Solutions to Problems in Heat Transfer :: Transient Conduction or Unsteady Conduction /
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hamburg :
Diplomica Verlag,
2017.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (104 pages) |
ISBN: | 9783960676232 3960676239 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1012882136 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 171125s2017 gw o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d MERUC |d YDX |d N$T |d OCLCF |d OCLCQ |d LVT |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 1012814022 | ||
020 | |a 9783960676232 |q (electronic bk.) | ||
020 | |a 3960676239 |q (electronic bk.) | ||
020 | |z 3960671237 | ||
020 | |z 9783960671237 | ||
035 | |a (OCoLC)1012882136 |z (OCoLC)1012814022 | ||
050 | 4 | |a QC320 | |
072 | 7 | |a TEC |x 009000 |2 bisacsh | |
072 | 7 | |a TEC |x 035000 |2 bisacsh | |
072 | 7 | |a TEC |x 009070 |2 bisacsh | |
082 | 7 | |a 621.4022 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Elmardi, Osama Mohammed, |e author. | |
245 | 1 | 0 | |a Solutions to Problems in Heat Transfer : |b Transient Conduction or Unsteady Conduction / |c Osama Mohammed Elmardi. |
260 | |a Hamburg : |b Diplomica Verlag, |c 2017. | ||
300 | |a 1 online resource (104 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Solutions to Problems in Heat Transfer. Transient Conduction or Unsteady Conduction -- Dedication -- Acknowledgement -- Preface -- Contents -- Chapter One: Introduction -- 1.1 General Introduction -- 1.2 Definition of Lumped Capacity or Capacitance System -- 1.3 Characteristic Linear Dimensions of Different Geometries -- 1.4 Derivation of Equations of Lumped Capacitance System -- 1.5 Solved Examples -- Chapter Two: Time Constant and Response of Temperature MeasuringInstruments -- 2.1 Introduction -- 2.2 Solved Examples -- Chapter Three: Transient Heat Conduction in Solids with Finite Conduction and Convective Resistances -- 3.1 Introduction -- 3.2 Solved Examples -- Chapter Four: Transient Heat conduction in semi -- infinite solids -- 4.1 Introduction -- 4.2 Penetration Depth and Penetration Time -- 4.3 Solved Examples -- Chapter Five: Systems with Periodic Variation of Surface Temperature -- 5.1 Introduction -- 5.2 Solved Examples -- Chapter Six: Transient Conduction with Given Temperature Distribution -- 6.1 Introduction -- 6.2 Solved Examples -- Chapter Seven: Additional Solved Examples in Lumped Capacitance System -- 7.1 Example (1): Determination of Temperature and Rate of Coolingof a Steel Ball -- 7.2 Example (2): Calculation of the Time Required to Cool a Thin Copper Plate -- 7.3 Example (3): Determining the Conditions under which the Contact Surface Remains at Constant Temperature -- 7.4 Example (4): Calculation of the Time Required for the Plate to Reach a Given Temperature -- 7.5 Example (5): Determination of the Time Required for the Plate to Reach a Given Temperature -- 7.6 Example (6): Determining the Temperature of a Solid Copper Sphere at a Given Time after the Immersion in a Well -- Stirred Fluid -- 7.7 Example (7): Determination of the Heat Transfer Coefficient -- 7.8 Example (8): Determination of the Heat Transfer Coefficient. | |
505 | 8 | |a 7.9 Example (9): Calculation of the Initial Rate of Cooling of a Steel Ball -- 7.10 Example (10): Determination of the Maximum Speed of a Cylindrical Ingot inside a Furnace -- 7.11 Example (11): Determining the Time Required to Cool a Mild Steel Sphere, the Instantaneous Heat Transfer Rate, and the Total Energy Transfer -- 7.12 Example (12): Estimation of the Time Required to Cool a Decorative Plastic Film on Copper Sphere to a Given Temperature using Lumped Capacitance Theory -- 7.13 Example (13): Calculation of the Time Taken to Boil an Egg -- 7.14 Example (14): Determining the Total Time Required for a Cylindrical Ingot to be heated to a Given Temperature -- Chapter Eight: Unsolved Theoretical Questions and Further Problems in Lumped Capacitance System -- 8.1 Theoretical Questions -- 8.2 Further Problems -- References -- Appendix -- About the Author. | |
650 | 0 | |a Heat |x Transmission. |0 http://id.loc.gov/authorities/subjects/sh85059767 | |
650 | 6 | |a Chaleur |x Transmission. | |
650 | 7 | |a heat transmission. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Engineering (General) |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Reference. |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Mechanical. |2 bisacsh | |
650 | 7 | |a Heat |x Transmission |2 fast | |
758 | |i has work: |a Solutions to problems in heat transfer. transient conduction or unsteady conduction (Text) |1 https://id.oclc.org/worldcat/entity/E39PD3rYkJYVqdtgQrqrr8DK3P |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Elmardi, Osama Mohammed. |t Solutions to Problems in Heat Transfer. Transient Conduction or Unsteady Conduction. |d Hamburg : Diplomica Verlag, ©2017 |z 9783960671237 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1641104 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL5150461 | ||
938 | |a EBSCOhost |b EBSC |n 1641104 | ||
938 | |a YBP Library Services |b YANK |n 15002222 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1012882136 |
---|---|
_version_ | 1816882406901153793 |
adam_text | |
any_adam_object | |
author | Elmardi, Osama Mohammed |
author_facet | Elmardi, Osama Mohammed |
author_role | aut |
author_sort | Elmardi, Osama Mohammed |
author_variant | o m e om ome |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC320 |
callnumber-raw | QC320 |
callnumber-search | QC320 |
callnumber-sort | QC 3320 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Solutions to Problems in Heat Transfer. Transient Conduction or Unsteady Conduction -- Dedication -- Acknowledgement -- Preface -- Contents -- Chapter One: Introduction -- 1.1 General Introduction -- 1.2 Definition of Lumped Capacity or Capacitance System -- 1.3 Characteristic Linear Dimensions of Different Geometries -- 1.4 Derivation of Equations of Lumped Capacitance System -- 1.5 Solved Examples -- Chapter Two: Time Constant and Response of Temperature MeasuringInstruments -- 2.1 Introduction -- 2.2 Solved Examples -- Chapter Three: Transient Heat Conduction in Solids with Finite Conduction and Convective Resistances -- 3.1 Introduction -- 3.2 Solved Examples -- Chapter Four: Transient Heat conduction in semi -- infinite solids -- 4.1 Introduction -- 4.2 Penetration Depth and Penetration Time -- 4.3 Solved Examples -- Chapter Five: Systems with Periodic Variation of Surface Temperature -- 5.1 Introduction -- 5.2 Solved Examples -- Chapter Six: Transient Conduction with Given Temperature Distribution -- 6.1 Introduction -- 6.2 Solved Examples -- Chapter Seven: Additional Solved Examples in Lumped Capacitance System -- 7.1 Example (1): Determination of Temperature and Rate of Coolingof a Steel Ball -- 7.2 Example (2): Calculation of the Time Required to Cool a Thin Copper Plate -- 7.3 Example (3): Determining the Conditions under which the Contact Surface Remains at Constant Temperature -- 7.4 Example (4): Calculation of the Time Required for the Plate to Reach a Given Temperature -- 7.5 Example (5): Determination of the Time Required for the Plate to Reach a Given Temperature -- 7.6 Example (6): Determining the Temperature of a Solid Copper Sphere at a Given Time after the Immersion in a Well -- Stirred Fluid -- 7.7 Example (7): Determination of the Heat Transfer Coefficient -- 7.8 Example (8): Determination of the Heat Transfer Coefficient. 7.9 Example (9): Calculation of the Initial Rate of Cooling of a Steel Ball -- 7.10 Example (10): Determination of the Maximum Speed of a Cylindrical Ingot inside a Furnace -- 7.11 Example (11): Determining the Time Required to Cool a Mild Steel Sphere, the Instantaneous Heat Transfer Rate, and the Total Energy Transfer -- 7.12 Example (12): Estimation of the Time Required to Cool a Decorative Plastic Film on Copper Sphere to a Given Temperature using Lumped Capacitance Theory -- 7.13 Example (13): Calculation of the Time Taken to Boil an Egg -- 7.14 Example (14): Determining the Total Time Required for a Cylindrical Ingot to be heated to a Given Temperature -- Chapter Eight: Unsolved Theoretical Questions and Further Problems in Lumped Capacitance System -- 8.1 Theoretical Questions -- 8.2 Further Problems -- References -- Appendix -- About the Author. |
ctrlnum | (OCoLC)1012882136 |
dewey-full | 621.4022 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.4022 |
dewey-search | 621.4022 |
dewey-sort | 3621.4022 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Energietechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05053cam a2200541Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-on1012882136</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">171125s2017 gw o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1012814022</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783960676232</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3960676239</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3960671237</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783960671237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012882136</subfield><subfield code="z">(OCoLC)1012814022</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC320</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">035000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009070</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.4022</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elmardi, Osama Mohammed,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solutions to Problems in Heat Transfer :</subfield><subfield code="b">Transient Conduction or Unsteady Conduction /</subfield><subfield code="c">Osama Mohammed Elmardi.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hamburg :</subfield><subfield code="b">Diplomica Verlag,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (104 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Solutions to Problems in Heat Transfer. Transient Conduction or Unsteady Conduction -- Dedication -- Acknowledgement -- Preface -- Contents -- Chapter One: Introduction -- 1.1 General Introduction -- 1.2 Definition of Lumped Capacity or Capacitance System -- 1.3 Characteristic Linear Dimensions of Different Geometries -- 1.4 Derivation of Equations of Lumped Capacitance System -- 1.5 Solved Examples -- Chapter Two: Time Constant and Response of Temperature MeasuringInstruments -- 2.1 Introduction -- 2.2 Solved Examples -- Chapter Three: Transient Heat Conduction in Solids with Finite Conduction and Convective Resistances -- 3.1 Introduction -- 3.2 Solved Examples -- Chapter Four: Transient Heat conduction in semi -- infinite solids -- 4.1 Introduction -- 4.2 Penetration Depth and Penetration Time -- 4.3 Solved Examples -- Chapter Five: Systems with Periodic Variation of Surface Temperature -- 5.1 Introduction -- 5.2 Solved Examples -- Chapter Six: Transient Conduction with Given Temperature Distribution -- 6.1 Introduction -- 6.2 Solved Examples -- Chapter Seven: Additional Solved Examples in Lumped Capacitance System -- 7.1 Example (1): Determination of Temperature and Rate of Coolingof a Steel Ball -- 7.2 Example (2): Calculation of the Time Required to Cool a Thin Copper Plate -- 7.3 Example (3): Determining the Conditions under which the Contact Surface Remains at Constant Temperature -- 7.4 Example (4): Calculation of the Time Required for the Plate to Reach a Given Temperature -- 7.5 Example (5): Determination of the Time Required for the Plate to Reach a Given Temperature -- 7.6 Example (6): Determining the Temperature of a Solid Copper Sphere at a Given Time after the Immersion in a Well -- Stirred Fluid -- 7.7 Example (7): Determination of the Heat Transfer Coefficient -- 7.8 Example (8): Determination of the Heat Transfer Coefficient.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.9 Example (9): Calculation of the Initial Rate of Cooling of a Steel Ball -- 7.10 Example (10): Determination of the Maximum Speed of a Cylindrical Ingot inside a Furnace -- 7.11 Example (11): Determining the Time Required to Cool a Mild Steel Sphere, the Instantaneous Heat Transfer Rate, and the Total Energy Transfer -- 7.12 Example (12): Estimation of the Time Required to Cool a Decorative Plastic Film on Copper Sphere to a Given Temperature using Lumped Capacitance Theory -- 7.13 Example (13): Calculation of the Time Taken to Boil an Egg -- 7.14 Example (14): Determining the Total Time Required for a Cylindrical Ingot to be heated to a Given Temperature -- Chapter Eight: Unsolved Theoretical Questions and Further Problems in Lumped Capacitance System -- 8.1 Theoretical Questions -- 8.2 Further Problems -- References -- Appendix -- About the Author.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Heat</subfield><subfield code="x">Transmission.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85059767</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Chaleur</subfield><subfield code="x">Transmission.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">heat transmission.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Mechanical.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat</subfield><subfield code="x">Transmission</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Solutions to problems in heat transfer. transient conduction or unsteady conduction (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PD3rYkJYVqdtgQrqrr8DK3P</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Elmardi, Osama Mohammed.</subfield><subfield code="t">Solutions to Problems in Heat Transfer. Transient Conduction or Unsteady Conduction.</subfield><subfield code="d">Hamburg : Diplomica Verlag, ©2017</subfield><subfield code="z">9783960671237</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1641104</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5150461</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1641104</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15002222</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1012882136 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:28:07Z |
institution | BVB |
isbn | 9783960676232 3960676239 |
language | English |
oclc_num | 1012882136 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (104 pages) |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Diplomica Verlag, |
record_format | marc |
spelling | Elmardi, Osama Mohammed, author. Solutions to Problems in Heat Transfer : Transient Conduction or Unsteady Conduction / Osama Mohammed Elmardi. Hamburg : Diplomica Verlag, 2017. 1 online resource (104 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Solutions to Problems in Heat Transfer. Transient Conduction or Unsteady Conduction -- Dedication -- Acknowledgement -- Preface -- Contents -- Chapter One: Introduction -- 1.1 General Introduction -- 1.2 Definition of Lumped Capacity or Capacitance System -- 1.3 Characteristic Linear Dimensions of Different Geometries -- 1.4 Derivation of Equations of Lumped Capacitance System -- 1.5 Solved Examples -- Chapter Two: Time Constant and Response of Temperature MeasuringInstruments -- 2.1 Introduction -- 2.2 Solved Examples -- Chapter Three: Transient Heat Conduction in Solids with Finite Conduction and Convective Resistances -- 3.1 Introduction -- 3.2 Solved Examples -- Chapter Four: Transient Heat conduction in semi -- infinite solids -- 4.1 Introduction -- 4.2 Penetration Depth and Penetration Time -- 4.3 Solved Examples -- Chapter Five: Systems with Periodic Variation of Surface Temperature -- 5.1 Introduction -- 5.2 Solved Examples -- Chapter Six: Transient Conduction with Given Temperature Distribution -- 6.1 Introduction -- 6.2 Solved Examples -- Chapter Seven: Additional Solved Examples in Lumped Capacitance System -- 7.1 Example (1): Determination of Temperature and Rate of Coolingof a Steel Ball -- 7.2 Example (2): Calculation of the Time Required to Cool a Thin Copper Plate -- 7.3 Example (3): Determining the Conditions under which the Contact Surface Remains at Constant Temperature -- 7.4 Example (4): Calculation of the Time Required for the Plate to Reach a Given Temperature -- 7.5 Example (5): Determination of the Time Required for the Plate to Reach a Given Temperature -- 7.6 Example (6): Determining the Temperature of a Solid Copper Sphere at a Given Time after the Immersion in a Well -- Stirred Fluid -- 7.7 Example (7): Determination of the Heat Transfer Coefficient -- 7.8 Example (8): Determination of the Heat Transfer Coefficient. 7.9 Example (9): Calculation of the Initial Rate of Cooling of a Steel Ball -- 7.10 Example (10): Determination of the Maximum Speed of a Cylindrical Ingot inside a Furnace -- 7.11 Example (11): Determining the Time Required to Cool a Mild Steel Sphere, the Instantaneous Heat Transfer Rate, and the Total Energy Transfer -- 7.12 Example (12): Estimation of the Time Required to Cool a Decorative Plastic Film on Copper Sphere to a Given Temperature using Lumped Capacitance Theory -- 7.13 Example (13): Calculation of the Time Taken to Boil an Egg -- 7.14 Example (14): Determining the Total Time Required for a Cylindrical Ingot to be heated to a Given Temperature -- Chapter Eight: Unsolved Theoretical Questions and Further Problems in Lumped Capacitance System -- 8.1 Theoretical Questions -- 8.2 Further Problems -- References -- Appendix -- About the Author. Heat Transmission. http://id.loc.gov/authorities/subjects/sh85059767 Chaleur Transmission. heat transmission. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh TECHNOLOGY & ENGINEERING Mechanical. bisacsh Heat Transmission fast has work: Solutions to problems in heat transfer. transient conduction or unsteady conduction (Text) https://id.oclc.org/worldcat/entity/E39PD3rYkJYVqdtgQrqrr8DK3P https://id.oclc.org/worldcat/ontology/hasWork Print version: Elmardi, Osama Mohammed. Solutions to Problems in Heat Transfer. Transient Conduction or Unsteady Conduction. Hamburg : Diplomica Verlag, ©2017 9783960671237 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1641104 Volltext |
spellingShingle | Elmardi, Osama Mohammed Solutions to Problems in Heat Transfer : Transient Conduction or Unsteady Conduction / Solutions to Problems in Heat Transfer. Transient Conduction or Unsteady Conduction -- Dedication -- Acknowledgement -- Preface -- Contents -- Chapter One: Introduction -- 1.1 General Introduction -- 1.2 Definition of Lumped Capacity or Capacitance System -- 1.3 Characteristic Linear Dimensions of Different Geometries -- 1.4 Derivation of Equations of Lumped Capacitance System -- 1.5 Solved Examples -- Chapter Two: Time Constant and Response of Temperature MeasuringInstruments -- 2.1 Introduction -- 2.2 Solved Examples -- Chapter Three: Transient Heat Conduction in Solids with Finite Conduction and Convective Resistances -- 3.1 Introduction -- 3.2 Solved Examples -- Chapter Four: Transient Heat conduction in semi -- infinite solids -- 4.1 Introduction -- 4.2 Penetration Depth and Penetration Time -- 4.3 Solved Examples -- Chapter Five: Systems with Periodic Variation of Surface Temperature -- 5.1 Introduction -- 5.2 Solved Examples -- Chapter Six: Transient Conduction with Given Temperature Distribution -- 6.1 Introduction -- 6.2 Solved Examples -- Chapter Seven: Additional Solved Examples in Lumped Capacitance System -- 7.1 Example (1): Determination of Temperature and Rate of Coolingof a Steel Ball -- 7.2 Example (2): Calculation of the Time Required to Cool a Thin Copper Plate -- 7.3 Example (3): Determining the Conditions under which the Contact Surface Remains at Constant Temperature -- 7.4 Example (4): Calculation of the Time Required for the Plate to Reach a Given Temperature -- 7.5 Example (5): Determination of the Time Required for the Plate to Reach a Given Temperature -- 7.6 Example (6): Determining the Temperature of a Solid Copper Sphere at a Given Time after the Immersion in a Well -- Stirred Fluid -- 7.7 Example (7): Determination of the Heat Transfer Coefficient -- 7.8 Example (8): Determination of the Heat Transfer Coefficient. 7.9 Example (9): Calculation of the Initial Rate of Cooling of a Steel Ball -- 7.10 Example (10): Determination of the Maximum Speed of a Cylindrical Ingot inside a Furnace -- 7.11 Example (11): Determining the Time Required to Cool a Mild Steel Sphere, the Instantaneous Heat Transfer Rate, and the Total Energy Transfer -- 7.12 Example (12): Estimation of the Time Required to Cool a Decorative Plastic Film on Copper Sphere to a Given Temperature using Lumped Capacitance Theory -- 7.13 Example (13): Calculation of the Time Taken to Boil an Egg -- 7.14 Example (14): Determining the Total Time Required for a Cylindrical Ingot to be heated to a Given Temperature -- Chapter Eight: Unsolved Theoretical Questions and Further Problems in Lumped Capacitance System -- 8.1 Theoretical Questions -- 8.2 Further Problems -- References -- Appendix -- About the Author. Heat Transmission. http://id.loc.gov/authorities/subjects/sh85059767 Chaleur Transmission. heat transmission. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh TECHNOLOGY & ENGINEERING Mechanical. bisacsh Heat Transmission fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85059767 |
title | Solutions to Problems in Heat Transfer : Transient Conduction or Unsteady Conduction / |
title_auth | Solutions to Problems in Heat Transfer : Transient Conduction or Unsteady Conduction / |
title_exact_search | Solutions to Problems in Heat Transfer : Transient Conduction or Unsteady Conduction / |
title_full | Solutions to Problems in Heat Transfer : Transient Conduction or Unsteady Conduction / Osama Mohammed Elmardi. |
title_fullStr | Solutions to Problems in Heat Transfer : Transient Conduction or Unsteady Conduction / Osama Mohammed Elmardi. |
title_full_unstemmed | Solutions to Problems in Heat Transfer : Transient Conduction or Unsteady Conduction / Osama Mohammed Elmardi. |
title_short | Solutions to Problems in Heat Transfer : |
title_sort | solutions to problems in heat transfer transient conduction or unsteady conduction |
title_sub | Transient Conduction or Unsteady Conduction / |
topic | Heat Transmission. http://id.loc.gov/authorities/subjects/sh85059767 Chaleur Transmission. heat transmission. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh TECHNOLOGY & ENGINEERING Mechanical. bisacsh Heat Transmission fast |
topic_facet | Heat Transmission. Chaleur Transmission. heat transmission. TECHNOLOGY & ENGINEERING Engineering (General) TECHNOLOGY & ENGINEERING Reference. TECHNOLOGY & ENGINEERING Mechanical. Heat Transmission |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1641104 |
work_keys_str_mv | AT elmardiosamamohammed solutionstoproblemsinheattransfertransientconductionorunsteadyconduction |