TensorFlow Deep Learning Projects :: 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning.
This book is your guide to master deep learning with TensorFlow, with the help of 10 real-world projects. You will train high-performance models in TensorFlow to generate captions for images automatically, predict stocks' performance, create intelligent chatbots, perform large-scale text classi...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing,
2018.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is your guide to master deep learning with TensorFlow, with the help of 10 real-world projects. You will train high-performance models in TensorFlow to generate captions for images automatically, predict stocks' performance, create intelligent chatbots, perform large-scale text classification, develop recommendation systems, and more. |
Beschreibung: | Chapter 10: Video Games by Reinforcement Learning. |
Beschreibung: | 1 online resource (310 pages) |
ISBN: | 9781788398381 1788398386 1788398068 9781788398060 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1030816734 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 180407s2018 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d NLE |d MERUC |d OCLCQ |d IDB |d OCLCF |d OCLCO |d VT2 |d OCLCQ |d OCLCO |d TEFOD |d OCLCQ |d LVT |d C6I |d N$T |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d PSYSI |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 1032155208 | ||
020 | |a 9781788398381 |q (electronic bk.) | ||
020 | |a 1788398386 |q (electronic bk.) | ||
020 | |a 1788398068 | ||
020 | |a 9781788398060 | ||
024 | 3 | |a 9781788398060 | |
035 | |a (OCoLC)1030816734 |z (OCoLC)1032155208 | ||
037 | |a 9781788398381 |b Packt Publishing | ||
037 | |a 5C6E25D4-96C7-4B59-921E-ED69D2361321 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a Q335 |b .T467 2018eb | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
082 | 7 | |a 006.3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Grigorev, Alexey. | |
245 | 1 | 0 | |a TensorFlow Deep Learning Projects : |b 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. |
260 | |a Birmingham : |b Packt Publishing, |c 2018. | ||
300 | |a 1 online resource (310 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Recognizing traffic signs using Convnets; The dataset; The CNN network; Image preprocessing; Train the model and make predictions; Follow-up questions; Summary; Chapter 2: Annotating Images with Object Detection API; The Microsoft common objects in context; The TensorFlow object detection API; Grasping the basics of R-CNN, R-FCN and SSD models; Presenting our project plan; Setting up an environment suitable for the project; Protobuf compilation; Windows installation; Unix installation. | |
505 | 8 | |a Provisioning of the project codeSome simple applications; Real-time webcam detection; Acknowledgements; Summary; Chapter 3: Caption Generation for Images; What is caption generation?; Exploring image captioning datasets; Downloading the dataset; Converting words into embeddings; Image captioning approaches; Conditional random field; Recurrent neural network on convolution neural network; Caption ranking; Dense captioning; RNN captioning; Multimodal captioning; Attention-based captioning; Implementing a caption generation model; Summary; Chapter 4: Building GANs for Conditional Image Creation. | |
505 | 8 | |a Introducing GANsThe key is in the adversarial approach; A cambrian explosion; DCGANs; Conditional GANs; The project; Dataset class; CGAN class; Putting CGAN to work on some examples; MNIST; Zalando MNIST; EMNIST; Reusing the trained CGANs; Resorting to Amazon Web Service; Acknowledgements; Summary; Chapter 5: Stock Price Prediction with LSTM; Input datasets -- cosine and stock price; Format the dataset; Using regression to predict the future prices of a stock; Long short-term memory -- LSTM 101; Stock price prediction with LSTM; Possible follow -- up questions; Summary. | |
505 | 8 | |a Chapter 6: Create and Train Machine Translation SystemsA walkthrough of the architecture; Preprocessing of the corpora; Training the machine translator; Test and translate; Home assignments; Summary; Chapter 7: Train and Set up a Chatbot, Able to Discuss Like a Human; Introduction to the project; The input corpus; Creating the training dataset; Training the chatbot; Chatbox API; Home assignments; Summary; Chapter 8: Detecting Duplicate Quora Questions; Presenting the dataset; Starting with basic feature engineering; Creating fuzzy features; Resorting to TF-IDF and SVD features. | |
505 | 8 | |a Mapping with Word2vec embeddingsTesting machine learning models; Building a TensorFlow model; Processing before deep neural networks; Deep neural networks building blocks; Designing the learning architecture; Summary; Chapter 9: Building a TensorFlow Recommender System; Recommender systems; Matrix factorization for recommender systems; Dataset preparation and baseline; Matrix factorization; Implicit feedback datasets; SGD-based matrix factorization; Bayesian personalized ranking; RNN for recommender systems; Data preparation and baseline; RNN recommender system in TensorFlow; Summary. | |
500 | |a Chapter 10: Video Games by Reinforcement Learning. | ||
520 | |a This book is your guide to master deep learning with TensorFlow, with the help of 10 real-world projects. You will train high-performance models in TensorFlow to generate captions for images automatically, predict stocks' performance, create intelligent chatbots, perform large-scale text classification, develop recommendation systems, and more. | ||
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 6 | |a Intelligence artificielle. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a Natural language & machine translation. |2 bicssc | |
650 | 7 | |a Neural networks & fuzzy systems. |2 bicssc | |
650 | 7 | |a Artificial intelligence. |2 bicssc | |
650 | 7 | |a Computers |x Natural Language Processing. |2 bisacsh | |
650 | 7 | |a Computers |x Neural Networks. |2 bisacsh | |
650 | 7 | |a Computers |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
700 | 1 | |a Shanmugamani, rajalingappaa. | |
700 | 1 | |a Boschetti, Alberto. | |
700 | 1 | |a Massaron, Luca. | |
700 | 1 | |a Thakur, Abhishek. | |
758 | |i has work: |a TensorFlow deep learning projects (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGwR8yDX3gqX8r9wX9y6Dm |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Grigorev, Alexey. |t TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. |d Birmingham : Packt Publishing, ©2018 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775079 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH34195125 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL5332134 | ||
938 | |a EBSCOhost |b EBSC |n 1775079 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1030816734 |
---|---|
_version_ | 1816882417960484864 |
adam_text | |
any_adam_object | |
author | Grigorev, Alexey |
author2 | Shanmugamani, rajalingappaa Boschetti, Alberto Massaron, Luca Thakur, Abhishek |
author2_role | |
author2_variant | r s rs a b ab l m lm a t at |
author_facet | Grigorev, Alexey Shanmugamani, rajalingappaa Boschetti, Alberto Massaron, Luca Thakur, Abhishek |
author_role | |
author_sort | Grigorev, Alexey |
author_variant | a g ag |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q335 |
callnumber-raw | Q335 .T467 2018eb |
callnumber-search | Q335 .T467 2018eb |
callnumber-sort | Q 3335 T467 42018EB |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Recognizing traffic signs using Convnets; The dataset; The CNN network; Image preprocessing; Train the model and make predictions; Follow-up questions; Summary; Chapter 2: Annotating Images with Object Detection API; The Microsoft common objects in context; The TensorFlow object detection API; Grasping the basics of R-CNN, R-FCN and SSD models; Presenting our project plan; Setting up an environment suitable for the project; Protobuf compilation; Windows installation; Unix installation. Provisioning of the project codeSome simple applications; Real-time webcam detection; Acknowledgements; Summary; Chapter 3: Caption Generation for Images; What is caption generation?; Exploring image captioning datasets; Downloading the dataset; Converting words into embeddings; Image captioning approaches; Conditional random field; Recurrent neural network on convolution neural network; Caption ranking; Dense captioning; RNN captioning; Multimodal captioning; Attention-based captioning; Implementing a caption generation model; Summary; Chapter 4: Building GANs for Conditional Image Creation. Introducing GANsThe key is in the adversarial approach; A cambrian explosion; DCGANs; Conditional GANs; The project; Dataset class; CGAN class; Putting CGAN to work on some examples; MNIST; Zalando MNIST; EMNIST; Reusing the trained CGANs; Resorting to Amazon Web Service; Acknowledgements; Summary; Chapter 5: Stock Price Prediction with LSTM; Input datasets -- cosine and stock price; Format the dataset; Using regression to predict the future prices of a stock; Long short-term memory -- LSTM 101; Stock price prediction with LSTM; Possible follow -- up questions; Summary. Chapter 6: Create and Train Machine Translation SystemsA walkthrough of the architecture; Preprocessing of the corpora; Training the machine translator; Test and translate; Home assignments; Summary; Chapter 7: Train and Set up a Chatbot, Able to Discuss Like a Human; Introduction to the project; The input corpus; Creating the training dataset; Training the chatbot; Chatbox API; Home assignments; Summary; Chapter 8: Detecting Duplicate Quora Questions; Presenting the dataset; Starting with basic feature engineering; Creating fuzzy features; Resorting to TF-IDF and SVD features. Mapping with Word2vec embeddingsTesting machine learning models; Building a TensorFlow model; Processing before deep neural networks; Deep neural networks building blocks; Designing the learning architecture; Summary; Chapter 9: Building a TensorFlow Recommender System; Recommender systems; Matrix factorization for recommender systems; Dataset preparation and baseline; Matrix factorization; Implicit feedback datasets; SGD-based matrix factorization; Bayesian personalized ranking; RNN for recommender systems; Data preparation and baseline; RNN recommender system in TensorFlow; Summary. |
ctrlnum | (OCoLC)1030816734 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06330cam a2200721 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1030816734</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">180407s2018 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">NLE</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">C6I</subfield><subfield code="d">N$T</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PSYSI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1032155208</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788398381</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1788398386</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1788398068</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788398060</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781788398060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1030816734</subfield><subfield code="z">(OCoLC)1032155208</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781788398381</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">5C6E25D4-96C7-4B59-921E-ED69D2361321</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q335</subfield><subfield code="b">.T467 2018eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grigorev, Alexey.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TensorFlow Deep Learning Projects :</subfield><subfield code="b">10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (310 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Recognizing traffic signs using Convnets; The dataset; The CNN network; Image preprocessing; Train the model and make predictions; Follow-up questions; Summary; Chapter 2: Annotating Images with Object Detection API; The Microsoft common objects in context; The TensorFlow object detection API; Grasping the basics of R-CNN, R-FCN and SSD models; Presenting our project plan; Setting up an environment suitable for the project; Protobuf compilation; Windows installation; Unix installation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Provisioning of the project codeSome simple applications; Real-time webcam detection; Acknowledgements; Summary; Chapter 3: Caption Generation for Images; What is caption generation?; Exploring image captioning datasets; Downloading the dataset; Converting words into embeddings; Image captioning approaches; Conditional random field; Recurrent neural network on convolution neural network; Caption ranking; Dense captioning; RNN captioning; Multimodal captioning; Attention-based captioning; Implementing a caption generation model; Summary; Chapter 4: Building GANs for Conditional Image Creation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introducing GANsThe key is in the adversarial approach; A cambrian explosion; DCGANs; Conditional GANs; The project; Dataset class; CGAN class; Putting CGAN to work on some examples; MNIST; Zalando MNIST; EMNIST; Reusing the trained CGANs; Resorting to Amazon Web Service; Acknowledgements; Summary; Chapter 5: Stock Price Prediction with LSTM; Input datasets -- cosine and stock price; Format the dataset; Using regression to predict the future prices of a stock; Long short-term memory -- LSTM 101; Stock price prediction with LSTM; Possible follow -- up questions; Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 6: Create and Train Machine Translation SystemsA walkthrough of the architecture; Preprocessing of the corpora; Training the machine translator; Test and translate; Home assignments; Summary; Chapter 7: Train and Set up a Chatbot, Able to Discuss Like a Human; Introduction to the project; The input corpus; Creating the training dataset; Training the chatbot; Chatbox API; Home assignments; Summary; Chapter 8: Detecting Duplicate Quora Questions; Presenting the dataset; Starting with basic feature engineering; Creating fuzzy features; Resorting to TF-IDF and SVD features.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Mapping with Word2vec embeddingsTesting machine learning models; Building a TensorFlow model; Processing before deep neural networks; Deep neural networks building blocks; Designing the learning architecture; Summary; Chapter 9: Building a TensorFlow Recommender System; Recommender systems; Matrix factorization for recommender systems; Dataset preparation and baseline; Matrix factorization; Implicit feedback datasets; SGD-based matrix factorization; Bayesian personalized ranking; RNN for recommender systems; Data preparation and baseline; RNN recommender system in TensorFlow; Summary.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 10: Video Games by Reinforcement Learning.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is your guide to master deep learning with TensorFlow, with the help of 10 real-world projects. You will train high-performance models in TensorFlow to generate captions for images automatically, predict stocks' performance, create intelligent chatbots, perform large-scale text classification, develop recommendation systems, and more.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural language & machine translation.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks & fuzzy systems.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Natural Language Processing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Neural Networks.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shanmugamani, rajalingappaa.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boschetti, Alberto.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Massaron, Luca.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thakur, Abhishek.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">TensorFlow deep learning projects (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGwR8yDX3gqX8r9wX9y6Dm</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Grigorev, Alexey.</subfield><subfield code="t">TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning.</subfield><subfield code="d">Birmingham : Packt Publishing, ©2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775079</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34195125</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5332134</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1775079</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1030816734 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:28:17Z |
institution | BVB |
isbn | 9781788398381 1788398386 1788398068 9781788398060 |
language | English |
oclc_num | 1030816734 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (310 pages) |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Grigorev, Alexey. TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. Birmingham : Packt Publishing, 2018. 1 online resource (310 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Recognizing traffic signs using Convnets; The dataset; The CNN network; Image preprocessing; Train the model and make predictions; Follow-up questions; Summary; Chapter 2: Annotating Images with Object Detection API; The Microsoft common objects in context; The TensorFlow object detection API; Grasping the basics of R-CNN, R-FCN and SSD models; Presenting our project plan; Setting up an environment suitable for the project; Protobuf compilation; Windows installation; Unix installation. Provisioning of the project codeSome simple applications; Real-time webcam detection; Acknowledgements; Summary; Chapter 3: Caption Generation for Images; What is caption generation?; Exploring image captioning datasets; Downloading the dataset; Converting words into embeddings; Image captioning approaches; Conditional random field; Recurrent neural network on convolution neural network; Caption ranking; Dense captioning; RNN captioning; Multimodal captioning; Attention-based captioning; Implementing a caption generation model; Summary; Chapter 4: Building GANs for Conditional Image Creation. Introducing GANsThe key is in the adversarial approach; A cambrian explosion; DCGANs; Conditional GANs; The project; Dataset class; CGAN class; Putting CGAN to work on some examples; MNIST; Zalando MNIST; EMNIST; Reusing the trained CGANs; Resorting to Amazon Web Service; Acknowledgements; Summary; Chapter 5: Stock Price Prediction with LSTM; Input datasets -- cosine and stock price; Format the dataset; Using regression to predict the future prices of a stock; Long short-term memory -- LSTM 101; Stock price prediction with LSTM; Possible follow -- up questions; Summary. Chapter 6: Create and Train Machine Translation SystemsA walkthrough of the architecture; Preprocessing of the corpora; Training the machine translator; Test and translate; Home assignments; Summary; Chapter 7: Train and Set up a Chatbot, Able to Discuss Like a Human; Introduction to the project; The input corpus; Creating the training dataset; Training the chatbot; Chatbox API; Home assignments; Summary; Chapter 8: Detecting Duplicate Quora Questions; Presenting the dataset; Starting with basic feature engineering; Creating fuzzy features; Resorting to TF-IDF and SVD features. Mapping with Word2vec embeddingsTesting machine learning models; Building a TensorFlow model; Processing before deep neural networks; Deep neural networks building blocks; Designing the learning architecture; Summary; Chapter 9: Building a TensorFlow Recommender System; Recommender systems; Matrix factorization for recommender systems; Dataset preparation and baseline; Matrix factorization; Implicit feedback datasets; SGD-based matrix factorization; Bayesian personalized ranking; RNN for recommender systems; Data preparation and baseline; RNN recommender system in TensorFlow; Summary. Chapter 10: Video Games by Reinforcement Learning. This book is your guide to master deep learning with TensorFlow, with the help of 10 real-world projects. You will train high-performance models in TensorFlow to generate captions for images automatically, predict stocks' performance, create intelligent chatbots, perform large-scale text classification, develop recommendation systems, and more. Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Intelligence artificielle. artificial intelligence. aat Natural language & machine translation. bicssc Neural networks & fuzzy systems. bicssc Artificial intelligence. bicssc Computers Natural Language Processing. bisacsh Computers Neural Networks. bisacsh Computers Intelligence (AI) & Semantics. bisacsh COMPUTERS General. bisacsh Artificial intelligence fast Shanmugamani, rajalingappaa. Boschetti, Alberto. Massaron, Luca. Thakur, Abhishek. has work: TensorFlow deep learning projects (Text) https://id.oclc.org/worldcat/entity/E39PCGwR8yDX3gqX8r9wX9y6Dm https://id.oclc.org/worldcat/ontology/hasWork Print version: Grigorev, Alexey. TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. Birmingham : Packt Publishing, ©2018 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775079 Volltext |
spellingShingle | Grigorev, Alexey TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Recognizing traffic signs using Convnets; The dataset; The CNN network; Image preprocessing; Train the model and make predictions; Follow-up questions; Summary; Chapter 2: Annotating Images with Object Detection API; The Microsoft common objects in context; The TensorFlow object detection API; Grasping the basics of R-CNN, R-FCN and SSD models; Presenting our project plan; Setting up an environment suitable for the project; Protobuf compilation; Windows installation; Unix installation. Provisioning of the project codeSome simple applications; Real-time webcam detection; Acknowledgements; Summary; Chapter 3: Caption Generation for Images; What is caption generation?; Exploring image captioning datasets; Downloading the dataset; Converting words into embeddings; Image captioning approaches; Conditional random field; Recurrent neural network on convolution neural network; Caption ranking; Dense captioning; RNN captioning; Multimodal captioning; Attention-based captioning; Implementing a caption generation model; Summary; Chapter 4: Building GANs for Conditional Image Creation. Introducing GANsThe key is in the adversarial approach; A cambrian explosion; DCGANs; Conditional GANs; The project; Dataset class; CGAN class; Putting CGAN to work on some examples; MNIST; Zalando MNIST; EMNIST; Reusing the trained CGANs; Resorting to Amazon Web Service; Acknowledgements; Summary; Chapter 5: Stock Price Prediction with LSTM; Input datasets -- cosine and stock price; Format the dataset; Using regression to predict the future prices of a stock; Long short-term memory -- LSTM 101; Stock price prediction with LSTM; Possible follow -- up questions; Summary. Chapter 6: Create and Train Machine Translation SystemsA walkthrough of the architecture; Preprocessing of the corpora; Training the machine translator; Test and translate; Home assignments; Summary; Chapter 7: Train and Set up a Chatbot, Able to Discuss Like a Human; Introduction to the project; The input corpus; Creating the training dataset; Training the chatbot; Chatbox API; Home assignments; Summary; Chapter 8: Detecting Duplicate Quora Questions; Presenting the dataset; Starting with basic feature engineering; Creating fuzzy features; Resorting to TF-IDF and SVD features. Mapping with Word2vec embeddingsTesting machine learning models; Building a TensorFlow model; Processing before deep neural networks; Deep neural networks building blocks; Designing the learning architecture; Summary; Chapter 9: Building a TensorFlow Recommender System; Recommender systems; Matrix factorization for recommender systems; Dataset preparation and baseline; Matrix factorization; Implicit feedback datasets; SGD-based matrix factorization; Bayesian personalized ranking; RNN for recommender systems; Data preparation and baseline; RNN recommender system in TensorFlow; Summary. Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Intelligence artificielle. artificial intelligence. aat Natural language & machine translation. bicssc Neural networks & fuzzy systems. bicssc Artificial intelligence. bicssc Computers Natural Language Processing. bisacsh Computers Neural Networks. bisacsh Computers Intelligence (AI) & Semantics. bisacsh COMPUTERS General. bisacsh Artificial intelligence fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85008180 |
title | TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. |
title_auth | TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. |
title_exact_search | TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. |
title_full | TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. |
title_fullStr | TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. |
title_full_unstemmed | TensorFlow Deep Learning Projects : 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. |
title_short | TensorFlow Deep Learning Projects : |
title_sort | tensorflow deep learning projects 10 real world projects on computer vision machine translation chatbots and reinforcement learning |
title_sub | 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. |
topic | Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Intelligence artificielle. artificial intelligence. aat Natural language & machine translation. bicssc Neural networks & fuzzy systems. bicssc Artificial intelligence. bicssc Computers Natural Language Processing. bisacsh Computers Neural Networks. bisacsh Computers Intelligence (AI) & Semantics. bisacsh COMPUTERS General. bisacsh Artificial intelligence fast |
topic_facet | Artificial intelligence. Intelligence artificielle. artificial intelligence. Natural language & machine translation. Neural networks & fuzzy systems. Computers Natural Language Processing. Computers Neural Networks. Computers Intelligence (AI) & Semantics. COMPUTERS General. Artificial intelligence |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1775079 |
work_keys_str_mv | AT grigorevalexey tensorflowdeeplearningprojects10realworldprojectsoncomputervisionmachinetranslationchatbotsandreinforcementlearning AT shanmugamanirajalingappaa tensorflowdeeplearningprojects10realworldprojectsoncomputervisionmachinetranslationchatbotsandreinforcementlearning AT boschettialberto tensorflowdeeplearningprojects10realworldprojectsoncomputervisionmachinetranslationchatbotsandreinforcementlearning AT massaronluca tensorflowdeeplearningprojects10realworldprojectsoncomputervisionmachinetranslationchatbotsandreinforcementlearning AT thakurabhishek tensorflowdeeplearningprojects10realworldprojectsoncomputervisionmachinetranslationchatbotsandreinforcementlearning |