R Deep Learning Projects :: Master the techniques to design and develop neural network models in R.
R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traf...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing,
2018.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text ... |
Beschreibung: | Exploratory data analysis. |
Beschreibung: | 1 online resource (253 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781788474559 1788474554 1788478401 9781788478403 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1027155886 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 180303s2018 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d MERUC |d CHVBK |d OCLCO |d IDB |d OCLCF |d OCLCQ |d YDX |d VT2 |d TEFOD |d OCLCQ |d N$T |d C6I |d UKAHL |d AUD |d OCLCQ |d UKMGB |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d PSYSI |d OCLCQ |d OCLCO |d OCLCQ | ||
015 | |a GBB849967 |2 bnb | ||
016 | 7 | |a 018788291 |2 Uk | |
019 | |a 1027194881 |a 1027356415 |a 1027556192 |a 1027713799 |a 1106146827 | ||
020 | |a 9781788474559 |q (electronic bk.) | ||
020 | |a 1788474554 |q (electronic bk.) | ||
020 | |a 1788478401 | ||
020 | |a 9781788478403 | ||
020 | |z 9781788478403 | ||
020 | |z 1788478401 | ||
024 | 3 | |a 9781788478403 | |
035 | |a (OCoLC)1027155886 |z (OCoLC)1027194881 |z (OCoLC)1027356415 |z (OCoLC)1027556192 |z (OCoLC)1027713799 |z (OCoLC)1106146827 | ||
037 | |a B08604 |b 01201872 | ||
037 | |a 361CBCC8-C94D-472D-AC6F-4B0C12C84CBC |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA276.45.R3 |b .L589 2018 | |
072 | 7 | |a MAT |x 003000 |2 bisacsh | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.502855133 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Liu, Yuxi (Hayden) | |
245 | 1 | 0 | |a R Deep Learning Projects : |b Master the techniques to design and develop neural network models in R. |
260 | |a Birmingham : |b Packt Publishing, |c 2018. | ||
300 | |a 1 online resource (253 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Handwritten Digit Recognition Using Convolutional Neural Networks; What is deep learning and why do we need it?; What makes deep learning special?; What are the applications of deep learning?; Handwritten digit recognition using CNNs; Get started with exploring MNIST; First attempt â#x80;#x93; logistic regression; Going from logistic regression to single-layer neural networks; Adding more hidden layers to the networks; Extracting richer representation with CNNs; Summary. | |
505 | 8 | |a Chapter 2: Traffic Sign Recognition for Intelligent VehiclesHow is deep learning applied in self-driving cars?; How does deep learning become a state-of-the-art solution?; Traffic sign recognition using CNN; Getting started with exploring GTSRB; First solution â#x80;#x93; convolutional neural networks using MXNet; Trying something new â#x80;#x93; CNNs using Keras with TensorFlow; Reducing overfitting with dropout; Dealing with a small training set â#x80;#x93; data augmentation; Reviewing methods to prevent overfitting in CNNs; Summary; Chapter 3: Fraud Detection with Autoencoders; Getting ready. | |
505 | 8 | |a Installing Keras and TensorFlow for RInstalling H2O; Our first examples; A simple 2D example; Autoencoders and MNIST; Outlier detection in MNIST; Credit card fraud detection with autoencoders; Exploratory data analysis; The autoencoder approach â#x80;#x93; Keras; Fraud detection with H2O; Exercises; Variational Autoencoders; Image reconstruction using VAEs; Outlier detection in MNIST; Text fraud detection; From unstructured text data to a matrix; From text to matrix representation â#x80;#x94; the Enron dataset; Autoencoder on the matrix representation; Exercises; Summary. | |
505 | 8 | |a Chapter 4: Text Generation Using Recurrent Neural NetworksWhat is so exciting about recurrent neural networks?; But what is a recurrent neural network, really?; LSTM and GRU networks; LSTM; GRU; RNNs from scratch in R; Classes in R with R6; Perceptron as an R6 class; Logistic regression; Multi-layer perceptron; Implementing a RNN; Implementation as an R6 class; Implementation without R6; RNN without derivatives â#x80;#x94; the cross-entropy method; RNN using Keras; A simple benchmark implementation; Generating new text from old; Exercises; Summary; Chapter 5: Sentiment Analysis with Word Embeddings. | |
505 | 8 | |a Warm-up â#x80;#x93; data explorationWorking with tidy text; The more, the merrier â#x80;#x93; calculating n-grams instead of single words; Bag of words benchmark; Preparing the data; Implementing a benchmark â#x80;#x93; logistic regression ; Exercises; Word embeddings; word2vec; GloVe; Sentiment analysis from movie reviews; Data preprocessing; From words to vectors; Sentiment extraction; The importance of data cleansing; Vector embeddings and neural networks; Bi-directional LSTM networks; Other LSTM architectures; Exercises; Mining sentiment from Twitter; Connecting to the Twitter API; Building our model. | |
500 | |a Exploratory data analysis. | ||
520 | |a R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text ... | ||
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a R. | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 0 | |a Neural networks. | |
650 | 2 | |a Artificial Intelligence |0 https://id.nlm.nih.gov/mesh/D001185 | |
650 | 6 | |a Intelligence artificielle. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
700 | 1 | |a Maldonado, Pablo. | |
776 | 0 | 8 | |i Print version: |a Liu, Yuxi (Hayden). |t R Deep Learning Projects : Master the techniques to design and develop neural network models in R. |d Birmingham : Packt Publishing, ©2018 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1717558 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1717558 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH33942487 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5309083 | ||
938 | |a EBSCOhost |b EBSC |n 1717558 | ||
938 | |a YBP Library Services |b YANK |n 15185820 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1027155886 |
---|---|
_version_ | 1826942175307366400 |
adam_text | |
any_adam_object | |
author | Liu, Yuxi (Hayden) |
author2 | Maldonado, Pablo |
author2_role | |
author2_variant | p m pm |
author_facet | Liu, Yuxi (Hayden) Maldonado, Pablo |
author_role | |
author_sort | Liu, Yuxi (Hayden) |
author_variant | y h l yh yhl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.45.R3 .L589 2018 |
callnumber-search | QA276.45.R3 .L589 2018 |
callnumber-sort | QA 3276.45 R3 L589 42018 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Handwritten Digit Recognition Using Convolutional Neural Networks; What is deep learning and why do we need it?; What makes deep learning special?; What are the applications of deep learning?; Handwritten digit recognition using CNNs; Get started with exploring MNIST; First attempt â#x80;#x93; logistic regression; Going from logistic regression to single-layer neural networks; Adding more hidden layers to the networks; Extracting richer representation with CNNs; Summary. Chapter 2: Traffic Sign Recognition for Intelligent VehiclesHow is deep learning applied in self-driving cars?; How does deep learning become a state-of-the-art solution?; Traffic sign recognition using CNN; Getting started with exploring GTSRB; First solution â#x80;#x93; convolutional neural networks using MXNet; Trying something new â#x80;#x93; CNNs using Keras with TensorFlow; Reducing overfitting with dropout; Dealing with a small training set â#x80;#x93; data augmentation; Reviewing methods to prevent overfitting in CNNs; Summary; Chapter 3: Fraud Detection with Autoencoders; Getting ready. Installing Keras and TensorFlow for RInstalling H2O; Our first examples; A simple 2D example; Autoencoders and MNIST; Outlier detection in MNIST; Credit card fraud detection with autoencoders; Exploratory data analysis; The autoencoder approach â#x80;#x93; Keras; Fraud detection with H2O; Exercises; Variational Autoencoders; Image reconstruction using VAEs; Outlier detection in MNIST; Text fraud detection; From unstructured text data to a matrix; From text to matrix representation â#x80;#x94; the Enron dataset; Autoencoder on the matrix representation; Exercises; Summary. Chapter 4: Text Generation Using Recurrent Neural NetworksWhat is so exciting about recurrent neural networks?; But what is a recurrent neural network, really?; LSTM and GRU networks; LSTM; GRU; RNNs from scratch in R; Classes in R with R6; Perceptron as an R6 class; Logistic regression; Multi-layer perceptron; Implementing a RNN; Implementation as an R6 class; Implementation without R6; RNN without derivatives â#x80;#x94; the cross-entropy method; RNN using Keras; A simple benchmark implementation; Generating new text from old; Exercises; Summary; Chapter 5: Sentiment Analysis with Word Embeddings. Warm-up â#x80;#x93; data explorationWorking with tidy text; The more, the merrier â#x80;#x93; calculating n-grams instead of single words; Bag of words benchmark; Preparing the data; Implementing a benchmark â#x80;#x93; logistic regression ; Exercises; Word embeddings; word2vec; GloVe; Sentiment analysis from movie reviews; Data preprocessing; From words to vectors; Sentiment extraction; The importance of data cleansing; Vector embeddings and neural networks; Bi-directional LSTM networks; Other LSTM architectures; Exercises; Mining sentiment from Twitter; Connecting to the Twitter API; Building our model. |
ctrlnum | (OCoLC)1027155886 |
dewey-full | 519.502855133 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.502855133 |
dewey-search | 519.502855133 |
dewey-sort | 3519.502855133 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06216cam a2200721Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1027155886</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">180303s2018 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">CHVBK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">VT2</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">C6I</subfield><subfield code="d">UKAHL</subfield><subfield code="d">AUD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PSYSI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB849967</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">018788291</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1027194881</subfield><subfield code="a">1027356415</subfield><subfield code="a">1027556192</subfield><subfield code="a">1027713799</subfield><subfield code="a">1106146827</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788474559</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1788474554</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1788478401</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788478403</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781788478403</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1788478401</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781788478403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1027155886</subfield><subfield code="z">(OCoLC)1027194881</subfield><subfield code="z">(OCoLC)1027356415</subfield><subfield code="z">(OCoLC)1027556192</subfield><subfield code="z">(OCoLC)1027713799</subfield><subfield code="z">(OCoLC)1106146827</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">B08604</subfield><subfield code="b">01201872</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">361CBCC8-C94D-472D-AC6F-4B0C12C84CBC</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA276.45.R3</subfield><subfield code="b">.L589 2018</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.502855133</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuxi (Hayden)</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">R Deep Learning Projects :</subfield><subfield code="b">Master the techniques to design and develop neural network models in R.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (253 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Handwritten Digit Recognition Using Convolutional Neural Networks; What is deep learning and why do we need it?; What makes deep learning special?; What are the applications of deep learning?; Handwritten digit recognition using CNNs; Get started with exploring MNIST; First attempt â#x80;#x93; logistic regression; Going from logistic regression to single-layer neural networks; Adding more hidden layers to the networks; Extracting richer representation with CNNs; Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 2: Traffic Sign Recognition for Intelligent VehiclesHow is deep learning applied in self-driving cars?; How does deep learning become a state-of-the-art solution?; Traffic sign recognition using CNN; Getting started with exploring GTSRB; First solution â#x80;#x93; convolutional neural networks using MXNet; Trying something new â#x80;#x93; CNNs using Keras with TensorFlow; Reducing overfitting with dropout; Dealing with a small training set â#x80;#x93; data augmentation; Reviewing methods to prevent overfitting in CNNs; Summary; Chapter 3: Fraud Detection with Autoencoders; Getting ready.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Installing Keras and TensorFlow for RInstalling H2O; Our first examples; A simple 2D example; Autoencoders and MNIST; Outlier detection in MNIST; Credit card fraud detection with autoencoders; Exploratory data analysis; The autoencoder approach â#x80;#x93; Keras; Fraud detection with H2O; Exercises; Variational Autoencoders; Image reconstruction using VAEs; Outlier detection in MNIST; Text fraud detection; From unstructured text data to a matrix; From text to matrix representation â#x80;#x94; the Enron dataset; Autoencoder on the matrix representation; Exercises; Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 4: Text Generation Using Recurrent Neural NetworksWhat is so exciting about recurrent neural networks?; But what is a recurrent neural network, really?; LSTM and GRU networks; LSTM; GRU; RNNs from scratch in R; Classes in R with R6; Perceptron as an R6 class; Logistic regression; Multi-layer perceptron; Implementing a RNN; Implementation as an R6 class; Implementation without R6; RNN without derivatives â#x80;#x94; the cross-entropy method; RNN using Keras; A simple benchmark implementation; Generating new text from old; Exercises; Summary; Chapter 5: Sentiment Analysis with Word Embeddings.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Warm-up â#x80;#x93; data explorationWorking with tidy text; The more, the merrier â#x80;#x93; calculating n-grams instead of single words; Bag of words benchmark; Preparing the data; Implementing a benchmark â#x80;#x93; logistic regression ; Exercises; Word embeddings; word2vec; GloVe; Sentiment analysis from movie reviews; Data preprocessing; From words to vectors; Sentiment extraction; The importance of data cleansing; Vector embeddings and neural networks; Bi-directional LSTM networks; Other LSTM architectures; Exercises; Mining sentiment from Twitter; Connecting to the Twitter API; Building our model.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Exploratory data analysis.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text ...</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks.</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D001185</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maldonado, Pablo.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Liu, Yuxi (Hayden).</subfield><subfield code="t">R Deep Learning Projects : Master the techniques to design and develop neural network models in R.</subfield><subfield code="d">Birmingham : Packt Publishing, ©2018</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1717558</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1717558</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33942487</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5309083</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1717558</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15185820</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1027155886 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:23:50Z |
institution | BVB |
isbn | 9781788474559 1788474554 1788478401 9781788478403 |
language | English |
oclc_num | 1027155886 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (253 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Liu, Yuxi (Hayden) R Deep Learning Projects : Master the techniques to design and develop neural network models in R. Birmingham : Packt Publishing, 2018. 1 online resource (253 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Handwritten Digit Recognition Using Convolutional Neural Networks; What is deep learning and why do we need it?; What makes deep learning special?; What are the applications of deep learning?; Handwritten digit recognition using CNNs; Get started with exploring MNIST; First attempt â#x80;#x93; logistic regression; Going from logistic regression to single-layer neural networks; Adding more hidden layers to the networks; Extracting richer representation with CNNs; Summary. Chapter 2: Traffic Sign Recognition for Intelligent VehiclesHow is deep learning applied in self-driving cars?; How does deep learning become a state-of-the-art solution?; Traffic sign recognition using CNN; Getting started with exploring GTSRB; First solution â#x80;#x93; convolutional neural networks using MXNet; Trying something new â#x80;#x93; CNNs using Keras with TensorFlow; Reducing overfitting with dropout; Dealing with a small training set â#x80;#x93; data augmentation; Reviewing methods to prevent overfitting in CNNs; Summary; Chapter 3: Fraud Detection with Autoencoders; Getting ready. Installing Keras and TensorFlow for RInstalling H2O; Our first examples; A simple 2D example; Autoencoders and MNIST; Outlier detection in MNIST; Credit card fraud detection with autoencoders; Exploratory data analysis; The autoencoder approach â#x80;#x93; Keras; Fraud detection with H2O; Exercises; Variational Autoencoders; Image reconstruction using VAEs; Outlier detection in MNIST; Text fraud detection; From unstructured text data to a matrix; From text to matrix representation â#x80;#x94; the Enron dataset; Autoencoder on the matrix representation; Exercises; Summary. Chapter 4: Text Generation Using Recurrent Neural NetworksWhat is so exciting about recurrent neural networks?; But what is a recurrent neural network, really?; LSTM and GRU networks; LSTM; GRU; RNNs from scratch in R; Classes in R with R6; Perceptron as an R6 class; Logistic regression; Multi-layer perceptron; Implementing a RNN; Implementation as an R6 class; Implementation without R6; RNN without derivatives â#x80;#x94; the cross-entropy method; RNN using Keras; A simple benchmark implementation; Generating new text from old; Exercises; Summary; Chapter 5: Sentiment Analysis with Word Embeddings. Warm-up â#x80;#x93; data explorationWorking with tidy text; The more, the merrier â#x80;#x93; calculating n-grams instead of single words; Bag of words benchmark; Preparing the data; Implementing a benchmark â#x80;#x93; logistic regression ; Exercises; Word embeddings; word2vec; GloVe; Sentiment analysis from movie reviews; Data preprocessing; From words to vectors; Sentiment extraction; The importance of data cleansing; Vector embeddings and neural networks; Bi-directional LSTM networks; Other LSTM architectures; Exercises; Mining sentiment from Twitter; Connecting to the Twitter API; Building our model. Exploratory data analysis. R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text ... Includes bibliographical references and index. R. Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Neural networks. Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Intelligence artificielle. artificial intelligence. aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Artificial intelligence fast Maldonado, Pablo. Print version: Liu, Yuxi (Hayden). R Deep Learning Projects : Master the techniques to design and develop neural network models in R. Birmingham : Packt Publishing, ©2018 |
spellingShingle | Liu, Yuxi (Hayden) R Deep Learning Projects : Master the techniques to design and develop neural network models in R. Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Handwritten Digit Recognition Using Convolutional Neural Networks; What is deep learning and why do we need it?; What makes deep learning special?; What are the applications of deep learning?; Handwritten digit recognition using CNNs; Get started with exploring MNIST; First attempt â#x80;#x93; logistic regression; Going from logistic regression to single-layer neural networks; Adding more hidden layers to the networks; Extracting richer representation with CNNs; Summary. Chapter 2: Traffic Sign Recognition for Intelligent VehiclesHow is deep learning applied in self-driving cars?; How does deep learning become a state-of-the-art solution?; Traffic sign recognition using CNN; Getting started with exploring GTSRB; First solution â#x80;#x93; convolutional neural networks using MXNet; Trying something new â#x80;#x93; CNNs using Keras with TensorFlow; Reducing overfitting with dropout; Dealing with a small training set â#x80;#x93; data augmentation; Reviewing methods to prevent overfitting in CNNs; Summary; Chapter 3: Fraud Detection with Autoencoders; Getting ready. Installing Keras and TensorFlow for RInstalling H2O; Our first examples; A simple 2D example; Autoencoders and MNIST; Outlier detection in MNIST; Credit card fraud detection with autoencoders; Exploratory data analysis; The autoencoder approach â#x80;#x93; Keras; Fraud detection with H2O; Exercises; Variational Autoencoders; Image reconstruction using VAEs; Outlier detection in MNIST; Text fraud detection; From unstructured text data to a matrix; From text to matrix representation â#x80;#x94; the Enron dataset; Autoencoder on the matrix representation; Exercises; Summary. Chapter 4: Text Generation Using Recurrent Neural NetworksWhat is so exciting about recurrent neural networks?; But what is a recurrent neural network, really?; LSTM and GRU networks; LSTM; GRU; RNNs from scratch in R; Classes in R with R6; Perceptron as an R6 class; Logistic regression; Multi-layer perceptron; Implementing a RNN; Implementation as an R6 class; Implementation without R6; RNN without derivatives â#x80;#x94; the cross-entropy method; RNN using Keras; A simple benchmark implementation; Generating new text from old; Exercises; Summary; Chapter 5: Sentiment Analysis with Word Embeddings. Warm-up â#x80;#x93; data explorationWorking with tidy text; The more, the merrier â#x80;#x93; calculating n-grams instead of single words; Bag of words benchmark; Preparing the data; Implementing a benchmark â#x80;#x93; logistic regression ; Exercises; Word embeddings; word2vec; GloVe; Sentiment analysis from movie reviews; Data preprocessing; From words to vectors; Sentiment extraction; The importance of data cleansing; Vector embeddings and neural networks; Bi-directional LSTM networks; Other LSTM architectures; Exercises; Mining sentiment from Twitter; Connecting to the Twitter API; Building our model. R. Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Neural networks. Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Intelligence artificielle. artificial intelligence. aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Artificial intelligence fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85008180 https://id.nlm.nih.gov/mesh/D001185 |
title | R Deep Learning Projects : Master the techniques to design and develop neural network models in R. |
title_auth | R Deep Learning Projects : Master the techniques to design and develop neural network models in R. |
title_exact_search | R Deep Learning Projects : Master the techniques to design and develop neural network models in R. |
title_full | R Deep Learning Projects : Master the techniques to design and develop neural network models in R. |
title_fullStr | R Deep Learning Projects : Master the techniques to design and develop neural network models in R. |
title_full_unstemmed | R Deep Learning Projects : Master the techniques to design and develop neural network models in R. |
title_short | R Deep Learning Projects : |
title_sort | r deep learning projects master the techniques to design and develop neural network models in r |
title_sub | Master the techniques to design and develop neural network models in R. |
topic | R. Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Neural networks. Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Intelligence artificielle. artificial intelligence. aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Artificial intelligence fast |
topic_facet | R. Artificial intelligence. Neural networks. Artificial Intelligence Intelligence artificielle. artificial intelligence. MATHEMATICS Applied. MATHEMATICS Probability & Statistics General. Artificial intelligence |
work_keys_str_mv | AT liuyuxihayden rdeeplearningprojectsmasterthetechniquestodesignanddevelopneuralnetworkmodelsinr AT maldonadopablo rdeeplearningprojectsmasterthetechniquestodesignanddevelopneuralnetworkmodelsinr |