Equipment health monitoring in complex systems /:
This timely resource provides a practical introduction to equipment health monitoring (EHM) to ensure the cost effective operation and control of critical systems in defense, industrial, and healthcare applications. This book highlights how to frame health monitoring design applications within a sys...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston :
Artech House,
[2018]
|
Schriftenreihe: | Artech House computing library.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This timely resource provides a practical introduction to equipment health monitoring (EHM) to ensure the cost effective operation and control of critical systems in defense, industrial, and healthcare applications. This book highlights how to frame health monitoring design applications within a system engineering process, to ensure an optimized EHM functional architecture and practical algorithm design.n nThis book clarifies the need for intelligent diagnostics and proposed health monitoring framework. Machine learning for health monitoring, including feature extraction, data visualization, model boundaries and performance is presented. Details about monitoring aircraft engines and model based monitoring systems are described in detail. Packed with two full chapters of case studies within industrial and healthcare settings, this book identifies key problems and provides insightful techniques for solving them. This resource provides a look into the future direction in health monitoring and emerging developments within sensing technology, big data analytics, and advanced computing capabilities. |
Beschreibung: | 1 online resource (ix, 208 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781630814977 1630814970 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1027678986 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 171213s2018 mau ob 001 0 eng d | ||
040 | |a STF |b eng |e rda |e pn |c STF |d OCLCQ |d EBLCP |d N$T |d YDX |d BNG |d CEF |d OCLCQ |d K6U |d IEEEE |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 1039938711 | ||
020 | |a 9781630814977 |q (electronic bk.) | ||
020 | |a 1630814970 |q (electronic bk.) | ||
020 | |z 1608079724 | ||
020 | |z 9781608079728 | ||
035 | |a (OCoLC)1027678986 |z (OCoLC)1039938711 | ||
050 | 4 | |a TA168 |b .K56 2018eb | |
072 | 7 | |a TEC |x 009000 |2 bisacsh | |
072 | 7 | |a TEC |x 035000 |2 bisacsh | |
082 | 7 | |a 620.001/171 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a King, Stephen P., |e author. |0 http://id.loc.gov/authorities/names/no2018003727 | |
245 | 1 | 0 | |a Equipment health monitoring in complex systems / |c Stephen P. King, Andrew R. Mills, Visakan Kadirkamanathan, David A. Clifton. |
264 | 1 | |a Boston : |b Artech House, |c [2018] | |
300 | |a 1 online resource (ix, 208 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Artech House computing library | |
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |g Machine generated contents note: |g 1. |t Introduction -- |g 1.1. |t Maintenance Strategies -- |g 1.2. |t Overview of Health Monitoring -- |g 1.3. |t Organization of Book Contents -- |t References -- |g 2. |t Systems Engineering for EHM -- |g 2.1. |t Introduction -- |g 2.2. |t Introduction to Systems Engineering -- |g 2.2.1. |t Systems Engineering Processes -- |g 2.2.2. |t Overview of Systems Engineering for EHM Design -- |g 2.2.3. |t Summary -- |g 2.3. |t EHM Design Intent -- |g 2.3.1. |t State the Problem: Failure Analysis and Management -- |g 2.3.2. |t Model the System: Approaches for Failure Modeling -- |g 2.3.3. |t Investigate Alternatives: Failure Models -- |g 2.3.4. |t Assess Performance: Case Study -- |g 2.4. |t EHM Functional Architecture Design -- |g 2.4.1. |t State the Problem: EHM Functional Architecture Design -- |g 2.4.2. |t Model the System: Function Modeling and Assessment -- |g 2.4.3. |t Investigate Alternatives: Tools for Functional Architecture Design -- |g 2.4.4. |t Assess Performance: Gas Turbine EHM Architecture Optimization -- |g 2.5. |t EHM Algorithm Design -- |g 2.5.1. |t State the Problem: Monitoring Algorithm Design Process -- |g 2.5.2. |t Model the System: Detailed Fault Mode Modeling -- |g 2.5.3. |t Investigate Alternatives: Development Approaches -- |g 2.5.4. |t Assess Performance: Algorithm Design Case Study -- |g 2.6. |t Conclusion -- |t References -- |g 3. |t The Need for Intelligent Diagnostics -- |g 3.1. |t Introduction -- |g 3.2. |t The Need for Intelligent Diagnostics -- |g 3.3. |t Overview of Machine Learning Capability -- |g 3.4. |t Proposed Health Monitoring Framework -- |g 3.4.1. |t Feature Extraction -- |g 3.4.2. |t Data Visualization -- |g 3.4.3. |t Model Construction -- |g 3.4.4. |t Definition of Model Boundaries -- |g 3.4.5. |t Verification of Model Performance -- |t References -- |g 4. |t Machine Learning for Health Monitoring -- |g 4.1. |t Introduction -- |g 4.2. |t Feature Extraction -- |g 4.3. |t Data Visualization -- |g 4.3.1. |t Principal Component Analysis -- |g 4.3.2. |t Kohonen Network -- |g 4.3.3. |t Sammon's Mapping -- |g 4.3.4. |t NeuroScale -- |g 4.4. |t Model Construction -- |g 4.5. |t Definition of Model Boundaries -- |g 4.6. |t Verification of Model Performance -- |g 4.6.1. |t Verification of Regression Models -- |g 4.6.2. |t Verification of Classification Models -- |t References -- |g 5. |t Case Studies of Medical Monitoring Systems -- |g 5.1. |t Introduction -- |g 5.2. |t Kernel Density Estimates -- |g 5.3. |t Extreme Value Statistics -- |g 5.3.1. |t Type-I EVT -- |g 5.3.2. |t Type-II EVT -- |g 5.3.3. |t Gaussian Processes -- |g 5.4. |t Advanced Methods -- |t References -- |g 6. |t Monitoring Aircraft Engines -- |g 6.1. |t Introduction -- |g 6.1.1. |t Aircraft Engines -- |g 6.1.2. |t Model-Based Monitoring Systems -- |g 6.2. |t Case Study -- |g 6.2.1. |t Aircraft Engine Air System Event Detection -- |g 6.2.2. |t Data and the Detection Problem -- |g 6.3. |t Kalman Filter-Based Detection -- |g 6.3.1. |t Kalman Filter Estimation -- |g 6.3.2. |t Kalman Filter Parameter Design -- |g 6.3.3. |t Change Detection and Threshold Selection -- |g 6.4. |t Multiple Model-Based Detection -- |g 6.4.1. |t Hypothesis Testing and Change Detection -- |g 6.4.2. |t Multiple Model Change Detection -- |g 6.5. |t Change Detection with Additional Signals -- |g 6.6. |t Summary -- |t References -- |g 7. |t Future Directions in Health Monitoring -- |g 7.1. |t Introduction -- |g 7.2. |t Emerging Developments Within Sensing Technology -- |g 7.2.1. |t Low-Cost and Ubiquitous Sensing -- |g 7.2.2. |t Ultra-Minaturization -- Nano and Quantum -- |g 7.2.3. |t Bio-Inspired -- |g 7.2.4. |t Summary -- |g 7.3. |t Sensor Informatics for Medical Monitoring -- |g 7.3.1. |t Deep Learning for Patient Monitoring -- |g 7.4. |t Big Data Analytics and Health Monitoring -- |g 7.5. |t Growth in Use of Digital Storage -- |g 7.5.1. |t Example Health Monitoring Application Utilizing Grid Capability -- |g 7.5.2. |t Cloud Alternatives -- |t References. |
520 | 3 | |a This timely resource provides a practical introduction to equipment health monitoring (EHM) to ensure the cost effective operation and control of critical systems in defense, industrial, and healthcare applications. This book highlights how to frame health monitoring design applications within a system engineering process, to ensure an optimized EHM functional architecture and practical algorithm design.n nThis book clarifies the need for intelligent diagnostics and proposed health monitoring framework. Machine learning for health monitoring, including feature extraction, data visualization, model boundaries and performance is presented. Details about monitoring aircraft engines and model based monitoring systems are described in detail. Packed with two full chapters of case studies within industrial and healthcare settings, this book identifies key problems and provides insightful techniques for solving them. This resource provides a look into the future direction in health monitoring and emerging developments within sensing technology, big data analytics, and advanced computing capabilities. |c Publisher abstract. | |
650 | 0 | |a Systems engineering. |0 http://id.loc.gov/authorities/subjects/sh85131750 | |
650 | 0 | |a Structural health monitoring. |0 http://id.loc.gov/authorities/subjects/sh2009006088 | |
650 | 6 | |a Ingénierie des systèmes. | |
650 | 6 | |a Surveillance de l'état des structures. | |
650 | 7 | |a systems engineering. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Engineering (General) |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Reference. |2 bisacsh | |
650 | 7 | |a Structural health monitoring |2 fast | |
650 | 7 | |a Systems engineering |2 fast | |
700 | 1 | |a Mills, Andrew R., |e author. |0 http://id.loc.gov/authorities/names/no2018003714 | |
700 | 1 | |a Kadirkamanathan, Visakan, |d 1962- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJbtqwHdkXw6cgW8xKFYfq |0 http://id.loc.gov/authorities/names/n2001001135 | |
700 | 1 | |a Clifton, David A., |e author. |0 http://id.loc.gov/authorities/names/nb2017003609 | |
758 | |i has work: |a Equipment health monitoring in complex systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFtH3cHHTpPtCDyBP47wP3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a King, Stephen P. |t Equipment health monitoring in complex systems. |d Boston : Artech House, [2018] |z 1608079724 |w (DLC) 2017285746 |w (OCoLC)1013764660 |
830 | 0 | |a Artech House computing library. |0 http://id.loc.gov/authorities/names/n2004051466 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1825914 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL5430714 | ||
938 | |a EBSCOhost |b EBSC |n 1825914 | ||
938 | |a IEEE |b IEEE |n 9100204 | ||
938 | |a YBP Library Services |b YANK |n 15503375 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1027678986 |
---|---|
_version_ | 1816882414963654656 |
adam_text | |
any_adam_object | |
author | King, Stephen P. Mills, Andrew R. Kadirkamanathan, Visakan, 1962- Clifton, David A. |
author_GND | http://id.loc.gov/authorities/names/no2018003727 http://id.loc.gov/authorities/names/no2018003714 http://id.loc.gov/authorities/names/n2001001135 http://id.loc.gov/authorities/names/nb2017003609 |
author_facet | King, Stephen P. Mills, Andrew R. Kadirkamanathan, Visakan, 1962- Clifton, David A. |
author_role | aut aut aut aut |
author_sort | King, Stephen P. |
author_variant | s p k sp spk a r m ar arm v k vk d a c da dac |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA168 |
callnumber-raw | TA168 .K56 2018eb |
callnumber-search | TA168 .K56 2018eb |
callnumber-sort | TA 3168 K56 42018EB |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | Introduction -- Maintenance Strategies -- Overview of Health Monitoring -- Organization of Book Contents -- References -- Systems Engineering for EHM -- Introduction to Systems Engineering -- Systems Engineering Processes -- Overview of Systems Engineering for EHM Design -- Summary -- EHM Design Intent -- State the Problem: Failure Analysis and Management -- Model the System: Approaches for Failure Modeling -- Investigate Alternatives: Failure Models -- Assess Performance: Case Study -- EHM Functional Architecture Design -- State the Problem: EHM Functional Architecture Design -- Model the System: Function Modeling and Assessment -- Investigate Alternatives: Tools for Functional Architecture Design -- Assess Performance: Gas Turbine EHM Architecture Optimization -- EHM Algorithm Design -- State the Problem: Monitoring Algorithm Design Process -- Model the System: Detailed Fault Mode Modeling -- Investigate Alternatives: Development Approaches -- Assess Performance: Algorithm Design Case Study -- Conclusion -- The Need for Intelligent Diagnostics -- Overview of Machine Learning Capability -- Proposed Health Monitoring Framework -- Feature Extraction -- Data Visualization -- Model Construction -- Definition of Model Boundaries -- Verification of Model Performance -- Machine Learning for Health Monitoring -- Principal Component Analysis -- Kohonen Network -- Sammon's Mapping -- NeuroScale -- Verification of Regression Models -- Verification of Classification Models -- Case Studies of Medical Monitoring Systems -- Kernel Density Estimates -- Extreme Value Statistics -- Type-I EVT -- Type-II EVT -- Gaussian Processes -- Advanced Methods -- Monitoring Aircraft Engines -- Aircraft Engines -- Model-Based Monitoring Systems -- Case Study -- Aircraft Engine Air System Event Detection -- Data and the Detection Problem -- Kalman Filter-Based Detection -- Kalman Filter Estimation -- Kalman Filter Parameter Design -- Change Detection and Threshold Selection -- Multiple Model-Based Detection -- Hypothesis Testing and Change Detection -- Multiple Model Change Detection -- Change Detection with Additional Signals -- Future Directions in Health Monitoring -- Emerging Developments Within Sensing Technology -- Low-Cost and Ubiquitous Sensing -- Ultra-Minaturization -- Nano and Quantum -- Bio-Inspired -- Sensor Informatics for Medical Monitoring -- Deep Learning for Patient Monitoring -- Big Data Analytics and Health Monitoring -- Growth in Use of Digital Storage -- Example Health Monitoring Application Utilizing Grid Capability -- Cloud Alternatives -- References. |
ctrlnum | (OCoLC)1027678986 |
dewey-full | 620.001/171 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.001/171 |
dewey-search | 620.001/171 |
dewey-sort | 3620.001 3171 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07876cam a2200637 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1027678986</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">171213s2018 mau ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">STF</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">BNG</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1039938711</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781630814977</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1630814970</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1608079724</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781608079728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1027678986</subfield><subfield code="z">(OCoLC)1039938711</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA168</subfield><subfield code="b">.K56 2018eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">035000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">620.001/171</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">King, Stephen P.,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2018003727</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equipment health monitoring in complex systems /</subfield><subfield code="c">Stephen P. King, Andrew R. Mills, Visakan Kadirkamanathan, David A. Clifton.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston :</subfield><subfield code="b">Artech House,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 208 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Artech House computing library</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Machine generated contents note:</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">1.1.</subfield><subfield code="t">Maintenance Strategies --</subfield><subfield code="g">1.2.</subfield><subfield code="t">Overview of Health Monitoring --</subfield><subfield code="g">1.3.</subfield><subfield code="t">Organization of Book Contents --</subfield><subfield code="t">References --</subfield><subfield code="g">2.</subfield><subfield code="t">Systems Engineering for EHM --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Introduction to Systems Engineering --</subfield><subfield code="g">2.2.1.</subfield><subfield code="t">Systems Engineering Processes --</subfield><subfield code="g">2.2.2.</subfield><subfield code="t">Overview of Systems Engineering for EHM Design --</subfield><subfield code="g">2.2.3.</subfield><subfield code="t">Summary --</subfield><subfield code="g">2.3.</subfield><subfield code="t">EHM Design Intent --</subfield><subfield code="g">2.3.1.</subfield><subfield code="t">State the Problem: Failure Analysis and Management --</subfield><subfield code="g">2.3.2.</subfield><subfield code="t">Model the System: Approaches for Failure Modeling --</subfield><subfield code="g">2.3.3.</subfield><subfield code="t">Investigate Alternatives: Failure Models --</subfield><subfield code="g">2.3.4.</subfield><subfield code="t">Assess Performance: Case Study --</subfield><subfield code="g">2.4.</subfield><subfield code="t">EHM Functional Architecture Design --</subfield><subfield code="g">2.4.1.</subfield><subfield code="t">State the Problem: EHM Functional Architecture Design --</subfield><subfield code="g">2.4.2.</subfield><subfield code="t">Model the System: Function Modeling and Assessment --</subfield><subfield code="g">2.4.3.</subfield><subfield code="t">Investigate Alternatives: Tools for Functional Architecture Design --</subfield><subfield code="g">2.4.4.</subfield><subfield code="t">Assess Performance: Gas Turbine EHM Architecture Optimization --</subfield><subfield code="g">2.5.</subfield><subfield code="t">EHM Algorithm Design --</subfield><subfield code="g">2.5.1.</subfield><subfield code="t">State the Problem: Monitoring Algorithm Design Process --</subfield><subfield code="g">2.5.2.</subfield><subfield code="t">Model the System: Detailed Fault Mode Modeling --</subfield><subfield code="g">2.5.3.</subfield><subfield code="t">Investigate Alternatives: Development Approaches --</subfield><subfield code="g">2.5.4.</subfield><subfield code="t">Assess Performance: Algorithm Design Case Study --</subfield><subfield code="g">2.6.</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">References --</subfield><subfield code="g">3.</subfield><subfield code="t">The Need for Intelligent Diagnostics --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">3.2.</subfield><subfield code="t">The Need for Intelligent Diagnostics --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Overview of Machine Learning Capability --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Proposed Health Monitoring Framework --</subfield><subfield code="g">3.4.1.</subfield><subfield code="t">Feature Extraction --</subfield><subfield code="g">3.4.2.</subfield><subfield code="t">Data Visualization --</subfield><subfield code="g">3.4.3.</subfield><subfield code="t">Model Construction --</subfield><subfield code="g">3.4.4.</subfield><subfield code="t">Definition of Model Boundaries --</subfield><subfield code="g">3.4.5.</subfield><subfield code="t">Verification of Model Performance --</subfield><subfield code="t">References --</subfield><subfield code="g">4.</subfield><subfield code="t">Machine Learning for Health Monitoring --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Feature Extraction --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Data Visualization --</subfield><subfield code="g">4.3.1.</subfield><subfield code="t">Principal Component Analysis --</subfield><subfield code="g">4.3.2.</subfield><subfield code="t">Kohonen Network --</subfield><subfield code="g">4.3.3.</subfield><subfield code="t">Sammon's Mapping --</subfield><subfield code="g">4.3.4.</subfield><subfield code="t">NeuroScale --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Model Construction --</subfield><subfield code="g">4.5.</subfield><subfield code="t">Definition of Model Boundaries --</subfield><subfield code="g">4.6.</subfield><subfield code="t">Verification of Model Performance --</subfield><subfield code="g">4.6.1.</subfield><subfield code="t">Verification of Regression Models --</subfield><subfield code="g">4.6.2.</subfield><subfield code="t">Verification of Classification Models --</subfield><subfield code="t">References --</subfield><subfield code="g">5.</subfield><subfield code="t">Case Studies of Medical Monitoring Systems --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Kernel Density Estimates --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Extreme Value Statistics --</subfield><subfield code="g">5.3.1.</subfield><subfield code="t">Type-I EVT --</subfield><subfield code="g">5.3.2.</subfield><subfield code="t">Type-II EVT --</subfield><subfield code="g">5.3.3.</subfield><subfield code="t">Gaussian Processes --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Advanced Methods --</subfield><subfield code="t">References --</subfield><subfield code="g">6.</subfield><subfield code="t">Monitoring Aircraft Engines --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">6.1.1.</subfield><subfield code="t">Aircraft Engines --</subfield><subfield code="g">6.1.2.</subfield><subfield code="t">Model-Based Monitoring Systems --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Case Study --</subfield><subfield code="g">6.2.1.</subfield><subfield code="t">Aircraft Engine Air System Event Detection --</subfield><subfield code="g">6.2.2.</subfield><subfield code="t">Data and the Detection Problem --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Kalman Filter-Based Detection --</subfield><subfield code="g">6.3.1.</subfield><subfield code="t">Kalman Filter Estimation --</subfield><subfield code="g">6.3.2.</subfield><subfield code="t">Kalman Filter Parameter Design --</subfield><subfield code="g">6.3.3.</subfield><subfield code="t">Change Detection and Threshold Selection --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Multiple Model-Based Detection --</subfield><subfield code="g">6.4.1.</subfield><subfield code="t">Hypothesis Testing and Change Detection --</subfield><subfield code="g">6.4.2.</subfield><subfield code="t">Multiple Model Change Detection --</subfield><subfield code="g">6.5.</subfield><subfield code="t">Change Detection with Additional Signals --</subfield><subfield code="g">6.6.</subfield><subfield code="t">Summary --</subfield><subfield code="t">References --</subfield><subfield code="g">7.</subfield><subfield code="t">Future Directions in Health Monitoring --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Emerging Developments Within Sensing Technology --</subfield><subfield code="g">7.2.1.</subfield><subfield code="t">Low-Cost and Ubiquitous Sensing --</subfield><subfield code="g">7.2.2.</subfield><subfield code="t">Ultra-Minaturization -- Nano and Quantum --</subfield><subfield code="g">7.2.3.</subfield><subfield code="t">Bio-Inspired --</subfield><subfield code="g">7.2.4.</subfield><subfield code="t">Summary --</subfield><subfield code="g">7.3.</subfield><subfield code="t">Sensor Informatics for Medical Monitoring --</subfield><subfield code="g">7.3.1.</subfield><subfield code="t">Deep Learning for Patient Monitoring --</subfield><subfield code="g">7.4.</subfield><subfield code="t">Big Data Analytics and Health Monitoring --</subfield><subfield code="g">7.5.</subfield><subfield code="t">Growth in Use of Digital Storage --</subfield><subfield code="g">7.5.1.</subfield><subfield code="t">Example Health Monitoring Application Utilizing Grid Capability --</subfield><subfield code="g">7.5.2.</subfield><subfield code="t">Cloud Alternatives --</subfield><subfield code="t">References.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This timely resource provides a practical introduction to equipment health monitoring (EHM) to ensure the cost effective operation and control of critical systems in defense, industrial, and healthcare applications. This book highlights how to frame health monitoring design applications within a system engineering process, to ensure an optimized EHM functional architecture and practical algorithm design.n nThis book clarifies the need for intelligent diagnostics and proposed health monitoring framework. Machine learning for health monitoring, including feature extraction, data visualization, model boundaries and performance is presented. Details about monitoring aircraft engines and model based monitoring systems are described in detail. Packed with two full chapters of case studies within industrial and healthcare settings, this book identifies key problems and provides insightful techniques for solving them. This resource provides a look into the future direction in health monitoring and emerging developments within sensing technology, big data analytics, and advanced computing capabilities.</subfield><subfield code="c">Publisher abstract.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Systems engineering.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85131750</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Structural health monitoring.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2009006088</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ingénierie des systèmes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Surveillance de l'état des structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">systems engineering.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Structural health monitoring</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systems engineering</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mills, Andrew R.,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2018003714</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kadirkamanathan, Visakan,</subfield><subfield code="d">1962-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJbtqwHdkXw6cgW8xKFYfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2001001135</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clifton, David A.,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2017003609</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Equipment health monitoring in complex systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFtH3cHHTpPtCDyBP47wP3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">King, Stephen P.</subfield><subfield code="t">Equipment health monitoring in complex systems.</subfield><subfield code="d">Boston : Artech House, [2018]</subfield><subfield code="z">1608079724</subfield><subfield code="w">(DLC) 2017285746</subfield><subfield code="w">(OCoLC)1013764660</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Artech House computing library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2004051466</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1825914</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5430714</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1825914</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">IEEE</subfield><subfield code="b">IEEE</subfield><subfield code="n">9100204</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15503375</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1027678986 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:28:14Z |
institution | BVB |
isbn | 9781630814977 1630814970 |
language | English |
oclc_num | 1027678986 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 208 pages) |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Artech House, |
record_format | marc |
series | Artech House computing library. |
series2 | Artech House computing library |
spelling | King, Stephen P., author. http://id.loc.gov/authorities/names/no2018003727 Equipment health monitoring in complex systems / Stephen P. King, Andrew R. Mills, Visakan Kadirkamanathan, David A. Clifton. Boston : Artech House, [2018] 1 online resource (ix, 208 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Artech House computing library Print version record. Includes bibliographical references and index. Machine generated contents note: 1. Introduction -- 1.1. Maintenance Strategies -- 1.2. Overview of Health Monitoring -- 1.3. Organization of Book Contents -- References -- 2. Systems Engineering for EHM -- 2.1. Introduction -- 2.2. Introduction to Systems Engineering -- 2.2.1. Systems Engineering Processes -- 2.2.2. Overview of Systems Engineering for EHM Design -- 2.2.3. Summary -- 2.3. EHM Design Intent -- 2.3.1. State the Problem: Failure Analysis and Management -- 2.3.2. Model the System: Approaches for Failure Modeling -- 2.3.3. Investigate Alternatives: Failure Models -- 2.3.4. Assess Performance: Case Study -- 2.4. EHM Functional Architecture Design -- 2.4.1. State the Problem: EHM Functional Architecture Design -- 2.4.2. Model the System: Function Modeling and Assessment -- 2.4.3. Investigate Alternatives: Tools for Functional Architecture Design -- 2.4.4. Assess Performance: Gas Turbine EHM Architecture Optimization -- 2.5. EHM Algorithm Design -- 2.5.1. State the Problem: Monitoring Algorithm Design Process -- 2.5.2. Model the System: Detailed Fault Mode Modeling -- 2.5.3. Investigate Alternatives: Development Approaches -- 2.5.4. Assess Performance: Algorithm Design Case Study -- 2.6. Conclusion -- References -- 3. The Need for Intelligent Diagnostics -- 3.1. Introduction -- 3.2. The Need for Intelligent Diagnostics -- 3.3. Overview of Machine Learning Capability -- 3.4. Proposed Health Monitoring Framework -- 3.4.1. Feature Extraction -- 3.4.2. Data Visualization -- 3.4.3. Model Construction -- 3.4.4. Definition of Model Boundaries -- 3.4.5. Verification of Model Performance -- References -- 4. Machine Learning for Health Monitoring -- 4.1. Introduction -- 4.2. Feature Extraction -- 4.3. Data Visualization -- 4.3.1. Principal Component Analysis -- 4.3.2. Kohonen Network -- 4.3.3. Sammon's Mapping -- 4.3.4. NeuroScale -- 4.4. Model Construction -- 4.5. Definition of Model Boundaries -- 4.6. Verification of Model Performance -- 4.6.1. Verification of Regression Models -- 4.6.2. Verification of Classification Models -- References -- 5. Case Studies of Medical Monitoring Systems -- 5.1. Introduction -- 5.2. Kernel Density Estimates -- 5.3. Extreme Value Statistics -- 5.3.1. Type-I EVT -- 5.3.2. Type-II EVT -- 5.3.3. Gaussian Processes -- 5.4. Advanced Methods -- References -- 6. Monitoring Aircraft Engines -- 6.1. Introduction -- 6.1.1. Aircraft Engines -- 6.1.2. Model-Based Monitoring Systems -- 6.2. Case Study -- 6.2.1. Aircraft Engine Air System Event Detection -- 6.2.2. Data and the Detection Problem -- 6.3. Kalman Filter-Based Detection -- 6.3.1. Kalman Filter Estimation -- 6.3.2. Kalman Filter Parameter Design -- 6.3.3. Change Detection and Threshold Selection -- 6.4. Multiple Model-Based Detection -- 6.4.1. Hypothesis Testing and Change Detection -- 6.4.2. Multiple Model Change Detection -- 6.5. Change Detection with Additional Signals -- 6.6. Summary -- References -- 7. Future Directions in Health Monitoring -- 7.1. Introduction -- 7.2. Emerging Developments Within Sensing Technology -- 7.2.1. Low-Cost and Ubiquitous Sensing -- 7.2.2. Ultra-Minaturization -- Nano and Quantum -- 7.2.3. Bio-Inspired -- 7.2.4. Summary -- 7.3. Sensor Informatics for Medical Monitoring -- 7.3.1. Deep Learning for Patient Monitoring -- 7.4. Big Data Analytics and Health Monitoring -- 7.5. Growth in Use of Digital Storage -- 7.5.1. Example Health Monitoring Application Utilizing Grid Capability -- 7.5.2. Cloud Alternatives -- References. This timely resource provides a practical introduction to equipment health monitoring (EHM) to ensure the cost effective operation and control of critical systems in defense, industrial, and healthcare applications. This book highlights how to frame health monitoring design applications within a system engineering process, to ensure an optimized EHM functional architecture and practical algorithm design.n nThis book clarifies the need for intelligent diagnostics and proposed health monitoring framework. Machine learning for health monitoring, including feature extraction, data visualization, model boundaries and performance is presented. Details about monitoring aircraft engines and model based monitoring systems are described in detail. Packed with two full chapters of case studies within industrial and healthcare settings, this book identifies key problems and provides insightful techniques for solving them. This resource provides a look into the future direction in health monitoring and emerging developments within sensing technology, big data analytics, and advanced computing capabilities. Publisher abstract. Systems engineering. http://id.loc.gov/authorities/subjects/sh85131750 Structural health monitoring. http://id.loc.gov/authorities/subjects/sh2009006088 Ingénierie des systèmes. Surveillance de l'état des structures. systems engineering. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh Structural health monitoring fast Systems engineering fast Mills, Andrew R., author. http://id.loc.gov/authorities/names/no2018003714 Kadirkamanathan, Visakan, 1962- author. https://id.oclc.org/worldcat/entity/E39PBJbtqwHdkXw6cgW8xKFYfq http://id.loc.gov/authorities/names/n2001001135 Clifton, David A., author. http://id.loc.gov/authorities/names/nb2017003609 has work: Equipment health monitoring in complex systems (Text) https://id.oclc.org/worldcat/entity/E39PCFtH3cHHTpPtCDyBP47wP3 https://id.oclc.org/worldcat/ontology/hasWork Print version: King, Stephen P. Equipment health monitoring in complex systems. Boston : Artech House, [2018] 1608079724 (DLC) 2017285746 (OCoLC)1013764660 Artech House computing library. http://id.loc.gov/authorities/names/n2004051466 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1825914 Volltext |
spellingShingle | King, Stephen P. Mills, Andrew R. Kadirkamanathan, Visakan, 1962- Clifton, David A. Equipment health monitoring in complex systems / Artech House computing library. Introduction -- Maintenance Strategies -- Overview of Health Monitoring -- Organization of Book Contents -- References -- Systems Engineering for EHM -- Introduction to Systems Engineering -- Systems Engineering Processes -- Overview of Systems Engineering for EHM Design -- Summary -- EHM Design Intent -- State the Problem: Failure Analysis and Management -- Model the System: Approaches for Failure Modeling -- Investigate Alternatives: Failure Models -- Assess Performance: Case Study -- EHM Functional Architecture Design -- State the Problem: EHM Functional Architecture Design -- Model the System: Function Modeling and Assessment -- Investigate Alternatives: Tools for Functional Architecture Design -- Assess Performance: Gas Turbine EHM Architecture Optimization -- EHM Algorithm Design -- State the Problem: Monitoring Algorithm Design Process -- Model the System: Detailed Fault Mode Modeling -- Investigate Alternatives: Development Approaches -- Assess Performance: Algorithm Design Case Study -- Conclusion -- The Need for Intelligent Diagnostics -- Overview of Machine Learning Capability -- Proposed Health Monitoring Framework -- Feature Extraction -- Data Visualization -- Model Construction -- Definition of Model Boundaries -- Verification of Model Performance -- Machine Learning for Health Monitoring -- Principal Component Analysis -- Kohonen Network -- Sammon's Mapping -- NeuroScale -- Verification of Regression Models -- Verification of Classification Models -- Case Studies of Medical Monitoring Systems -- Kernel Density Estimates -- Extreme Value Statistics -- Type-I EVT -- Type-II EVT -- Gaussian Processes -- Advanced Methods -- Monitoring Aircraft Engines -- Aircraft Engines -- Model-Based Monitoring Systems -- Case Study -- Aircraft Engine Air System Event Detection -- Data and the Detection Problem -- Kalman Filter-Based Detection -- Kalman Filter Estimation -- Kalman Filter Parameter Design -- Change Detection and Threshold Selection -- Multiple Model-Based Detection -- Hypothesis Testing and Change Detection -- Multiple Model Change Detection -- Change Detection with Additional Signals -- Future Directions in Health Monitoring -- Emerging Developments Within Sensing Technology -- Low-Cost and Ubiquitous Sensing -- Ultra-Minaturization -- Nano and Quantum -- Bio-Inspired -- Sensor Informatics for Medical Monitoring -- Deep Learning for Patient Monitoring -- Big Data Analytics and Health Monitoring -- Growth in Use of Digital Storage -- Example Health Monitoring Application Utilizing Grid Capability -- Cloud Alternatives -- References. Systems engineering. http://id.loc.gov/authorities/subjects/sh85131750 Structural health monitoring. http://id.loc.gov/authorities/subjects/sh2009006088 Ingénierie des systèmes. Surveillance de l'état des structures. systems engineering. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh Structural health monitoring fast Systems engineering fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85131750 http://id.loc.gov/authorities/subjects/sh2009006088 |
title | Equipment health monitoring in complex systems / |
title_alt | Introduction -- Maintenance Strategies -- Overview of Health Monitoring -- Organization of Book Contents -- References -- Systems Engineering for EHM -- Introduction to Systems Engineering -- Systems Engineering Processes -- Overview of Systems Engineering for EHM Design -- Summary -- EHM Design Intent -- State the Problem: Failure Analysis and Management -- Model the System: Approaches for Failure Modeling -- Investigate Alternatives: Failure Models -- Assess Performance: Case Study -- EHM Functional Architecture Design -- State the Problem: EHM Functional Architecture Design -- Model the System: Function Modeling and Assessment -- Investigate Alternatives: Tools for Functional Architecture Design -- Assess Performance: Gas Turbine EHM Architecture Optimization -- EHM Algorithm Design -- State the Problem: Monitoring Algorithm Design Process -- Model the System: Detailed Fault Mode Modeling -- Investigate Alternatives: Development Approaches -- Assess Performance: Algorithm Design Case Study -- Conclusion -- The Need for Intelligent Diagnostics -- Overview of Machine Learning Capability -- Proposed Health Monitoring Framework -- Feature Extraction -- Data Visualization -- Model Construction -- Definition of Model Boundaries -- Verification of Model Performance -- Machine Learning for Health Monitoring -- Principal Component Analysis -- Kohonen Network -- Sammon's Mapping -- NeuroScale -- Verification of Regression Models -- Verification of Classification Models -- Case Studies of Medical Monitoring Systems -- Kernel Density Estimates -- Extreme Value Statistics -- Type-I EVT -- Type-II EVT -- Gaussian Processes -- Advanced Methods -- Monitoring Aircraft Engines -- Aircraft Engines -- Model-Based Monitoring Systems -- Case Study -- Aircraft Engine Air System Event Detection -- Data and the Detection Problem -- Kalman Filter-Based Detection -- Kalman Filter Estimation -- Kalman Filter Parameter Design -- Change Detection and Threshold Selection -- Multiple Model-Based Detection -- Hypothesis Testing and Change Detection -- Multiple Model Change Detection -- Change Detection with Additional Signals -- Future Directions in Health Monitoring -- Emerging Developments Within Sensing Technology -- Low-Cost and Ubiquitous Sensing -- Ultra-Minaturization -- Nano and Quantum -- Bio-Inspired -- Sensor Informatics for Medical Monitoring -- Deep Learning for Patient Monitoring -- Big Data Analytics and Health Monitoring -- Growth in Use of Digital Storage -- Example Health Monitoring Application Utilizing Grid Capability -- Cloud Alternatives -- References. |
title_auth | Equipment health monitoring in complex systems / |
title_exact_search | Equipment health monitoring in complex systems / |
title_full | Equipment health monitoring in complex systems / Stephen P. King, Andrew R. Mills, Visakan Kadirkamanathan, David A. Clifton. |
title_fullStr | Equipment health monitoring in complex systems / Stephen P. King, Andrew R. Mills, Visakan Kadirkamanathan, David A. Clifton. |
title_full_unstemmed | Equipment health monitoring in complex systems / Stephen P. King, Andrew R. Mills, Visakan Kadirkamanathan, David A. Clifton. |
title_short | Equipment health monitoring in complex systems / |
title_sort | equipment health monitoring in complex systems |
topic | Systems engineering. http://id.loc.gov/authorities/subjects/sh85131750 Structural health monitoring. http://id.loc.gov/authorities/subjects/sh2009006088 Ingénierie des systèmes. Surveillance de l'état des structures. systems engineering. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh Structural health monitoring fast Systems engineering fast |
topic_facet | Systems engineering. Structural health monitoring. Ingénierie des systèmes. Surveillance de l'état des structures. systems engineering. TECHNOLOGY & ENGINEERING Engineering (General) TECHNOLOGY & ENGINEERING Reference. Structural health monitoring Systems engineering |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1825914 |
work_keys_str_mv | AT kingstephenp equipmenthealthmonitoringincomplexsystems AT millsandrewr equipmenthealthmonitoringincomplexsystems AT kadirkamanathanvisakan equipmenthealthmonitoringincomplexsystems AT cliftondavida equipmenthealthmonitoringincomplexsystems |