance of Encodings; 8.3 Four Encodings of the ii-V-I Problem; 8.4 Complexity, Encoding, and Training Time; 8.5 Interpreting a Pitch-class Perceptron; 8.6 The Coltrane Changes; 8.7 Learning the Coltrane Changes; 8.8 Interpreting a Coltrane Perceptron; 8.9 Strange Circles and Coltrane Changes; 8.10 Summary and Implications; Chapter 9: Connectionist Reflections; 9.1 A Less Romantic Connectionism; 9.2 Synthetic Psychology of Music; 9.3 Musical Implications; 9.4 Implications for Musical Cognition; 9.5 Future Directions. | |
506 | 1 | |a EPUB: Access restricted to LAC onsite clients. |f Access restricted to LAC onsite clients. |2 star |5 CaOONL | |
520 | |a Intended to introduce readers to the use of artificial neural networks in the study of music, this volume contains numerous case studies and research findings that address problems related to identifying scales, keys, classifying musical chords, and learning jazz chord progressions. A detailed analysis of networks is provided for each case study which together demonstrate that focusing on the internal structure of trained networks could yield important contributions to the field of music cognition. | ||
650 | 0 | |a Music |x Psychological aspects |v Case studies. | |
650 | 0 | |a Music |x Physiological aspects |v Case studies. | |
650 | 0 | |a Music |x Philosophy and aesthetics |v Case studies. | |
650 | 0 | |a Neural networks (Computer science) |v Case studies. | |
650 | 6 | |a Musique |x Aspect psychologique |v Études de cas. | |
650 | 6 | |a Musique |x Aspect physiologique |v Études de cas. | |
650 | 6 | |a Musique |x Philosophie et esthétique |v Études de cas. | |
650 | 6 | |a Réseaux neuronaux (Informatique) |v Études de cas. | |
650 | 7 | |a MUSIC |x Instruction & Study |x Theory. |2 bisacsh | |
650 | 7 | |a Music |x Philosophy and aesthetics |2 fast | |
650 | 7 | |a Music |x Physiological aspects |2 fast | |
650 | 7 | |a Music |x Psychological aspects |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
653 | |a Music and technology | ||
653 | |a Music--Philosophy and aesthetics | ||
653 | |a Music--Physiological aspects | ||
653 | |a Music--Psychological aspects | ||
653 | |a Musical intervals and scales | ||
653 | |a Neural networks (Computer science) | ||
655 | 7 | |a Case studies |2 fast | |
758 | |i has work: |a Connectionist representations of tonal music (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGb8y9BctBK3jtdq4CqHhb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Dawson, Michael Robert William, 1959- |t Connectionist representations of tonal music. |d Edmonton, AB : AU Press, Athabasca University, [2018] |z 1771992204 |z 9781771992206 |w (OCoLC)991727278 |
830 | 0 | |a desLibris. |p Books collection. | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775041 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775041 |3 Volltext | |
938 | |a De Gruyter |b DEGR |n 9781771992213 | ||
938 | |a YBP Library Services |b YANK |n 15252649 | ||
938 | |a EBSCOhost |b EBSC |n 1775041 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL5330831 | ||
938 | |a Canadian Electronic Library |b CELB |n 455547 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35149966 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35149967 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1030840415 |
---|---|
_version_ | 1813903787617681408 |
adam_text | |
any_adam_object | |
author | Dawson, Michael Robert William, 1959- |
author_GND | http://id.loc.gov/authorities/names/no99074527 |
author_facet | Dawson, Michael Robert William, 1959- |
author_role | aut |
author_sort | Dawson, Michael Robert William, 1959- |
author_variant | m r w d mrw mrwd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | M - Music |
callnumber-label | ML3830 |
callnumber-raw | ML3830 |
callnumber-search | ML3830 |
callnumber-sort | ML 43830 |
callnumber-subject | ML - Literature on Music |
collection | ZDB-4-EBA |
contents | Cover; Half Title; Title; Copyright; Contents; List of Figures; List of Tables; Acknowledgements; Overture: Alien Music; Chapter 1: Science, Music, and Cognitivism; 1.1 Mechanical Philosophy, Mathematics, and Music; 1.2 Mechanical Philosophy and Tuning; 1.3 Psychophysics of Music; 1.4 From Rationalism to Classical Cognitive Science; 1.5 Musical Cognitivism; 1.6 Summary; Chapter 2: Artificial Neural Networks and Music; 2.1 Some Connectionist Basics; 2.2 Romanticism and Connectionism; 2.3 Against Connectionist Romanticism; 2.4 The Value Unit Architecture; 2.5 Summary and Implications. Chapter 3: The Scale Tonic Perceptron3.1 Pitch-Class Representations of Scales; 3.2 Identifying the Tonics of Musical Scales; 3.3 Interpreting the Scale Tonic Perceptron; 3.4 Summary and Implications; Chapter 4: The Scale Mode Network; 4.1 The Multilayer Perceptron; 4.2 Identifying Scale Mode; 4.3 Interpreting the Scale Mode Network; 4.4 Tritone Imbalance and Key Mode; 4.5 Further Network Analysis; 4.6 Summary and Implications; Chapter 5: Networks for Key-Finding; 5.1 Key-Finding; 5.2 Key-Finding with Multilayered Perceptrons; 5.3 Interpreting the Network; 5.4 Coarse Codes for Key-Finding. 5.5 Key-Finding with Perceptrons5.6 Network Interpretation; 5.7 Summary and Implications; Chapter 6: Classifying Chords with Strange Circles; 6.1 Four Types of Triads; 6.2 Triad Classification Networks; 6.3 Interval Cycles and Strange Circles; 6.4 Added Note Tetrachords; 6.5 Classifying Tetrachords; 6.6 Interpreting the Tetrachord Network; 6.7 Summary and Implications; Chapter 7: Classifying Extended Tetrachords; 7.1 Extended Tetrachords; 7.2 Classifying Extended Tetrachords; 7.3 Interpreting the Extended Tetrachord Network; 7.4 Bands and Coarse Coding; 7.5 Summary and Implications. Chapter 8: Jazz Progression Networks8.1 The ii-V-I Progression; 8.2 The Importance of Encodings; 8.3 Four Encodings of the ii-V-I Problem; 8.4 Complexity, Encoding, and Training Time; 8.5 Interpreting a Pitch-class Perceptron; 8.6 The Coltrane Changes; 8.7 Learning the Coltrane Changes; 8.8 Interpreting a Coltrane Perceptron; 8.9 Strange Circles and Coltrane Changes; 8.10 Summary and Implications; Chapter 9: Connectionist Reflections; 9.1 A Less Romantic Connectionism; 9.2 Synthetic Psychology of Music; 9.3 Musical Implications; 9.4 Implications for Musical Cognition; 9.5 Future Directions. |
ctrlnum | (OCoLC)1030840415 |
dewey-full | 781.1/1 |
dewey-hundreds | 700 - The arts |
dewey-ones | 781 - General principles and musical forms |
dewey-raw | 781.1/1 |
dewey-search | 781.1/1 |
dewey-sort | 3781.1 11 |
dewey-tens | 780 - Music |
discipline | Musikwissenschaft |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07637cam a2201033 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1030840415</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn ||||||||</controlfield><controlfield tag="008">191227t20182018abcag ob 001 0 eng </controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2019394420</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DLC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DLC</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UWO</subfield><subfield code="d">YDX</subfield><subfield code="d">NLC</subfield><subfield code="d">MERUC</subfield><subfield code="d">IDB</subfield><subfield code="d">UAB</subfield><subfield code="d">CELBN</subfield><subfield code="d">CEF</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OTZ</subfield><subfield code="d">DKU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">CNTRU</subfield><subfield code="d">UKAHL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NLC</subfield><subfield code="d">CANEL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DLC</subfield><subfield code="d">NLC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">DEGRU</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20179078682</subfield><subfield code="2">can</subfield></datafield><datafield tag="016" ind1=" " ind2=" "><subfield code="a">(AMICUS)000045280213</subfield></datafield><datafield tag="016" ind1=" " ind2=" "><subfield code="z">20179078674 (print)</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1030498445</subfield><subfield code="a">1030602066</subfield><subfield code="a">1030818554</subfield><subfield code="a">1030869633</subfield><subfield code="a">1055356222</subfield><subfield code="a">1115124418</subfield><subfield code="a">1136276684</subfield><subfield code="a">1137812137</subfield><subfield code="a">1192344585</subfield><subfield code="a">1224923244</subfield><subfield code="a">1235831588</subfield><subfield code="a">1262690869</subfield><subfield code="a">1290608437</subfield><subfield code="a">1381714113</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781771992213</subfield><subfield code="q">(PDF)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1771992212</subfield><subfield code="q">(PDF)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781771992220</subfield><subfield code="q">(epub)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1771992220</subfield><subfield code="q">(epub)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781771992206</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1771992204</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781771992237</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1771992239</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1771992204</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781771992206</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781771992206</subfield></datafield><datafield tag="028" ind1="6" ind2="0"><subfield code="a">455547</subfield><subfield code="b">CaOOCEL</subfield><subfield code="q">(Books Online)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1030840415</subfield><subfield code="z">(OCoLC)1030498445</subfield><subfield code="z">(OCoLC)1030602066</subfield><subfield code="z">(OCoLC)1030818554</subfield><subfield code="z">(OCoLC)1030869633</subfield><subfield code="z">(OCoLC)1055356222</subfield><subfield code="z">(OCoLC)1115124418</subfield><subfield code="z">(OCoLC)1136276684</subfield><subfield code="z">(OCoLC)1137812137</subfield><subfield code="z">(OCoLC)1192344585</subfield><subfield code="z">(OCoLC)1224923244</subfield><subfield code="z">(OCoLC)1235831588</subfield><subfield code="z">(OCoLC)1262690869</subfield><subfield code="z">(OCoLC)1290608437</subfield><subfield code="z">(OCoLC)1381714113</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">5330831</subfield><subfield code="b">Proquest Ebook Central</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">pcc</subfield><subfield code="a">lac</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">ML3830</subfield></datafield><datafield tag="055" ind1="0" ind2="0"><subfield code="a">ML3830</subfield><subfield code="b">.D39 2018</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MUS</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">781.1/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">cci1icc</subfield><subfield code="2">lacc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">coll13</subfield><subfield code="2">lacc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">af101fs</subfield><subfield code="2">lacc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dawson, Michael Robert William,</subfield><subfield code="d">1959-</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no99074527</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Connectionist representations of tonal music :</subfield><subfield code="b">discovering musical patterns by interpreting artificial neural networks /</subfield><subfield code="c">Michael R.W. Dawson.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edmonton, AB :</subfield><subfield code="b">AU Press, Athabasca University,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Issued in print and electronic formats.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Title from Athabasca University Press website ; viewed on 2019-12-27.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half Title; Title; Copyright; Contents; List of Figures; List of Tables; Acknowledgements; Overture: Alien Music; Chapter 1: Science, Music, and Cognitivism; 1.1 Mechanical Philosophy, Mathematics, and Music; 1.2 Mechanical Philosophy and Tuning; 1.3 Psychophysics of Music; 1.4 From Rationalism to Classical Cognitive Science; 1.5 Musical Cognitivism; 1.6 Summary; Chapter 2: Artificial Neural Networks and Music; 2.1 Some Connectionist Basics; 2.2 Romanticism and Connectionism; 2.3 Against Connectionist Romanticism; 2.4 The Value Unit Architecture; 2.5 Summary and Implications.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3: The Scale Tonic Perceptron3.1 Pitch-Class Representations of Scales; 3.2 Identifying the Tonics of Musical Scales; 3.3 Interpreting the Scale Tonic Perceptron; 3.4 Summary and Implications; Chapter 4: The Scale Mode Network; 4.1 The Multilayer Perceptron; 4.2 Identifying Scale Mode; 4.3 Interpreting the Scale Mode Network; 4.4 Tritone Imbalance and Key Mode; 4.5 Further Network Analysis; 4.6 Summary and Implications; Chapter 5: Networks for Key-Finding; 5.1 Key-Finding; 5.2 Key-Finding with Multilayered Perceptrons; 5.3 Interpreting the Network; 5.4 Coarse Codes for Key-Finding.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5 Key-Finding with Perceptrons5.6 Network Interpretation; 5.7 Summary and Implications; Chapter 6: Classifying Chords with Strange Circles; 6.1 Four Types of Triads; 6.2 Triad Classification Networks; 6.3 Interval Cycles and Strange Circles; 6.4 Added Note Tetrachords; 6.5 Classifying Tetrachords; 6.6 Interpreting the Tetrachord Network; 6.7 Summary and Implications; Chapter 7: Classifying Extended Tetrachords; 7.1 Extended Tetrachords; 7.2 Classifying Extended Tetrachords; 7.3 Interpreting the Extended Tetrachord Network; 7.4 Bands and Coarse Coding; 7.5 Summary and Implications.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 8: Jazz Progression Networks8.1 The ii-V-I Progression; 8.2 The Importance of Encodings; 8.3 Four Encodings of the ii-V-I Problem; 8.4 Complexity, Encoding, and Training Time; 8.5 Interpreting a Pitch-class Perceptron; 8.6 The Coltrane Changes; 8.7 Learning the Coltrane Changes; 8.8 Interpreting a Coltrane Perceptron; 8.9 Strange Circles and Coltrane Changes; 8.10 Summary and Implications; Chapter 9: Connectionist Reflections; 9.1 A Less Romantic Connectionism; 9.2 Synthetic Psychology of Music; 9.3 Musical Implications; 9.4 Implications for Musical Cognition; 9.5 Future Directions.</subfield></datafield><datafield tag="506" ind1="1" ind2=" "><subfield code="a">EPUB: Access restricted to LAC onsite clients.</subfield><subfield code="f">Access restricted to LAC onsite clients.</subfield><subfield code="2">star</subfield><subfield code="5">CaOONL</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Intended to introduce readers to the use of artificial neural networks in the study of music, this volume contains numerous case studies and research findings that address problems related to identifying scales, keys, classifying musical chords, and learning jazz chord progressions. A detailed analysis of networks is provided for each case study which together demonstrate that focusing on the internal structure of trained networks could yield important contributions to the field of music cognition.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Music</subfield><subfield code="x">Psychological aspects</subfield><subfield code="v">Case studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Music</subfield><subfield code="x">Physiological aspects</subfield><subfield code="v">Case studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Music</subfield><subfield code="x">Philosophy and aesthetics</subfield><subfield code="v">Case studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="v">Case studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Musique</subfield><subfield code="x">Aspect psychologique</subfield><subfield code="v">Études de cas.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Musique</subfield><subfield code="x">Aspect physiologique</subfield><subfield code="v">Études de cas.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Musique</subfield><subfield code="x">Philosophie et esthétique</subfield><subfield code="v">Études de cas.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux neuronaux (Informatique)</subfield><subfield code="v">Études de cas.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MUSIC</subfield><subfield code="x">Instruction & Study</subfield><subfield code="x">Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Music</subfield><subfield code="x">Philosophy and aesthetics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Music</subfield><subfield code="x">Physiological aspects</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Music</subfield><subfield code="x">Psychological aspects</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Music and technology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Music--Philosophy and aesthetics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Music--Physiological aspects</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Music--Psychological aspects</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Musical intervals and scales</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Case studies</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Connectionist representations of tonal music (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGb8y9BctBK3jtdq4CqHhb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dawson, Michael Robert William, 1959-</subfield><subfield code="t">Connectionist representations of tonal music.</subfield><subfield code="d">Edmonton, AB : AU Press, Athabasca University, [2018]</subfield><subfield code="z">1771992204</subfield><subfield code="z">9781771992206</subfield><subfield code="w">(OCoLC)991727278</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">desLibris.</subfield><subfield code="p">Books collection.</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775041</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775041</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9781771992213</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15252649</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1775041</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5330831</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Canadian Electronic Library</subfield><subfield code="b">CELB</subfield><subfield code="n">455547</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35149966</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35149967</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
genre | Case studies fast |
genre_facet | Case studies |
id | ZDB-4-EBA-on1030840415 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:24:14Z |
institution | BVB |
isbn | 9781771992213 1771992212 9781771992220 1771992220 1771992204 9781771992206 |
language | English |
lccn | 2019394420 |
oclc_num | 1030840415 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource. |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | AU Press, Athabasca University, |
record_format | marc |
series | desLibris. Books collection. |
spelling | Dawson, Michael Robert William, 1959- author. http://id.loc.gov/authorities/names/no99074527 Connectionist representations of tonal music : discovering musical patterns by interpreting artificial neural networks / Michael R.W. Dawson. Edmonton, AB : AU Press, Athabasca University, [2018] ©2018 1 online resource. text txt rdacontent computer c rdamedia online resource cr rdacarrier Issued in print and electronic formats. Includes bibliographical references and index. Title from Athabasca University Press website ; viewed on 2019-12-27. Cover; Half Title; Title; Copyright; Contents; List of Figures; List of Tables; Acknowledgements; Overture: Alien Music; Chapter 1: Science, Music, and Cognitivism; 1.1 Mechanical Philosophy, Mathematics, and Music; 1.2 Mechanical Philosophy and Tuning; 1.3 Psychophysics of Music; 1.4 From Rationalism to Classical Cognitive Science; 1.5 Musical Cognitivism; 1.6 Summary; Chapter 2: Artificial Neural Networks and Music; 2.1 Some Connectionist Basics; 2.2 Romanticism and Connectionism; 2.3 Against Connectionist Romanticism; 2.4 The Value Unit Architecture; 2.5 Summary and Implications. Chapter 3: The Scale Tonic Perceptron3.1 Pitch-Class Representations of Scales; 3.2 Identifying the Tonics of Musical Scales; 3.3 Interpreting the Scale Tonic Perceptron; 3.4 Summary and Implications; Chapter 4: The Scale Mode Network; 4.1 The Multilayer Perceptron; 4.2 Identifying Scale Mode; 4.3 Interpreting the Scale Mode Network; 4.4 Tritone Imbalance and Key Mode; 4.5 Further Network Analysis; 4.6 Summary and Implications; Chapter 5: Networks for Key-Finding; 5.1 Key-Finding; 5.2 Key-Finding with Multilayered Perceptrons; 5.3 Interpreting the Network; 5.4 Coarse Codes for Key-Finding. 5.5 Key-Finding with Perceptrons5.6 Network Interpretation; 5.7 Summary and Implications; Chapter 6: Classifying Chords with Strange Circles; 6.1 Four Types of Triads; 6.2 Triad Classification Networks; 6.3 Interval Cycles and Strange Circles; 6.4 Added Note Tetrachords; 6.5 Classifying Tetrachords; 6.6 Interpreting the Tetrachord Network; 6.7 Summary and Implications; Chapter 7: Classifying Extended Tetrachords; 7.1 Extended Tetrachords; 7.2 Classifying Extended Tetrachords; 7.3 Interpreting the Extended Tetrachord Network; 7.4 Bands and Coarse Coding; 7.5 Summary and Implications. Chapter 8: Jazz Progression Networks8.1 The ii-V-I Progression; 8.2 The Importance of Encodings; 8.3 Four Encodings of the ii-V-I Problem; 8.4 Complexity, Encoding, and Training Time; 8.5 Interpreting a Pitch-class Perceptron; 8.6 The Coltrane Changes; 8.7 Learning the Coltrane Changes; 8.8 Interpreting a Coltrane Perceptron; 8.9 Strange Circles and Coltrane Changes; 8.10 Summary and Implications; Chapter 9: Connectionist Reflections; 9.1 A Less Romantic Connectionism; 9.2 Synthetic Psychology of Music; 9.3 Musical Implications; 9.4 Implications for Musical Cognition; 9.5 Future Directions. EPUB: Access restricted to LAC onsite clients. Access restricted to LAC onsite clients. star CaOONL Intended to introduce readers to the use of artificial neural networks in the study of music, this volume contains numerous case studies and research findings that address problems related to identifying scales, keys, classifying musical chords, and learning jazz chord progressions. A detailed analysis of networks is provided for each case study which together demonstrate that focusing on the internal structure of trained networks could yield important contributions to the field of music cognition. Music Psychological aspects Case studies. Music Physiological aspects Case studies. Music Philosophy and aesthetics Case studies. Neural networks (Computer science) Case studies. Musique Aspect psychologique Études de cas. Musique Aspect physiologique Études de cas. Musique Philosophie et esthétique Études de cas. Réseaux neuronaux (Informatique) Études de cas. MUSIC Instruction & Study Theory. bisacsh Music Philosophy and aesthetics fast Music Physiological aspects fast Music Psychological aspects fast Neural networks (Computer science) fast Music and technology Music--Philosophy and aesthetics Music--Physiological aspects Music--Psychological aspects Musical intervals and scales Neural networks (Computer science) Case studies fast has work: Connectionist representations of tonal music (Text) https://id.oclc.org/worldcat/entity/E39PCGb8y9BctBK3jtdq4CqHhb https://id.oclc.org/worldcat/ontology/hasWork Print version: Dawson, Michael Robert William, 1959- Connectionist representations of tonal music. Edmonton, AB : AU Press, Athabasca University, [2018] 1771992204 9781771992206 (OCoLC)991727278 desLibris. Books collection. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775041 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775041 Volltext |
spellingShingle | Dawson, Michael Robert William, 1959- Connectionist representations of tonal music : discovering musical patterns by interpreting artificial neural networks / desLibris. Books collection. Cover; Half Title; Title; Copyright; Contents; List of Figures; List of Tables; Acknowledgements; Overture: Alien Music; Chapter 1: Science, Music, and Cognitivism; 1.1 Mechanical Philosophy, Mathematics, and Music; 1.2 Mechanical Philosophy and Tuning; 1.3 Psychophysics of Music; 1.4 From Rationalism to Classical Cognitive Science; 1.5 Musical Cognitivism; 1.6 Summary; Chapter 2: Artificial Neural Networks and Music; 2.1 Some Connectionist Basics; 2.2 Romanticism and Connectionism; 2.3 Against Connectionist Romanticism; 2.4 The Value Unit Architecture; 2.5 Summary and Implications. Chapter 3: The Scale Tonic Perceptron3.1 Pitch-Class Representations of Scales; 3.2 Identifying the Tonics of Musical Scales; 3.3 Interpreting the Scale Tonic Perceptron; 3.4 Summary and Implications; Chapter 4: The Scale Mode Network; 4.1 The Multilayer Perceptron; 4.2 Identifying Scale Mode; 4.3 Interpreting the Scale Mode Network; 4.4 Tritone Imbalance and Key Mode; 4.5 Further Network Analysis; 4.6 Summary and Implications; Chapter 5: Networks for Key-Finding; 5.1 Key-Finding; 5.2 Key-Finding with Multilayered Perceptrons; 5.3 Interpreting the Network; 5.4 Coarse Codes for Key-Finding. 5.5 Key-Finding with Perceptrons5.6 Network Interpretation; 5.7 Summary and Implications; Chapter 6: Classifying Chords with Strange Circles; 6.1 Four Types of Triads; 6.2 Triad Classification Networks; 6.3 Interval Cycles and Strange Circles; 6.4 Added Note Tetrachords; 6.5 Classifying Tetrachords; 6.6 Interpreting the Tetrachord Network; 6.7 Summary and Implications; Chapter 7: Classifying Extended Tetrachords; 7.1 Extended Tetrachords; 7.2 Classifying Extended Tetrachords; 7.3 Interpreting the Extended Tetrachord Network; 7.4 Bands and Coarse Coding; 7.5 Summary and Implications. Chapter 8: Jazz Progression Networks8.1 The ii-V-I Progression; 8.2 The Importance of Encodings; 8.3 Four Encodings of the ii-V-I Problem; 8.4 Complexity, Encoding, and Training Time; 8.5 Interpreting a Pitch-class Perceptron; 8.6 The Coltrane Changes; 8.7 Learning the Coltrane Changes; 8.8 Interpreting a Coltrane Perceptron; 8.9 Strange Circles and Coltrane Changes; 8.10 Summary and Implications; Chapter 9: Connectionist Reflections; 9.1 A Less Romantic Connectionism; 9.2 Synthetic Psychology of Music; 9.3 Musical Implications; 9.4 Implications for Musical Cognition; 9.5 Future Directions. Music Psychological aspects Case studies. Music Physiological aspects Case studies. Music Philosophy and aesthetics Case studies. Neural networks (Computer science) Case studies. Musique Aspect psychologique Études de cas. Musique Aspect physiologique Études de cas. Musique Philosophie et esthétique Études de cas. Réseaux neuronaux (Informatique) Études de cas. MUSIC Instruction & Study Theory. bisacsh Music Philosophy and aesthetics fast Music Physiological aspects fast Music Psychological aspects fast Neural networks (Computer science) fast |
title | Connectionist representations of tonal music : discovering musical patterns by interpreting artificial neural networks / |
title_auth | Connectionist representations of tonal music : discovering musical patterns by interpreting artificial neural networks / |
title_exact_search | Connectionist representations of tonal music : discovering musical patterns by interpreting artificial neural networks / |
title_full | Connectionist representations of tonal music : discovering musical patterns by interpreting artificial neural networks / Michael R.W. Dawson. |
title_fullStr | Connectionist representations of tonal music : discovering musical patterns by interpreting artificial neural networks / Michael R.W. Dawson. |
title_full_unstemmed | Connectionist representations of tonal music : discovering musical patterns by interpreting artificial neural networks / Michael R.W. Dawson. |
title_short | Connectionist representations of tonal music : |
title_sort | connectionist representations of tonal music discovering musical patterns by interpreting artificial neural networks |
title_sub | discovering musical patterns by interpreting artificial neural networks / |
topic | Music Psychological aspects Case studies. Music Physiological aspects Case studies. Music Philosophy and aesthetics Case studies. Neural networks (Computer science) Case studies. Musique Aspect psychologique Études de cas. Musique Aspect physiologique Études de cas. Musique Philosophie et esthétique Études de cas. Réseaux neuronaux (Informatique) Études de cas. MUSIC Instruction & Study Theory. bisacsh Music Philosophy and aesthetics fast Music Physiological aspects fast Music Psychological aspects fast Neural networks (Computer science) fast |
topic_facet | Music Psychological aspects Case studies. Music Physiological aspects Case studies. Music Philosophy and aesthetics Case studies. Neural networks (Computer science) Case studies. Musique Aspect psychologique Études de cas. Musique Aspect physiologique Études de cas. Musique Philosophie et esthétique Études de cas. Réseaux neuronaux (Informatique) Études de cas. MUSIC Instruction & Study Theory. Music Philosophy and aesthetics Music Physiological aspects Music Psychological aspects Neural networks (Computer science) Case studies |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775041 |
work_keys_str_mv | AT dawsonmichaelrobertwilliam connectionistrepresentationsoftonalmusicdiscoveringmusicalpatternsbyinterpretingartificialneuralnetworks |