Probabilistic knowledge /:
Sarah Moss argues that in addition to full beliefs, credences can constitute knowledge. She introduces the notion of probabilistic content and shows how it plays a central role not only in epistemology, but in the philosophy of mind and language. Just you can believe and assert propositions, you can...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford :
Oxford University Press,
2018.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Sarah Moss argues that in addition to full beliefs, credences can constitute knowledge. She introduces the notion of probabilistic content and shows how it plays a central role not only in epistemology, but in the philosophy of mind and language. Just you can believe and assert propositions, you can believe and assert probabilistic contents. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780192510587 0192510584 9780191861260 019186126X |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1022945279 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 180213s2018 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OCLCF |d EBLCP |d UAB |d STBDS |d FIE |d UWO |d YDX |d OCLCQ |d CEF |d KSU |d OTZ |d U3W |d WYU |d LVT |d BRX |d OCLCQ |d W2U |d MM9 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 1023772931 |a 1052778977 |a 1057427801 |a 1057664425 |a 1086968092 |a 1171163632 | ||
020 | |a 9780192510587 |q (electronic bk.) | ||
020 | |a 0192510584 |q (electronic bk.) | ||
020 | |a 9780191861260 | ||
020 | |a 019186126X | ||
020 | |z 9780198792154 | ||
020 | |z 0198792158 | ||
035 | |a (OCoLC)1022945279 |z (OCoLC)1023772931 |z (OCoLC)1052778977 |z (OCoLC)1057427801 |z (OCoLC)1057664425 |z (OCoLC)1086968092 |z (OCoLC)1171163632 | ||
050 | 4 | |a QA273 | |
072 | 7 | |a MAT |x 003000 |2 bisacsh | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.2 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Moss, Sarah, |e author. |0 http://id.loc.gov/authorities/names/nr2002001357 | |
245 | 1 | 0 | |a Probabilistic knowledge / |c Sarah Moss. |
264 | 1 | |a Oxford : |b Oxford University Press, |c 2018. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed February 19, 2018). | |
505 | 0 | |a Cover; Probabilistic Knowledge; Copyright; Dedication; Contents; Preface; 1: The case for probabilistic contents; 1.1 Probabilistic beliefs; 1.2 An argument for probabilistic contents of belief; 1.3 The roles played by contents of belief; 1.4 Full beliefs; 1.5 Alternative roles for contents of belief; 2: The case for probabilistic assertion; 2.1 Familiar arguments against propositional contents of assertion; 2.2 Foundational arguments for probabilistic contents of assertion; 2.3 Modeling communication; 2.4 Epistemic modals and indicative conditionals. | |
505 | 8 | |a 2.5 A test battery for probabilistic content3: Epistemic modals and probability operators; 3.1 Motivations for my semantics; 3.2 Embedded epistemic vocabulary; 3.3 Challenges for other theories; 3.4 A semantics for epistemic modals and probability operators; 3.5 A semantics for simple sentences; 3.6 The relationship between credence and full belief; 4: Indicative conditionals; 4.1 Probabilities of conditionals as conditional probabilities; 4.2 A semantics for conditionals; 4.3 Why probabilities of conditionals are not conditional probabilities; 4.4 A semantics for other logical operators. | |
505 | 8 | |a 4.5 The pragmatics of epistemic vocabulary5: The case for probabilistic knowledge; 5.1 The thesis that probabilistic beliefs can be knowledge; 5.2 Testimony; 5.3 Perception; 5.4 Arguments for probabilistic contents of experience; 5.5 Other sources of knowledge; 5.6 Justified true belief without knowledge; 5.7 Traditional theories of knowledge; 5.8 An alternative mental state?; 5.9 Applications; 6: Factivity; 6.1 Alternatives to probabilistic knowledge?; 6.2 The contents of knowledge ascriptions; 6.3 Frequently asked questions; 6.4 Relativism; 6.5 Objective chance; 7: Skepticism. | |
505 | 8 | |a 7.1 A skeptical puzzle7.2 The argument from inconsistency; 7.3 The argument from closure; 7.4 The argument from disjunction; 7.5 The argument from safety; 8: Knowledge and belief; 8.1 The knowledge norm of belief; 8.2 Peer disagreement; 8.3 Applying the knowledge norm of belief; 8.4 Statistical inference; 8.5 Responses to skepticism about perceptual knowledge; 9: Knowledge and action; 9.1 Knowledge norms of action; 9.2 Addressing objections; 9.3 Applying knowledge norms of action; 9.4 Pragmatic encroachment; 9.5 Transformative experience; 10: Knowledge and persons; 10.1 Statistical evidence. | |
505 | 8 | |a 10.2 An account of legal proof10.3 Applying knowledge standards of proof; 10.4 Racial and other profiling; 10.5 Applying the rule of consideration; Appendix: A formal semantics for epistemic vocabulary; A.1 Background; A.2 Epistemic modals and probability operators; A.3 Simple sentences; A.4 Indicative conditionals; A.5 Other logical operators; References; Index. | |
520 | |a Sarah Moss argues that in addition to full beliefs, credences can constitute knowledge. She introduces the notion of probabilistic content and shows how it plays a central role not only in epistemology, but in the philosophy of mind and language. Just you can believe and assert propositions, you can believe and assert probabilistic contents. | ||
650 | 0 | |a Probabilities. |0 http://id.loc.gov/authorities/subjects/sh85107090 | |
650 | 0 | |a Logic, Symbolic and mathematical. |0 http://id.loc.gov/authorities/subjects/sh85078115 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 2 | |a Probability |0 https://id.nlm.nih.gov/mesh/D011336 | |
650 | 2 | |a Artificial Intelligence |0 https://id.nlm.nih.gov/mesh/D001185 | |
650 | 6 | |a Probabilités. | |
650 | 6 | |a Logique symbolique et mathématique. | |
650 | 6 | |a Intelligence artificielle. | |
650 | 7 | |a probability. |2 aat | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 7 | |a Probabilities |2 fast | |
758 | |i has work: |a Probabilistic knowledge (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGpfTx9PyH77JRVMyXcPpP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version : |z 9780198792154 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1708622 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL5267444 | ||
938 | |a EBSCOhost |b EBSC |n 1708622 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0001844547 | ||
938 | |a YBP Library Services |b YANK |n 15163265 | ||
938 | |a YBP Library Services |b YANK |n 15117823 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1022945279 |
---|---|
_version_ | 1816882413126549504 |
adam_text | |
any_adam_object | |
author | Moss, Sarah |
author_GND | http://id.loc.gov/authorities/names/nr2002001357 |
author_facet | Moss, Sarah |
author_role | aut |
author_sort | Moss, Sarah |
author_variant | s m sm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273 |
callnumber-search | QA273 |
callnumber-sort | QA 3273 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Probabilistic Knowledge; Copyright; Dedication; Contents; Preface; 1: The case for probabilistic contents; 1.1 Probabilistic beliefs; 1.2 An argument for probabilistic contents of belief; 1.3 The roles played by contents of belief; 1.4 Full beliefs; 1.5 Alternative roles for contents of belief; 2: The case for probabilistic assertion; 2.1 Familiar arguments against propositional contents of assertion; 2.2 Foundational arguments for probabilistic contents of assertion; 2.3 Modeling communication; 2.4 Epistemic modals and indicative conditionals. 2.5 A test battery for probabilistic content3: Epistemic modals and probability operators; 3.1 Motivations for my semantics; 3.2 Embedded epistemic vocabulary; 3.3 Challenges for other theories; 3.4 A semantics for epistemic modals and probability operators; 3.5 A semantics for simple sentences; 3.6 The relationship between credence and full belief; 4: Indicative conditionals; 4.1 Probabilities of conditionals as conditional probabilities; 4.2 A semantics for conditionals; 4.3 Why probabilities of conditionals are not conditional probabilities; 4.4 A semantics for other logical operators. 4.5 The pragmatics of epistemic vocabulary5: The case for probabilistic knowledge; 5.1 The thesis that probabilistic beliefs can be knowledge; 5.2 Testimony; 5.3 Perception; 5.4 Arguments for probabilistic contents of experience; 5.5 Other sources of knowledge; 5.6 Justified true belief without knowledge; 5.7 Traditional theories of knowledge; 5.8 An alternative mental state?; 5.9 Applications; 6: Factivity; 6.1 Alternatives to probabilistic knowledge?; 6.2 The contents of knowledge ascriptions; 6.3 Frequently asked questions; 6.4 Relativism; 6.5 Objective chance; 7: Skepticism. 7.1 A skeptical puzzle7.2 The argument from inconsistency; 7.3 The argument from closure; 7.4 The argument from disjunction; 7.5 The argument from safety; 8: Knowledge and belief; 8.1 The knowledge norm of belief; 8.2 Peer disagreement; 8.3 Applying the knowledge norm of belief; 8.4 Statistical inference; 8.5 Responses to skepticism about perceptual knowledge; 9: Knowledge and action; 9.1 Knowledge norms of action; 9.2 Addressing objections; 9.3 Applying knowledge norms of action; 9.4 Pragmatic encroachment; 9.5 Transformative experience; 10: Knowledge and persons; 10.1 Statistical evidence. 10.2 An account of legal proof10.3 Applying knowledge standards of proof; 10.4 Racial and other profiling; 10.5 Applying the rule of consideration; Appendix: A formal semantics for epistemic vocabulary; A.1 Background; A.2 Epistemic modals and probability operators; A.3 Simple sentences; A.4 Indicative conditionals; A.5 Other logical operators; References; Index. |
ctrlnum | (OCoLC)1022945279 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06127cam a2200733 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1022945279</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">180213s2018 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UAB</subfield><subfield code="d">STBDS</subfield><subfield code="d">FIE</subfield><subfield code="d">UWO</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CEF</subfield><subfield code="d">KSU</subfield><subfield code="d">OTZ</subfield><subfield code="d">U3W</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">BRX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">W2U</subfield><subfield code="d">MM9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1023772931</subfield><subfield code="a">1052778977</subfield><subfield code="a">1057427801</subfield><subfield code="a">1057664425</subfield><subfield code="a">1086968092</subfield><subfield code="a">1171163632</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780192510587</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0192510584</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191861260</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">019186126X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780198792154</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0198792158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1022945279</subfield><subfield code="z">(OCoLC)1023772931</subfield><subfield code="z">(OCoLC)1052778977</subfield><subfield code="z">(OCoLC)1057427801</subfield><subfield code="z">(OCoLC)1057664425</subfield><subfield code="z">(OCoLC)1086968092</subfield><subfield code="z">(OCoLC)1171163632</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA273</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moss, Sarah,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr2002001357</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic knowledge /</subfield><subfield code="c">Sarah Moss.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed February 19, 2018).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Probabilistic Knowledge; Copyright; Dedication; Contents; Preface; 1: The case for probabilistic contents; 1.1 Probabilistic beliefs; 1.2 An argument for probabilistic contents of belief; 1.3 The roles played by contents of belief; 1.4 Full beliefs; 1.5 Alternative roles for contents of belief; 2: The case for probabilistic assertion; 2.1 Familiar arguments against propositional contents of assertion; 2.2 Foundational arguments for probabilistic contents of assertion; 2.3 Modeling communication; 2.4 Epistemic modals and indicative conditionals.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5 A test battery for probabilistic content3: Epistemic modals and probability operators; 3.1 Motivations for my semantics; 3.2 Embedded epistemic vocabulary; 3.3 Challenges for other theories; 3.4 A semantics for epistemic modals and probability operators; 3.5 A semantics for simple sentences; 3.6 The relationship between credence and full belief; 4: Indicative conditionals; 4.1 Probabilities of conditionals as conditional probabilities; 4.2 A semantics for conditionals; 4.3 Why probabilities of conditionals are not conditional probabilities; 4.4 A semantics for other logical operators.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5 The pragmatics of epistemic vocabulary5: The case for probabilistic knowledge; 5.1 The thesis that probabilistic beliefs can be knowledge; 5.2 Testimony; 5.3 Perception; 5.4 Arguments for probabilistic contents of experience; 5.5 Other sources of knowledge; 5.6 Justified true belief without knowledge; 5.7 Traditional theories of knowledge; 5.8 An alternative mental state?; 5.9 Applications; 6: Factivity; 6.1 Alternatives to probabilistic knowledge?; 6.2 The contents of knowledge ascriptions; 6.3 Frequently asked questions; 6.4 Relativism; 6.5 Objective chance; 7: Skepticism.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.1 A skeptical puzzle7.2 The argument from inconsistency; 7.3 The argument from closure; 7.4 The argument from disjunction; 7.5 The argument from safety; 8: Knowledge and belief; 8.1 The knowledge norm of belief; 8.2 Peer disagreement; 8.3 Applying the knowledge norm of belief; 8.4 Statistical inference; 8.5 Responses to skepticism about perceptual knowledge; 9: Knowledge and action; 9.1 Knowledge norms of action; 9.2 Addressing objections; 9.3 Applying knowledge norms of action; 9.4 Pragmatic encroachment; 9.5 Transformative experience; 10: Knowledge and persons; 10.1 Statistical evidence.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.2 An account of legal proof10.3 Applying knowledge standards of proof; 10.4 Racial and other profiling; 10.5 Applying the rule of consideration; Appendix: A formal semantics for epistemic vocabulary; A.1 Background; A.2 Epistemic modals and probability operators; A.3 Simple sentences; A.4 Indicative conditionals; A.5 Other logical operators; References; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sarah Moss argues that in addition to full beliefs, credences can constitute knowledge. She introduces the notion of probabilistic content and shows how it plays a central role not only in epistemology, but in the philosophy of mind and language. Just you can believe and assert propositions, you can believe and assert probabilistic contents.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Probabilities.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85107090</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Logic, Symbolic and mathematical.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85078115</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Probability</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D011336</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D001185</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Probabilités.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logique symbolique et mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">probability.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Probabilistic knowledge (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGpfTx9PyH77JRVMyXcPpP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version :</subfield><subfield code="z">9780198792154</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1708622</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5267444</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1708622</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0001844547</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15163265</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15117823</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1022945279 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:28:13Z |
institution | BVB |
isbn | 9780192510587 0192510584 9780191861260 019186126X |
language | English |
oclc_num | 1022945279 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Moss, Sarah, author. http://id.loc.gov/authorities/names/nr2002001357 Probabilistic knowledge / Sarah Moss. Oxford : Oxford University Press, 2018. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Online resource; title from PDF title page (EBSCO, viewed February 19, 2018). Cover; Probabilistic Knowledge; Copyright; Dedication; Contents; Preface; 1: The case for probabilistic contents; 1.1 Probabilistic beliefs; 1.2 An argument for probabilistic contents of belief; 1.3 The roles played by contents of belief; 1.4 Full beliefs; 1.5 Alternative roles for contents of belief; 2: The case for probabilistic assertion; 2.1 Familiar arguments against propositional contents of assertion; 2.2 Foundational arguments for probabilistic contents of assertion; 2.3 Modeling communication; 2.4 Epistemic modals and indicative conditionals. 2.5 A test battery for probabilistic content3: Epistemic modals and probability operators; 3.1 Motivations for my semantics; 3.2 Embedded epistemic vocabulary; 3.3 Challenges for other theories; 3.4 A semantics for epistemic modals and probability operators; 3.5 A semantics for simple sentences; 3.6 The relationship between credence and full belief; 4: Indicative conditionals; 4.1 Probabilities of conditionals as conditional probabilities; 4.2 A semantics for conditionals; 4.3 Why probabilities of conditionals are not conditional probabilities; 4.4 A semantics for other logical operators. 4.5 The pragmatics of epistemic vocabulary5: The case for probabilistic knowledge; 5.1 The thesis that probabilistic beliefs can be knowledge; 5.2 Testimony; 5.3 Perception; 5.4 Arguments for probabilistic contents of experience; 5.5 Other sources of knowledge; 5.6 Justified true belief without knowledge; 5.7 Traditional theories of knowledge; 5.8 An alternative mental state?; 5.9 Applications; 6: Factivity; 6.1 Alternatives to probabilistic knowledge?; 6.2 The contents of knowledge ascriptions; 6.3 Frequently asked questions; 6.4 Relativism; 6.5 Objective chance; 7: Skepticism. 7.1 A skeptical puzzle7.2 The argument from inconsistency; 7.3 The argument from closure; 7.4 The argument from disjunction; 7.5 The argument from safety; 8: Knowledge and belief; 8.1 The knowledge norm of belief; 8.2 Peer disagreement; 8.3 Applying the knowledge norm of belief; 8.4 Statistical inference; 8.5 Responses to skepticism about perceptual knowledge; 9: Knowledge and action; 9.1 Knowledge norms of action; 9.2 Addressing objections; 9.3 Applying knowledge norms of action; 9.4 Pragmatic encroachment; 9.5 Transformative experience; 10: Knowledge and persons; 10.1 Statistical evidence. 10.2 An account of legal proof10.3 Applying knowledge standards of proof; 10.4 Racial and other profiling; 10.5 Applying the rule of consideration; Appendix: A formal semantics for epistemic vocabulary; A.1 Background; A.2 Epistemic modals and probability operators; A.3 Simple sentences; A.4 Indicative conditionals; A.5 Other logical operators; References; Index. Sarah Moss argues that in addition to full beliefs, credences can constitute knowledge. She introduces the notion of probabilistic content and shows how it plays a central role not only in epistemology, but in the philosophy of mind and language. Just you can believe and assert propositions, you can believe and assert probabilistic contents. Probabilities. http://id.loc.gov/authorities/subjects/sh85107090 Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Probability https://id.nlm.nih.gov/mesh/D011336 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Probabilités. Logique symbolique et mathématique. Intelligence artificielle. probability. aat artificial intelligence. aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Artificial intelligence fast Logic, Symbolic and mathematical fast Probabilities fast has work: Probabilistic knowledge (Text) https://id.oclc.org/worldcat/entity/E39PCGpfTx9PyH77JRVMyXcPpP https://id.oclc.org/worldcat/ontology/hasWork Print version : 9780198792154 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1708622 Volltext |
spellingShingle | Moss, Sarah Probabilistic knowledge / Cover; Probabilistic Knowledge; Copyright; Dedication; Contents; Preface; 1: The case for probabilistic contents; 1.1 Probabilistic beliefs; 1.2 An argument for probabilistic contents of belief; 1.3 The roles played by contents of belief; 1.4 Full beliefs; 1.5 Alternative roles for contents of belief; 2: The case for probabilistic assertion; 2.1 Familiar arguments against propositional contents of assertion; 2.2 Foundational arguments for probabilistic contents of assertion; 2.3 Modeling communication; 2.4 Epistemic modals and indicative conditionals. 2.5 A test battery for probabilistic content3: Epistemic modals and probability operators; 3.1 Motivations for my semantics; 3.2 Embedded epistemic vocabulary; 3.3 Challenges for other theories; 3.4 A semantics for epistemic modals and probability operators; 3.5 A semantics for simple sentences; 3.6 The relationship between credence and full belief; 4: Indicative conditionals; 4.1 Probabilities of conditionals as conditional probabilities; 4.2 A semantics for conditionals; 4.3 Why probabilities of conditionals are not conditional probabilities; 4.4 A semantics for other logical operators. 4.5 The pragmatics of epistemic vocabulary5: The case for probabilistic knowledge; 5.1 The thesis that probabilistic beliefs can be knowledge; 5.2 Testimony; 5.3 Perception; 5.4 Arguments for probabilistic contents of experience; 5.5 Other sources of knowledge; 5.6 Justified true belief without knowledge; 5.7 Traditional theories of knowledge; 5.8 An alternative mental state?; 5.9 Applications; 6: Factivity; 6.1 Alternatives to probabilistic knowledge?; 6.2 The contents of knowledge ascriptions; 6.3 Frequently asked questions; 6.4 Relativism; 6.5 Objective chance; 7: Skepticism. 7.1 A skeptical puzzle7.2 The argument from inconsistency; 7.3 The argument from closure; 7.4 The argument from disjunction; 7.5 The argument from safety; 8: Knowledge and belief; 8.1 The knowledge norm of belief; 8.2 Peer disagreement; 8.3 Applying the knowledge norm of belief; 8.4 Statistical inference; 8.5 Responses to skepticism about perceptual knowledge; 9: Knowledge and action; 9.1 Knowledge norms of action; 9.2 Addressing objections; 9.3 Applying knowledge norms of action; 9.4 Pragmatic encroachment; 9.5 Transformative experience; 10: Knowledge and persons; 10.1 Statistical evidence. 10.2 An account of legal proof10.3 Applying knowledge standards of proof; 10.4 Racial and other profiling; 10.5 Applying the rule of consideration; Appendix: A formal semantics for epistemic vocabulary; A.1 Background; A.2 Epistemic modals and probability operators; A.3 Simple sentences; A.4 Indicative conditionals; A.5 Other logical operators; References; Index. Probabilities. http://id.loc.gov/authorities/subjects/sh85107090 Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Probability https://id.nlm.nih.gov/mesh/D011336 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Probabilités. Logique symbolique et mathématique. Intelligence artificielle. probability. aat artificial intelligence. aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Artificial intelligence fast Logic, Symbolic and mathematical fast Probabilities fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85107090 http://id.loc.gov/authorities/subjects/sh85078115 http://id.loc.gov/authorities/subjects/sh85008180 https://id.nlm.nih.gov/mesh/D011336 https://id.nlm.nih.gov/mesh/D001185 |
title | Probabilistic knowledge / |
title_auth | Probabilistic knowledge / |
title_exact_search | Probabilistic knowledge / |
title_full | Probabilistic knowledge / Sarah Moss. |
title_fullStr | Probabilistic knowledge / Sarah Moss. |
title_full_unstemmed | Probabilistic knowledge / Sarah Moss. |
title_short | Probabilistic knowledge / |
title_sort | probabilistic knowledge |
topic | Probabilities. http://id.loc.gov/authorities/subjects/sh85107090 Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Probability https://id.nlm.nih.gov/mesh/D011336 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Probabilités. Logique symbolique et mathématique. Intelligence artificielle. probability. aat artificial intelligence. aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Artificial intelligence fast Logic, Symbolic and mathematical fast Probabilities fast |
topic_facet | Probabilities. Logic, Symbolic and mathematical. Artificial intelligence. Probability Artificial Intelligence Probabilités. Logique symbolique et mathématique. Intelligence artificielle. probability. artificial intelligence. MATHEMATICS Applied. MATHEMATICS Probability & Statistics General. Artificial intelligence Logic, Symbolic and mathematical Probabilities |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1708622 |
work_keys_str_mv | AT mosssarah probabilisticknowledge |