TensorFlow :: powerful predictive analytics with TensorFlow : rapid learning solution /
Predictive analytics discovers hidden patterns from structured and unstructured data for automated decision making in business intelligence. Predictive decisions are becoming a huge trend worldwide, catering to wide industry sectors by predicting which decisions are more likely to give maximum resul...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing,
2018.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Predictive analytics discovers hidden patterns from structured and unstructured data for automated decision making in business intelligence. Predictive decisions are becoming a huge trend worldwide, catering to wide industry sectors by predicting which decisions are more likely to give maximum results. TensorFlow, Google's brainchild, is ... |
Beschreibung: | "Predict valuable insights of your data with TensorFlow." |
Beschreibung: | 1 online resource (165 pages) |
ISBN: | 9781789130423 1789130425 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1029492666 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 180324s2018 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d MERUC |d OCLCQ |d IDB |d N$T |d OCLCF |d TEFOD |d OCLCQ |d OCLCO |d ZCU |d OCLCQ |d OCLCO |d NZAUC |d OCLCQ |d OCLCO | ||
020 | |a 9781789130423 |q (electronic bk.) | ||
020 | |a 1789130425 |q (electronic bk.) | ||
035 | |a (OCoLC)1029492666 | ||
037 | |a EF6F5717-6CF0-4926-9326-963E36270683 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a Z678.93.O65 | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
082 | 7 | |a 005.3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Karim, Md. Rezaul, |e author. | |
245 | 1 | 0 | |a TensorFlow : |b powerful predictive analytics with TensorFlow : rapid learning solution / |c Md. Rezaul Karim. |
260 | |a Birmingham : |b Packt Publishing, |c 2018. | ||
300 | |a 1 online resource (165 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a "Predict valuable insights of your data with TensorFlow." | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Intro; Title Page; Copyright; Credits; Table of Contents; Preface; Lesson 1: From Data to Decisions â#x80;#x93; Getting Started with TensorFlow; Taking Decisions Based on Data â#x80;#x93; Titanic Example; Data Value Chain for Making Decisions; From Disaster to Decision â#x80;#x93; Titanic Survival Example; General Overview of TensorFlow; Installing and Configuring TensorFlow; Installing TensorFlow on Linux; Installing Python and nVidia Driver; Installing NVIDIA CUDA; Installing NVIDIA cuDNN v5.1+; Installing the libcupti-dev Library; Installing TensorFlow; Installing TensorFlow from Source. | |
505 | 8 | |a Testing Your TensorFlow InstallationTensorFlow Computational Graph; TensorFlow Programming Model; Data Model in TensorFlow; Tensors; Rank; Shape; Data Type; Variables; Fetches; Feeds and Placeholders; TensorBoard; How Does TensorBoard Work?; Getting Started with TensorFlow â#x80;#x93; Linear Regression and Beyond; Source Code for the Linear Regression; Summary; Assessments; Lesson 2: Putting Data in Place â#x80;#x93; Supervised Learning for Predictive Analytics; Supervised Learning for Predictive Analytics; Linear Regression â#x80;#x93; Revisited; Problem Statement. | |
505 | 8 | |a Using Linear Regression for Movie Rating PredictionFrom Disaster to Decision â#x80;#x93; Titanic Example Revisited; An Exploratory Analysis of the Titanic Dataset; Feature Engineering; Logistic Regression for Survival Prediction; Using TensorFlow Contrib; Linear SVM for Survival Prediction; Ensemble Method for Survival Prediction â#x80;#x93; Random Forest; A Comparative Analysis; Summary; Assessments; Lesson 3: Clustering Your Data â#x80;#x93; Unsupervised Learning for Predictive Analytics; Unsupervised Learning and Clustering; Using K-means for Predictive Analytics; How K-means Works. | |
505 | 8 | |a Using K-means for Predicting NeighborhoodsPredictive Models for Clustering Audio Files; Using kNN for Predictive Analytics; Working Principles of kNN; Implementing a kNN-Based Predictive Model; Summary; Assessments; Lesson 4: Using Reinforcement Learning for Predictive Analytics; Reinforcement Learning; Reinforcement Learning in Predictive Analytics; Notation, Policy, and Utility in RL; Policy; Utility; Developing a Multiarmed Bandit's Predictive Model; Developing a Stock Price Predictive Model; Summary; Assessments; Appendix: Assessment Answers. | |
520 | |a Predictive analytics discovers hidden patterns from structured and unstructured data for automated decision making in business intelligence. Predictive decisions are becoming a huge trend worldwide, catering to wide industry sectors by predicting which decisions are more likely to give maximum results. TensorFlow, Google's brainchild, is ... | ||
650 | 0 | |a Open source software |x Library applications. |0 http://id.loc.gov/authorities/subjects/sh2010013631 | |
650 | 0 | |a Open source software. |0 http://id.loc.gov/authorities/subjects/sh99003437 | |
650 | 6 | |a Logiciels libres dans les bibliothèques. | |
650 | 6 | |a Logiciels libres. | |
650 | 7 | |a COMPUTER SCIENCE |x General. |2 bisacsh | |
650 | 7 | |a Open source software |2 fast | |
650 | 7 | |a Open source software |x Library applications |2 fast | |
776 | 0 | 8 | |i Print version: |a Karim, Md. Rezaul. |t TensorFlow: Powerful Predictive Analytics with TensorFlow. |d Birmingham : Packt Publishing, ©2018 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1733801 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL5322213 | ||
938 | |a EBSCOhost |b EBSC |n 1733801 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1029492666 |
---|---|
_version_ | 1816882417246404609 |
adam_text | |
any_adam_object | |
author | Karim, Md. Rezaul |
author_facet | Karim, Md. Rezaul |
author_role | aut |
author_sort | Karim, Md. Rezaul |
author_variant | m r k mr mrk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Z - Library Science |
callnumber-label | Z678 |
callnumber-raw | Z678.93.O65 |
callnumber-search | Z678.93.O65 |
callnumber-sort | Z 3678.93 O65 |
callnumber-subject | Z - Books and Writing |
collection | ZDB-4-EBA |
contents | Intro; Title Page; Copyright; Credits; Table of Contents; Preface; Lesson 1: From Data to Decisions â#x80;#x93; Getting Started with TensorFlow; Taking Decisions Based on Data â#x80;#x93; Titanic Example; Data Value Chain for Making Decisions; From Disaster to Decision â#x80;#x93; Titanic Survival Example; General Overview of TensorFlow; Installing and Configuring TensorFlow; Installing TensorFlow on Linux; Installing Python and nVidia Driver; Installing NVIDIA CUDA; Installing NVIDIA cuDNN v5.1+; Installing the libcupti-dev Library; Installing TensorFlow; Installing TensorFlow from Source. Testing Your TensorFlow InstallationTensorFlow Computational Graph; TensorFlow Programming Model; Data Model in TensorFlow; Tensors; Rank; Shape; Data Type; Variables; Fetches; Feeds and Placeholders; TensorBoard; How Does TensorBoard Work?; Getting Started with TensorFlow â#x80;#x93; Linear Regression and Beyond; Source Code for the Linear Regression; Summary; Assessments; Lesson 2: Putting Data in Place â#x80;#x93; Supervised Learning for Predictive Analytics; Supervised Learning for Predictive Analytics; Linear Regression â#x80;#x93; Revisited; Problem Statement. Using Linear Regression for Movie Rating PredictionFrom Disaster to Decision â#x80;#x93; Titanic Example Revisited; An Exploratory Analysis of the Titanic Dataset; Feature Engineering; Logistic Regression for Survival Prediction; Using TensorFlow Contrib; Linear SVM for Survival Prediction; Ensemble Method for Survival Prediction â#x80;#x93; Random Forest; A Comparative Analysis; Summary; Assessments; Lesson 3: Clustering Your Data â#x80;#x93; Unsupervised Learning for Predictive Analytics; Unsupervised Learning and Clustering; Using K-means for Predictive Analytics; How K-means Works. Using K-means for Predicting NeighborhoodsPredictive Models for Clustering Audio Files; Using kNN for Predictive Analytics; Working Principles of kNN; Implementing a kNN-Based Predictive Model; Summary; Assessments; Lesson 4: Using Reinforcement Learning for Predictive Analytics; Reinforcement Learning; Reinforcement Learning in Predictive Analytics; Notation, Policy, and Utility in RL; Policy; Utility; Developing a Multiarmed Bandit's Predictive Model; Developing a Stock Price Predictive Model; Summary; Assessments; Appendix: Assessment Answers. |
ctrlnum | (OCoLC)1029492666 |
dewey-full | 005.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.3 |
dewey-search | 005.3 |
dewey-sort | 15.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04762cam a2200517Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1029492666</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">180324s2018 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDB</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NZAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789130423</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789130425</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1029492666</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">EF6F5717-6CF0-4926-9326-963E36270683</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Z678.93.O65</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karim, Md. Rezaul,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TensorFlow :</subfield><subfield code="b">powerful predictive analytics with TensorFlow : rapid learning solution /</subfield><subfield code="c">Md. Rezaul Karim.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (165 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Predict valuable insights of your data with TensorFlow."</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro; Title Page; Copyright; Credits; Table of Contents; Preface; Lesson 1: From Data to Decisions â#x80;#x93; Getting Started with TensorFlow; Taking Decisions Based on Data â#x80;#x93; Titanic Example; Data Value Chain for Making Decisions; From Disaster to Decision â#x80;#x93; Titanic Survival Example; General Overview of TensorFlow; Installing and Configuring TensorFlow; Installing TensorFlow on Linux; Installing Python and nVidia Driver; Installing NVIDIA CUDA; Installing NVIDIA cuDNN v5.1+; Installing the libcupti-dev Library; Installing TensorFlow; Installing TensorFlow from Source.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Testing Your TensorFlow InstallationTensorFlow Computational Graph; TensorFlow Programming Model; Data Model in TensorFlow; Tensors; Rank; Shape; Data Type; Variables; Fetches; Feeds and Placeholders; TensorBoard; How Does TensorBoard Work?; Getting Started with TensorFlow â#x80;#x93; Linear Regression and Beyond; Source Code for the Linear Regression; Summary; Assessments; Lesson 2: Putting Data in Place â#x80;#x93; Supervised Learning for Predictive Analytics; Supervised Learning for Predictive Analytics; Linear Regression â#x80;#x93; Revisited; Problem Statement.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using Linear Regression for Movie Rating PredictionFrom Disaster to Decision â#x80;#x93; Titanic Example Revisited; An Exploratory Analysis of the Titanic Dataset; Feature Engineering; Logistic Regression for Survival Prediction; Using TensorFlow Contrib; Linear SVM for Survival Prediction; Ensemble Method for Survival Prediction â#x80;#x93; Random Forest; A Comparative Analysis; Summary; Assessments; Lesson 3: Clustering Your Data â#x80;#x93; Unsupervised Learning for Predictive Analytics; Unsupervised Learning and Clustering; Using K-means for Predictive Analytics; How K-means Works.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using K-means for Predicting NeighborhoodsPredictive Models for Clustering Audio Files; Using kNN for Predictive Analytics; Working Principles of kNN; Implementing a kNN-Based Predictive Model; Summary; Assessments; Lesson 4: Using Reinforcement Learning for Predictive Analytics; Reinforcement Learning; Reinforcement Learning in Predictive Analytics; Notation, Policy, and Utility in RL; Policy; Utility; Developing a Multiarmed Bandit's Predictive Model; Developing a Stock Price Predictive Model; Summary; Assessments; Appendix: Assessment Answers.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Predictive analytics discovers hidden patterns from structured and unstructured data for automated decision making in business intelligence. Predictive decisions are becoming a huge trend worldwide, catering to wide industry sectors by predicting which decisions are more likely to give maximum results. TensorFlow, Google's brainchild, is ...</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Open source software</subfield><subfield code="x">Library applications.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2010013631</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Open source software.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh99003437</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logiciels libres dans les bibliothèques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logiciels libres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTER SCIENCE</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Open source software</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Open source software</subfield><subfield code="x">Library applications</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Karim, Md. Rezaul.</subfield><subfield code="t">TensorFlow: Powerful Predictive Analytics with TensorFlow.</subfield><subfield code="d">Birmingham : Packt Publishing, ©2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1733801</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5322213</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1733801</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1029492666 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:28:16Z |
institution | BVB |
isbn | 9781789130423 1789130425 |
language | English |
oclc_num | 1029492666 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (165 pages) |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Karim, Md. Rezaul, author. TensorFlow : powerful predictive analytics with TensorFlow : rapid learning solution / Md. Rezaul Karim. Birmingham : Packt Publishing, 2018. 1 online resource (165 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier "Predict valuable insights of your data with TensorFlow." Print version record. Intro; Title Page; Copyright; Credits; Table of Contents; Preface; Lesson 1: From Data to Decisions â#x80;#x93; Getting Started with TensorFlow; Taking Decisions Based on Data â#x80;#x93; Titanic Example; Data Value Chain for Making Decisions; From Disaster to Decision â#x80;#x93; Titanic Survival Example; General Overview of TensorFlow; Installing and Configuring TensorFlow; Installing TensorFlow on Linux; Installing Python and nVidia Driver; Installing NVIDIA CUDA; Installing NVIDIA cuDNN v5.1+; Installing the libcupti-dev Library; Installing TensorFlow; Installing TensorFlow from Source. Testing Your TensorFlow InstallationTensorFlow Computational Graph; TensorFlow Programming Model; Data Model in TensorFlow; Tensors; Rank; Shape; Data Type; Variables; Fetches; Feeds and Placeholders; TensorBoard; How Does TensorBoard Work?; Getting Started with TensorFlow â#x80;#x93; Linear Regression and Beyond; Source Code for the Linear Regression; Summary; Assessments; Lesson 2: Putting Data in Place â#x80;#x93; Supervised Learning for Predictive Analytics; Supervised Learning for Predictive Analytics; Linear Regression â#x80;#x93; Revisited; Problem Statement. Using Linear Regression for Movie Rating PredictionFrom Disaster to Decision â#x80;#x93; Titanic Example Revisited; An Exploratory Analysis of the Titanic Dataset; Feature Engineering; Logistic Regression for Survival Prediction; Using TensorFlow Contrib; Linear SVM for Survival Prediction; Ensemble Method for Survival Prediction â#x80;#x93; Random Forest; A Comparative Analysis; Summary; Assessments; Lesson 3: Clustering Your Data â#x80;#x93; Unsupervised Learning for Predictive Analytics; Unsupervised Learning and Clustering; Using K-means for Predictive Analytics; How K-means Works. Using K-means for Predicting NeighborhoodsPredictive Models for Clustering Audio Files; Using kNN for Predictive Analytics; Working Principles of kNN; Implementing a kNN-Based Predictive Model; Summary; Assessments; Lesson 4: Using Reinforcement Learning for Predictive Analytics; Reinforcement Learning; Reinforcement Learning in Predictive Analytics; Notation, Policy, and Utility in RL; Policy; Utility; Developing a Multiarmed Bandit's Predictive Model; Developing a Stock Price Predictive Model; Summary; Assessments; Appendix: Assessment Answers. Predictive analytics discovers hidden patterns from structured and unstructured data for automated decision making in business intelligence. Predictive decisions are becoming a huge trend worldwide, catering to wide industry sectors by predicting which decisions are more likely to give maximum results. TensorFlow, Google's brainchild, is ... Open source software Library applications. http://id.loc.gov/authorities/subjects/sh2010013631 Open source software. http://id.loc.gov/authorities/subjects/sh99003437 Logiciels libres dans les bibliothèques. Logiciels libres. COMPUTER SCIENCE General. bisacsh Open source software fast Open source software Library applications fast Print version: Karim, Md. Rezaul. TensorFlow: Powerful Predictive Analytics with TensorFlow. Birmingham : Packt Publishing, ©2018 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1733801 Volltext |
spellingShingle | Karim, Md. Rezaul TensorFlow : powerful predictive analytics with TensorFlow : rapid learning solution / Intro; Title Page; Copyright; Credits; Table of Contents; Preface; Lesson 1: From Data to Decisions â#x80;#x93; Getting Started with TensorFlow; Taking Decisions Based on Data â#x80;#x93; Titanic Example; Data Value Chain for Making Decisions; From Disaster to Decision â#x80;#x93; Titanic Survival Example; General Overview of TensorFlow; Installing and Configuring TensorFlow; Installing TensorFlow on Linux; Installing Python and nVidia Driver; Installing NVIDIA CUDA; Installing NVIDIA cuDNN v5.1+; Installing the libcupti-dev Library; Installing TensorFlow; Installing TensorFlow from Source. Testing Your TensorFlow InstallationTensorFlow Computational Graph; TensorFlow Programming Model; Data Model in TensorFlow; Tensors; Rank; Shape; Data Type; Variables; Fetches; Feeds and Placeholders; TensorBoard; How Does TensorBoard Work?; Getting Started with TensorFlow â#x80;#x93; Linear Regression and Beyond; Source Code for the Linear Regression; Summary; Assessments; Lesson 2: Putting Data in Place â#x80;#x93; Supervised Learning for Predictive Analytics; Supervised Learning for Predictive Analytics; Linear Regression â#x80;#x93; Revisited; Problem Statement. Using Linear Regression for Movie Rating PredictionFrom Disaster to Decision â#x80;#x93; Titanic Example Revisited; An Exploratory Analysis of the Titanic Dataset; Feature Engineering; Logistic Regression for Survival Prediction; Using TensorFlow Contrib; Linear SVM for Survival Prediction; Ensemble Method for Survival Prediction â#x80;#x93; Random Forest; A Comparative Analysis; Summary; Assessments; Lesson 3: Clustering Your Data â#x80;#x93; Unsupervised Learning for Predictive Analytics; Unsupervised Learning and Clustering; Using K-means for Predictive Analytics; How K-means Works. Using K-means for Predicting NeighborhoodsPredictive Models for Clustering Audio Files; Using kNN for Predictive Analytics; Working Principles of kNN; Implementing a kNN-Based Predictive Model; Summary; Assessments; Lesson 4: Using Reinforcement Learning for Predictive Analytics; Reinforcement Learning; Reinforcement Learning in Predictive Analytics; Notation, Policy, and Utility in RL; Policy; Utility; Developing a Multiarmed Bandit's Predictive Model; Developing a Stock Price Predictive Model; Summary; Assessments; Appendix: Assessment Answers. Open source software Library applications. http://id.loc.gov/authorities/subjects/sh2010013631 Open source software. http://id.loc.gov/authorities/subjects/sh99003437 Logiciels libres dans les bibliothèques. Logiciels libres. COMPUTER SCIENCE General. bisacsh Open source software fast Open source software Library applications fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2010013631 http://id.loc.gov/authorities/subjects/sh99003437 |
title | TensorFlow : powerful predictive analytics with TensorFlow : rapid learning solution / |
title_auth | TensorFlow : powerful predictive analytics with TensorFlow : rapid learning solution / |
title_exact_search | TensorFlow : powerful predictive analytics with TensorFlow : rapid learning solution / |
title_full | TensorFlow : powerful predictive analytics with TensorFlow : rapid learning solution / Md. Rezaul Karim. |
title_fullStr | TensorFlow : powerful predictive analytics with TensorFlow : rapid learning solution / Md. Rezaul Karim. |
title_full_unstemmed | TensorFlow : powerful predictive analytics with TensorFlow : rapid learning solution / Md. Rezaul Karim. |
title_short | TensorFlow : |
title_sort | tensorflow powerful predictive analytics with tensorflow rapid learning solution |
title_sub | powerful predictive analytics with TensorFlow : rapid learning solution / |
topic | Open source software Library applications. http://id.loc.gov/authorities/subjects/sh2010013631 Open source software. http://id.loc.gov/authorities/subjects/sh99003437 Logiciels libres dans les bibliothèques. Logiciels libres. COMPUTER SCIENCE General. bisacsh Open source software fast Open source software Library applications fast |
topic_facet | Open source software Library applications. Open source software. Logiciels libres dans les bibliothèques. Logiciels libres. COMPUTER SCIENCE General. Open source software Open source software Library applications |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1733801 |
work_keys_str_mv | AT karimmdrezaul tensorflowpowerfulpredictiveanalyticswithtensorflowrapidlearningsolution |