Principles of electron optics.: Volume one, Basic geometrical optics /
Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instruments: cathode-ray tubes; the family of electron microscopes, including the fixed-beam and scanning transmission instruments, the scanning elect...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London :
Academic Press,
©2018.
|
Ausgabe: | 2nd ed. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 DE-862 DE-863 |
Zusammenfassung: | Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instruments: cathode-ray tubes; the family of electron microscopes, including the fixed-beam and scanning transmission instruments, the scanning electron microscope and the emission microscope; electron spectrometers and mass spectrograph; image converters; electron interferometers and diffraction devices; electron welding machines; and electron-beam lithography devices. The book provides a self-contained, detailed, modern account of electron optics for anyone involved with particle beams of modest current density in the energy range up to a few mega-electronvolts. You will find all the basic equations with their derivations, recent ideas concerning aberration studies, extensive discussion of the numerical methods needed to calculate the properties of specific systems and guidance to the literature of all the topics covered. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780081022573 0081022573 9780081022566 0081022565 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1008877121 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 171101s2018 enk ob 001 0 eng d | ||
040 | |a YDX |b eng |e pn |c YDX |d N$T |d OPELS |d OCLCF |d UPM |d MERER |d OCLCQ |d D6H |d OCLCQ |d U3W |d LVT |d LQU |d UHL |d OCLCO |d OCLCA |d S2H |d OCLCO |d OCLCQ |d OCLCO |d K6U |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 1008976856 |a 1105184042 |a 1105560816 |a 1151747773 | ||
020 | |a 9780081022573 |q (electronic bk.) | ||
020 | |a 0081022573 |q (electronic bk.) | ||
020 | |a 9780081022566 |q (electronic bk.) | ||
020 | |a 0081022565 |q (electronic bk.) | ||
035 | |a (OCoLC)1008877121 |z (OCoLC)1008976856 |z (OCoLC)1105184042 |z (OCoLC)1105560816 |z (OCoLC)1151747773 | ||
050 | 4 | |a QC793.5.E62 | |
072 | 7 | |a SCI |x 021000 |2 bisacsh | |
072 | 7 | |a SCI |x 022000 |2 bisacsh | |
082 | 7 | |a 537.5/6 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Hawkes, P. W. |1 https://id.oclc.org/worldcat/entity/E39PCjGrDRGwmXmKRWjfWdXVyd |0 http://id.loc.gov/authorities/names/n79090047 | |
245 | 1 | 0 | |a Principles of electron optics. |n Volume one, |p Basic geometrical optics / |c Peter Hawkes, Erwin Kasper. |
246 | 3 | 0 | |a Basic geometrical optics |
250 | |a 2nd ed. | ||
260 | |a London : |b Academic Press, |c ©2018. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
520 | |a Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instruments: cathode-ray tubes; the family of electron microscopes, including the fixed-beam and scanning transmission instruments, the scanning electron microscope and the emission microscope; electron spectrometers and mass spectrograph; image converters; electron interferometers and diffraction devices; electron welding machines; and electron-beam lithography devices. The book provides a self-contained, detailed, modern account of electron optics for anyone involved with particle beams of modest current density in the energy range up to a few mega-electronvolts. You will find all the basic equations with their derivations, recent ideas concerning aberration studies, extensive discussion of the numerical methods needed to calculate the properties of specific systems and guidance to the literature of all the topics covered. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography. | ||
505 | 0 | |a Front Cover -- Principles of Electron Optics -- Copyright Page -- Contents -- Preface to the Second Edition -- Preface to the First Edition (Extracts) -- Acknowledgments -- 1 Introduction -- 1.1 Organization of the Subject -- 1.2 History -- I. Classical Mechanics -- 2 Relativistic Kinematics -- 2.1 The Lorentz Equation and General Considerations -- 2.2 Conservation of Energy -- 2.3 The Acceleration Potential -- 2.4 Definition of Coordinate Systems -- 2.5 Conservation of Axial Angular Momentum -- 3 Different Forms of Trajectory Equations -- 3.1 Parametric Representation in Terms of the Arc-Length -- 3.2 Relativistic Proper-Time Representation -- 3.3 The Cartesian Representation -- 3.4 Scaling Rules -- 4 Variational Principles -- 4.1 The Lagrange Formalism -- 4.2 General Rotationally Symmetric Systems -- 4.3 The Canonical Formalism -- 4.4 The Time-Independent Form of the Variational Principle -- 4.5 Static Rotationally Symmetric Systems -- 5 Hamiltonian Optics -- 5.1 Introduction of the Characteristic Function -- 5.2 The Hamilton-Jacobi Equation -- 5.3 The Analogy With Light Optics -- 5.4 The Influence of Vector Potentials -- 5.5 Gauge Transformations -- 5.6 Poincaré's Integral Invariant -- 5.7 The Problem of Uniqueness -- 5.8 Lie Algebra -- 5.9 Summary -- II. Calculation of Static Fields -- 6 Basic Concepts and Equations -- 6.1 General Considerations -- 6.2 Field Equations -- 6.3 Variational Principles -- 6.4 Rotationally Symmetric Fields -- 6.5 Planar Fields -- 7 Series Expansions -- 7.1 Azimuthal Fourier Series Expansions -- 7.1.1 Scalar Potentials -- 7.1.2 Vector Potentials -- 7.2 Radial Series Expansions -- 7.2.1 Scalar Potentials -- 7.2.2 Vector Potentials -- 7.2.3 Explicit Representations -- 7.3 Rotationally Symmetric Fields -- 7.3.1 Electrostatic Fields -- 7.3.2 Magnetic Fields -- 7.4 Multipole Fields -- 7.5 Planar Fields. | |
505 | 8 | |a 7.6 Fourier-Bessel Series Expansions -- 8 Boundary-Value Problems -- 8.1 Boundary-Value Problems in Electrostatics -- 8.2 Boundary Conditions in Magnetostatics -- 8.3 Examples of Boundary-Value Problems in Magnetostatics -- 8.3.1 Devices with Superconducting Yokes -- 8.3.2 Conventional Round Magnetic Lenses -- 8.3.3 Unconventional Round Magnetic Lenses -- 8.3.4 Toroidal Magnetic Deflection Systems -- 9 Integral Equations -- 9.1 Integral Equations for Scalar Potentials -- 9.1.1 General Theory -- 9.1.2 Dirichlet Problems -- 9.1.3 Neumann Problems -- 9.2 Problems with Interface Conditions -- 9.3 Reduction of the Dimensions -- 9.3.1 Dirichlet Problems -- 9.3.2 Interface Conditions -- 9.3.3 Planar Fields -- 9.4 Important Special Cases -- 9.4.1 Rotationally Symmetric Scalar Potentials -- 9.4.2 Rotationally Symmetric Vector Potentials -- 9.4.3 Unconventional Magnetic Lenses -- 9.4.4 Magnetic Deflection Coils -- 9.4.5 Multipole Systems -- 9.4.6 Small Perturbations of the Rotational Symmetry -- 9.5 Résumé -- 10 The Boundary-Element Method -- 10.1 Evaluation of the Fourier Integral Kernels -- 10.1.1 Introduction of Moduli -- 10.1.2 Radial Series Expansions -- 10.1.3 Recurrence Relations -- 10.1.4 Analytic Differentiation -- 10.2 Numerical Solution of One-Dimensional Integral Equations -- 10.2.1 Conventional Solution Techniques -- 10.2.2 The Charge Simulation Method -- 10.2.3 Combination with Interpolation Kernels -- 10.2.3.1 General formalism -- 10.2.3.2 Marginal positions -- 10.2.3.3 General properties -- 10.2.3.4 Solution of integral equations -- 10.2.3.5 Application to field calculations -- 10.2.4 Evaluation of Improper Integrals -- 10.3 Superposition of Aperture Fields -- 10.3.1 Electric Field of a Single Aperture -- 10.3.2 Superposition Procedure -- 10.3.3 Combination with the BEM -- 10.3.4 Extrapolation of the Number of Segments. | |
505 | 8 | |a 10.4 Three-Dimensional Dirichlet Problems -- 10.5 Examples of Applications of the Boundary-Element Method -- 11 The Finite-Difference Method (FDM) -- 11.1 The Choice of Grid -- 11.2 The Taylor Series Method -- 11.3 The Integration Method -- 11.4 Nine-Point Formulae -- 11.5 The Finite-Difference Method in Three Dimensions -- 11.6 Other Aspects of the Method -- 11.6.1 Expanding Spherical-Mesh Grid -- 11.6.2 Extrapolation on Multiple Grids -- 11.6.3 Combination with the BEM -- 11.7 Iterative Solution Techniques -- 12 The Finite-Element Method (FEM) -- 12.1 Formulation for Round Magnetic Lenses -- 12.2 Formulation for Self-adjoint Elliptic Equations -- 12.3 Solution of the Finite-Element Equations -- 12.4 Improvement of the Finite-Element Method -- 12.4.1 Introduction -- 12.4.2 Alternative Formulations -- 12.4.3 First- and Second-Order Finite-Element Methods (FOFEM and SOFEM) -- 12.5 Comparison and Combination of Different Methods -- 12.6 Deflection Units and Multipoles -- 12.7 Related Work -- 13 Field-Interpolation Techniques -- 13.1 One-Dimensional Differentiation and Interpolation -- 13.1.1 Hermite Interpolation -- 13.1.2 Cubic Splines -- 13.1.3 Differentiation Using Difference Schemes -- 13.1.4 Evaluation of Radial Series Expansions -- 13.2 Two-Dimensional Interpolation -- 13.2.1 Hermite Interpolation -- 13.2.2 The Use of Derivatives of Higher Order -- 13.3 Interpolation and the Finite-Element Method -- III. The Paraxial Approximation -- 14 Introduction to Paraxial Equations -- 15 Systems with an Axis of Rotational Symmetry -- 15.1 Derivation of the Paraxial Ray Equations from the General Ray Equations -- 15.1.1 Physical Significance of the Coordinate Rotation -- 15.2 Variational Derivation of the Paraxial Equations -- 15.3 Forms of the Paraxial Equations and General Properties of their Solutions -- 15.3.1 Reduced Coordinates. | |
505 | 8 | |a 15.3.2 Stigmatic Image Formation -- 15.3.3 The Wronskian -- 15.4 The Abbe Sine Condition and Herschel's Condition -- 15.5 Some Other Transformations -- 16 Gaussian Optics of Rotationally Symmetric Systems: Asymptotic Image Formation -- 16.1 Real and Asymptotic Image Formation -- 16.2 Asymptotic Cardinal Elements and Transfer Matrices -- 16.3 Gaussian Optics as a Projective Transformation (Collineation) -- 16.4 Use of the Angle Characteristic to Establish the Gaussian Optical Quantities -- 16.5 The Existence of Asymptotes -- 17 Gaussian Optics of Rotationally Symmetric Systems: Real Cardinal Elements -- 17.1 Real Cardinal Elements for High Magnification and High Demagnification -- 17.2 Osculating Cardinal Elements -- 17.3 Inversion of the Principal Planes -- 17.4 Approximate Formulae for the Cardinal Elements: The Thin-Lens Approximation and the Weak-Lens Approximation -- Magnetic Lenses -- Electrostatic Lenses -- 18 Electron Mirrors -- 18.1 Introduction -- 18.2 The Modified Temporal Representation -- 18.3 The Cartesian Representation -- 18.4 A Quadratic Transformation -- 19 Quadrupole Lenses -- 19.1 Paraxial Equations for Quadrupoles -- 19.2 Transaxial Lenses -- 20 Cylindrical Lenses -- IV. Aberrations -- 21 Introduction to Aberration Theory -- 22 Perturbation Theory: General Formalism -- 23 The Relation Between Permitted Types of Aberration and System Symmetry -- 23.1 Introduction -- 23.2 N=1 -- 23.2.1 N=1. Systems with a Plane of Symmetry -- 23.3 N=2 -- 23.3.1 N=2. Systems Possessing a Plane of Symmetry -- 23.4 N=3 -- 23.5 N=4 -- 23.6 N=5 and 6 -- 23.7 Systems with an Axis of Rotational Symmetry -- 23.8 Note on the Classification of Aberrations -- 23.8.1 Terms Independent of xo, yo (p=q=0): Aperture Aberrations -- 23.8.2 Terms Independent of xa, ya (r=s=0): Distortions -- 23.8.3 Intermediate Terms -- 23.8.4 Phase Shifts. | |
650 | 0 | |a Electron optics. |0 http://id.loc.gov/authorities/subjects/sh85042227 | |
650 | 2 | 2 | |a Optics and Photonics |
650 | 6 | |a Optique électronique. | |
650 | 7 | |a SCIENCE |x Physics |x Electricity. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x Electromagnetism. |2 bisacsh | |
650 | 7 | |a Electron optics |2 fast | |
700 | 1 | |a Kasper, E. |q (Erwin), |d 1933- |1 https://id.oclc.org/worldcat/entity/E39PCjJCHQjGYfGBXfkmXKJGgX |0 http://id.loc.gov/authorities/names/n88212715 | |
758 | |i has work: |a Volume one Principles of electron optics Basic geometrical optics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG9pXXXfVtKRD64vKWdcMX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9780081022566 |z 0081022565 |w (OCoLC)974699158 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1465596 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1465596 |3 Volltext |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780081022566 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780081022566 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 1465596 | ||
938 | |a YBP Library Services |b YANK |n 14948156 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1008877121 |
---|---|
_version_ | 1829095122442125312 |
adam_text | |
any_adam_object | |
author | Hawkes, P. W. |
author2 | Kasper, E. (Erwin), 1933- |
author2_role | |
author2_variant | e k ek |
author_GND | http://id.loc.gov/authorities/names/n79090047 http://id.loc.gov/authorities/names/n88212715 |
author_facet | Hawkes, P. W. Kasper, E. (Erwin), 1933- |
author_role | |
author_sort | Hawkes, P. W. |
author_variant | p w h pw pwh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC793 |
callnumber-raw | QC793.5.E62 |
callnumber-search | QC793.5.E62 |
callnumber-sort | QC 3793.5 E62 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Front Cover -- Principles of Electron Optics -- Copyright Page -- Contents -- Preface to the Second Edition -- Preface to the First Edition (Extracts) -- Acknowledgments -- 1 Introduction -- 1.1 Organization of the Subject -- 1.2 History -- I. Classical Mechanics -- 2 Relativistic Kinematics -- 2.1 The Lorentz Equation and General Considerations -- 2.2 Conservation of Energy -- 2.3 The Acceleration Potential -- 2.4 Definition of Coordinate Systems -- 2.5 Conservation of Axial Angular Momentum -- 3 Different Forms of Trajectory Equations -- 3.1 Parametric Representation in Terms of the Arc-Length -- 3.2 Relativistic Proper-Time Representation -- 3.3 The Cartesian Representation -- 3.4 Scaling Rules -- 4 Variational Principles -- 4.1 The Lagrange Formalism -- 4.2 General Rotationally Symmetric Systems -- 4.3 The Canonical Formalism -- 4.4 The Time-Independent Form of the Variational Principle -- 4.5 Static Rotationally Symmetric Systems -- 5 Hamiltonian Optics -- 5.1 Introduction of the Characteristic Function -- 5.2 The Hamilton-Jacobi Equation -- 5.3 The Analogy With Light Optics -- 5.4 The Influence of Vector Potentials -- 5.5 Gauge Transformations -- 5.6 Poincaré's Integral Invariant -- 5.7 The Problem of Uniqueness -- 5.8 Lie Algebra -- 5.9 Summary -- II. Calculation of Static Fields -- 6 Basic Concepts and Equations -- 6.1 General Considerations -- 6.2 Field Equations -- 6.3 Variational Principles -- 6.4 Rotationally Symmetric Fields -- 6.5 Planar Fields -- 7 Series Expansions -- 7.1 Azimuthal Fourier Series Expansions -- 7.1.1 Scalar Potentials -- 7.1.2 Vector Potentials -- 7.2 Radial Series Expansions -- 7.2.1 Scalar Potentials -- 7.2.2 Vector Potentials -- 7.2.3 Explicit Representations -- 7.3 Rotationally Symmetric Fields -- 7.3.1 Electrostatic Fields -- 7.3.2 Magnetic Fields -- 7.4 Multipole Fields -- 7.5 Planar Fields. 7.6 Fourier-Bessel Series Expansions -- 8 Boundary-Value Problems -- 8.1 Boundary-Value Problems in Electrostatics -- 8.2 Boundary Conditions in Magnetostatics -- 8.3 Examples of Boundary-Value Problems in Magnetostatics -- 8.3.1 Devices with Superconducting Yokes -- 8.3.2 Conventional Round Magnetic Lenses -- 8.3.3 Unconventional Round Magnetic Lenses -- 8.3.4 Toroidal Magnetic Deflection Systems -- 9 Integral Equations -- 9.1 Integral Equations for Scalar Potentials -- 9.1.1 General Theory -- 9.1.2 Dirichlet Problems -- 9.1.3 Neumann Problems -- 9.2 Problems with Interface Conditions -- 9.3 Reduction of the Dimensions -- 9.3.1 Dirichlet Problems -- 9.3.2 Interface Conditions -- 9.3.3 Planar Fields -- 9.4 Important Special Cases -- 9.4.1 Rotationally Symmetric Scalar Potentials -- 9.4.2 Rotationally Symmetric Vector Potentials -- 9.4.3 Unconventional Magnetic Lenses -- 9.4.4 Magnetic Deflection Coils -- 9.4.5 Multipole Systems -- 9.4.6 Small Perturbations of the Rotational Symmetry -- 9.5 Résumé -- 10 The Boundary-Element Method -- 10.1 Evaluation of the Fourier Integral Kernels -- 10.1.1 Introduction of Moduli -- 10.1.2 Radial Series Expansions -- 10.1.3 Recurrence Relations -- 10.1.4 Analytic Differentiation -- 10.2 Numerical Solution of One-Dimensional Integral Equations -- 10.2.1 Conventional Solution Techniques -- 10.2.2 The Charge Simulation Method -- 10.2.3 Combination with Interpolation Kernels -- 10.2.3.1 General formalism -- 10.2.3.2 Marginal positions -- 10.2.3.3 General properties -- 10.2.3.4 Solution of integral equations -- 10.2.3.5 Application to field calculations -- 10.2.4 Evaluation of Improper Integrals -- 10.3 Superposition of Aperture Fields -- 10.3.1 Electric Field of a Single Aperture -- 10.3.2 Superposition Procedure -- 10.3.3 Combination with the BEM -- 10.3.4 Extrapolation of the Number of Segments. 10.4 Three-Dimensional Dirichlet Problems -- 10.5 Examples of Applications of the Boundary-Element Method -- 11 The Finite-Difference Method (FDM) -- 11.1 The Choice of Grid -- 11.2 The Taylor Series Method -- 11.3 The Integration Method -- 11.4 Nine-Point Formulae -- 11.5 The Finite-Difference Method in Three Dimensions -- 11.6 Other Aspects of the Method -- 11.6.1 Expanding Spherical-Mesh Grid -- 11.6.2 Extrapolation on Multiple Grids -- 11.6.3 Combination with the BEM -- 11.7 Iterative Solution Techniques -- 12 The Finite-Element Method (FEM) -- 12.1 Formulation for Round Magnetic Lenses -- 12.2 Formulation for Self-adjoint Elliptic Equations -- 12.3 Solution of the Finite-Element Equations -- 12.4 Improvement of the Finite-Element Method -- 12.4.1 Introduction -- 12.4.2 Alternative Formulations -- 12.4.3 First- and Second-Order Finite-Element Methods (FOFEM and SOFEM) -- 12.5 Comparison and Combination of Different Methods -- 12.6 Deflection Units and Multipoles -- 12.7 Related Work -- 13 Field-Interpolation Techniques -- 13.1 One-Dimensional Differentiation and Interpolation -- 13.1.1 Hermite Interpolation -- 13.1.2 Cubic Splines -- 13.1.3 Differentiation Using Difference Schemes -- 13.1.4 Evaluation of Radial Series Expansions -- 13.2 Two-Dimensional Interpolation -- 13.2.1 Hermite Interpolation -- 13.2.2 The Use of Derivatives of Higher Order -- 13.3 Interpolation and the Finite-Element Method -- III. The Paraxial Approximation -- 14 Introduction to Paraxial Equations -- 15 Systems with an Axis of Rotational Symmetry -- 15.1 Derivation of the Paraxial Ray Equations from the General Ray Equations -- 15.1.1 Physical Significance of the Coordinate Rotation -- 15.2 Variational Derivation of the Paraxial Equations -- 15.3 Forms of the Paraxial Equations and General Properties of their Solutions -- 15.3.1 Reduced Coordinates. 15.3.2 Stigmatic Image Formation -- 15.3.3 The Wronskian -- 15.4 The Abbe Sine Condition and Herschel's Condition -- 15.5 Some Other Transformations -- 16 Gaussian Optics of Rotationally Symmetric Systems: Asymptotic Image Formation -- 16.1 Real and Asymptotic Image Formation -- 16.2 Asymptotic Cardinal Elements and Transfer Matrices -- 16.3 Gaussian Optics as a Projective Transformation (Collineation) -- 16.4 Use of the Angle Characteristic to Establish the Gaussian Optical Quantities -- 16.5 The Existence of Asymptotes -- 17 Gaussian Optics of Rotationally Symmetric Systems: Real Cardinal Elements -- 17.1 Real Cardinal Elements for High Magnification and High Demagnification -- 17.2 Osculating Cardinal Elements -- 17.3 Inversion of the Principal Planes -- 17.4 Approximate Formulae for the Cardinal Elements: The Thin-Lens Approximation and the Weak-Lens Approximation -- Magnetic Lenses -- Electrostatic Lenses -- 18 Electron Mirrors -- 18.1 Introduction -- 18.2 The Modified Temporal Representation -- 18.3 The Cartesian Representation -- 18.4 A Quadratic Transformation -- 19 Quadrupole Lenses -- 19.1 Paraxial Equations for Quadrupoles -- 19.2 Transaxial Lenses -- 20 Cylindrical Lenses -- IV. Aberrations -- 21 Introduction to Aberration Theory -- 22 Perturbation Theory: General Formalism -- 23 The Relation Between Permitted Types of Aberration and System Symmetry -- 23.1 Introduction -- 23.2 N=1 -- 23.2.1 N=1. Systems with a Plane of Symmetry -- 23.3 N=2 -- 23.3.1 N=2. Systems Possessing a Plane of Symmetry -- 23.4 N=3 -- 23.5 N=4 -- 23.6 N=5 and 6 -- 23.7 Systems with an Axis of Rotational Symmetry -- 23.8 Note on the Classification of Aberrations -- 23.8.1 Terms Independent of xo, yo (p=q=0): Aperture Aberrations -- 23.8.2 Terms Independent of xa, ya (r=s=0): Distortions -- 23.8.3 Intermediate Terms -- 23.8.4 Phase Shifts. |
ctrlnum | (OCoLC)1008877121 |
dewey-full | 537.5/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.5/6 |
dewey-search | 537.5/6 |
dewey-sort | 3537.5 16 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 2nd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11316cam a2200589 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1008877121</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">171101s2018 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UPM</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">LVT</subfield><subfield code="d">LQU</subfield><subfield code="d">UHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCA</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1008976856</subfield><subfield code="a">1105184042</subfield><subfield code="a">1105560816</subfield><subfield code="a">1151747773</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081022573</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0081022573</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081022566</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0081022565</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1008877121</subfield><subfield code="z">(OCoLC)1008976856</subfield><subfield code="z">(OCoLC)1105184042</subfield><subfield code="z">(OCoLC)1105560816</subfield><subfield code="z">(OCoLC)1151747773</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC793.5.E62</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">021000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">537.5/6</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hawkes, P. W.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGrDRGwmXmKRWjfWdXVyd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79090047</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of electron optics.</subfield><subfield code="n">Volume one,</subfield><subfield code="p">Basic geometrical optics /</subfield><subfield code="c">Peter Hawkes, Erwin Kasper.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Basic geometrical optics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">©2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instruments: cathode-ray tubes; the family of electron microscopes, including the fixed-beam and scanning transmission instruments, the scanning electron microscope and the emission microscope; electron spectrometers and mass spectrograph; image converters; electron interferometers and diffraction devices; electron welding machines; and electron-beam lithography devices. The book provides a self-contained, detailed, modern account of electron optics for anyone involved with particle beams of modest current density in the energy range up to a few mega-electronvolts. You will find all the basic equations with their derivations, recent ideas concerning aberration studies, extensive discussion of the numerical methods needed to calculate the properties of specific systems and guidance to the literature of all the topics covered. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- Principles of Electron Optics -- Copyright Page -- Contents -- Preface to the Second Edition -- Preface to the First Edition (Extracts) -- Acknowledgments -- 1 Introduction -- 1.1 Organization of the Subject -- 1.2 History -- I. Classical Mechanics -- 2 Relativistic Kinematics -- 2.1 The Lorentz Equation and General Considerations -- 2.2 Conservation of Energy -- 2.3 The Acceleration Potential -- 2.4 Definition of Coordinate Systems -- 2.5 Conservation of Axial Angular Momentum -- 3 Different Forms of Trajectory Equations -- 3.1 Parametric Representation in Terms of the Arc-Length -- 3.2 Relativistic Proper-Time Representation -- 3.3 The Cartesian Representation -- 3.4 Scaling Rules -- 4 Variational Principles -- 4.1 The Lagrange Formalism -- 4.2 General Rotationally Symmetric Systems -- 4.3 The Canonical Formalism -- 4.4 The Time-Independent Form of the Variational Principle -- 4.5 Static Rotationally Symmetric Systems -- 5 Hamiltonian Optics -- 5.1 Introduction of the Characteristic Function -- 5.2 The Hamilton-Jacobi Equation -- 5.3 The Analogy With Light Optics -- 5.4 The Influence of Vector Potentials -- 5.5 Gauge Transformations -- 5.6 Poincaré's Integral Invariant -- 5.7 The Problem of Uniqueness -- 5.8 Lie Algebra -- 5.9 Summary -- II. Calculation of Static Fields -- 6 Basic Concepts and Equations -- 6.1 General Considerations -- 6.2 Field Equations -- 6.3 Variational Principles -- 6.4 Rotationally Symmetric Fields -- 6.5 Planar Fields -- 7 Series Expansions -- 7.1 Azimuthal Fourier Series Expansions -- 7.1.1 Scalar Potentials -- 7.1.2 Vector Potentials -- 7.2 Radial Series Expansions -- 7.2.1 Scalar Potentials -- 7.2.2 Vector Potentials -- 7.2.3 Explicit Representations -- 7.3 Rotationally Symmetric Fields -- 7.3.1 Electrostatic Fields -- 7.3.2 Magnetic Fields -- 7.4 Multipole Fields -- 7.5 Planar Fields.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.6 Fourier-Bessel Series Expansions -- 8 Boundary-Value Problems -- 8.1 Boundary-Value Problems in Electrostatics -- 8.2 Boundary Conditions in Magnetostatics -- 8.3 Examples of Boundary-Value Problems in Magnetostatics -- 8.3.1 Devices with Superconducting Yokes -- 8.3.2 Conventional Round Magnetic Lenses -- 8.3.3 Unconventional Round Magnetic Lenses -- 8.3.4 Toroidal Magnetic Deflection Systems -- 9 Integral Equations -- 9.1 Integral Equations for Scalar Potentials -- 9.1.1 General Theory -- 9.1.2 Dirichlet Problems -- 9.1.3 Neumann Problems -- 9.2 Problems with Interface Conditions -- 9.3 Reduction of the Dimensions -- 9.3.1 Dirichlet Problems -- 9.3.2 Interface Conditions -- 9.3.3 Planar Fields -- 9.4 Important Special Cases -- 9.4.1 Rotationally Symmetric Scalar Potentials -- 9.4.2 Rotationally Symmetric Vector Potentials -- 9.4.3 Unconventional Magnetic Lenses -- 9.4.4 Magnetic Deflection Coils -- 9.4.5 Multipole Systems -- 9.4.6 Small Perturbations of the Rotational Symmetry -- 9.5 Résumé -- 10 The Boundary-Element Method -- 10.1 Evaluation of the Fourier Integral Kernels -- 10.1.1 Introduction of Moduli -- 10.1.2 Radial Series Expansions -- 10.1.3 Recurrence Relations -- 10.1.4 Analytic Differentiation -- 10.2 Numerical Solution of One-Dimensional Integral Equations -- 10.2.1 Conventional Solution Techniques -- 10.2.2 The Charge Simulation Method -- 10.2.3 Combination with Interpolation Kernels -- 10.2.3.1 General formalism -- 10.2.3.2 Marginal positions -- 10.2.3.3 General properties -- 10.2.3.4 Solution of integral equations -- 10.2.3.5 Application to field calculations -- 10.2.4 Evaluation of Improper Integrals -- 10.3 Superposition of Aperture Fields -- 10.3.1 Electric Field of a Single Aperture -- 10.3.2 Superposition Procedure -- 10.3.3 Combination with the BEM -- 10.3.4 Extrapolation of the Number of Segments.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.4 Three-Dimensional Dirichlet Problems -- 10.5 Examples of Applications of the Boundary-Element Method -- 11 The Finite-Difference Method (FDM) -- 11.1 The Choice of Grid -- 11.2 The Taylor Series Method -- 11.3 The Integration Method -- 11.4 Nine-Point Formulae -- 11.5 The Finite-Difference Method in Three Dimensions -- 11.6 Other Aspects of the Method -- 11.6.1 Expanding Spherical-Mesh Grid -- 11.6.2 Extrapolation on Multiple Grids -- 11.6.3 Combination with the BEM -- 11.7 Iterative Solution Techniques -- 12 The Finite-Element Method (FEM) -- 12.1 Formulation for Round Magnetic Lenses -- 12.2 Formulation for Self-adjoint Elliptic Equations -- 12.3 Solution of the Finite-Element Equations -- 12.4 Improvement of the Finite-Element Method -- 12.4.1 Introduction -- 12.4.2 Alternative Formulations -- 12.4.3 First- and Second-Order Finite-Element Methods (FOFEM and SOFEM) -- 12.5 Comparison and Combination of Different Methods -- 12.6 Deflection Units and Multipoles -- 12.7 Related Work -- 13 Field-Interpolation Techniques -- 13.1 One-Dimensional Differentiation and Interpolation -- 13.1.1 Hermite Interpolation -- 13.1.2 Cubic Splines -- 13.1.3 Differentiation Using Difference Schemes -- 13.1.4 Evaluation of Radial Series Expansions -- 13.2 Two-Dimensional Interpolation -- 13.2.1 Hermite Interpolation -- 13.2.2 The Use of Derivatives of Higher Order -- 13.3 Interpolation and the Finite-Element Method -- III. The Paraxial Approximation -- 14 Introduction to Paraxial Equations -- 15 Systems with an Axis of Rotational Symmetry -- 15.1 Derivation of the Paraxial Ray Equations from the General Ray Equations -- 15.1.1 Physical Significance of the Coordinate Rotation -- 15.2 Variational Derivation of the Paraxial Equations -- 15.3 Forms of the Paraxial Equations and General Properties of their Solutions -- 15.3.1 Reduced Coordinates.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">15.3.2 Stigmatic Image Formation -- 15.3.3 The Wronskian -- 15.4 The Abbe Sine Condition and Herschel's Condition -- 15.5 Some Other Transformations -- 16 Gaussian Optics of Rotationally Symmetric Systems: Asymptotic Image Formation -- 16.1 Real and Asymptotic Image Formation -- 16.2 Asymptotic Cardinal Elements and Transfer Matrices -- 16.3 Gaussian Optics as a Projective Transformation (Collineation) -- 16.4 Use of the Angle Characteristic to Establish the Gaussian Optical Quantities -- 16.5 The Existence of Asymptotes -- 17 Gaussian Optics of Rotationally Symmetric Systems: Real Cardinal Elements -- 17.1 Real Cardinal Elements for High Magnification and High Demagnification -- 17.2 Osculating Cardinal Elements -- 17.3 Inversion of the Principal Planes -- 17.4 Approximate Formulae for the Cardinal Elements: The Thin-Lens Approximation and the Weak-Lens Approximation -- Magnetic Lenses -- Electrostatic Lenses -- 18 Electron Mirrors -- 18.1 Introduction -- 18.2 The Modified Temporal Representation -- 18.3 The Cartesian Representation -- 18.4 A Quadratic Transformation -- 19 Quadrupole Lenses -- 19.1 Paraxial Equations for Quadrupoles -- 19.2 Transaxial Lenses -- 20 Cylindrical Lenses -- IV. Aberrations -- 21 Introduction to Aberration Theory -- 22 Perturbation Theory: General Formalism -- 23 The Relation Between Permitted Types of Aberration and System Symmetry -- 23.1 Introduction -- 23.2 N=1 -- 23.2.1 N=1. Systems with a Plane of Symmetry -- 23.3 N=2 -- 23.3.1 N=2. Systems Possessing a Plane of Symmetry -- 23.4 N=3 -- 23.5 N=4 -- 23.6 N=5 and 6 -- 23.7 Systems with an Axis of Rotational Symmetry -- 23.8 Note on the Classification of Aberrations -- 23.8.1 Terms Independent of xo, yo (p=q=0): Aperture Aberrations -- 23.8.2 Terms Independent of xa, ya (r=s=0): Distortions -- 23.8.3 Intermediate Terms -- 23.8.4 Phase Shifts.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electron optics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85042227</subfield></datafield><datafield tag="650" ind1="2" ind2="2"><subfield code="a">Optics and Photonics</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Optique électronique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Electricity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Electromagnetism.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electron optics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kasper, E.</subfield><subfield code="q">(Erwin),</subfield><subfield code="d">1933-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjJCHQjGYfGBXfkmXKJGgX</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88212715</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Volume one Principles of electron optics Basic geometrical optics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG9pXXXfVtKRD64vKWdcMX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9780081022566</subfield><subfield code="z">0081022565</subfield><subfield code="w">(OCoLC)974699158</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1465596</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1465596</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780081022566</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780081022566</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1465596</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14948156</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1008877121 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:44:00Z |
institution | BVB |
isbn | 9780081022573 0081022573 9780081022566 0081022565 |
language | English |
oclc_num | 1008877121 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Academic Press, |
record_format | marc |
spelling | Hawkes, P. W. https://id.oclc.org/worldcat/entity/E39PCjGrDRGwmXmKRWjfWdXVyd http://id.loc.gov/authorities/names/n79090047 Principles of electron optics. Volume one, Basic geometrical optics / Peter Hawkes, Erwin Kasper. Basic geometrical optics 2nd ed. London : Academic Press, ©2018. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instruments: cathode-ray tubes; the family of electron microscopes, including the fixed-beam and scanning transmission instruments, the scanning electron microscope and the emission microscope; electron spectrometers and mass spectrograph; image converters; electron interferometers and diffraction devices; electron welding machines; and electron-beam lithography devices. The book provides a self-contained, detailed, modern account of electron optics for anyone involved with particle beams of modest current density in the energy range up to a few mega-electronvolts. You will find all the basic equations with their derivations, recent ideas concerning aberration studies, extensive discussion of the numerical methods needed to calculate the properties of specific systems and guidance to the literature of all the topics covered. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography. Front Cover -- Principles of Electron Optics -- Copyright Page -- Contents -- Preface to the Second Edition -- Preface to the First Edition (Extracts) -- Acknowledgments -- 1 Introduction -- 1.1 Organization of the Subject -- 1.2 History -- I. Classical Mechanics -- 2 Relativistic Kinematics -- 2.1 The Lorentz Equation and General Considerations -- 2.2 Conservation of Energy -- 2.3 The Acceleration Potential -- 2.4 Definition of Coordinate Systems -- 2.5 Conservation of Axial Angular Momentum -- 3 Different Forms of Trajectory Equations -- 3.1 Parametric Representation in Terms of the Arc-Length -- 3.2 Relativistic Proper-Time Representation -- 3.3 The Cartesian Representation -- 3.4 Scaling Rules -- 4 Variational Principles -- 4.1 The Lagrange Formalism -- 4.2 General Rotationally Symmetric Systems -- 4.3 The Canonical Formalism -- 4.4 The Time-Independent Form of the Variational Principle -- 4.5 Static Rotationally Symmetric Systems -- 5 Hamiltonian Optics -- 5.1 Introduction of the Characteristic Function -- 5.2 The Hamilton-Jacobi Equation -- 5.3 The Analogy With Light Optics -- 5.4 The Influence of Vector Potentials -- 5.5 Gauge Transformations -- 5.6 Poincaré's Integral Invariant -- 5.7 The Problem of Uniqueness -- 5.8 Lie Algebra -- 5.9 Summary -- II. Calculation of Static Fields -- 6 Basic Concepts and Equations -- 6.1 General Considerations -- 6.2 Field Equations -- 6.3 Variational Principles -- 6.4 Rotationally Symmetric Fields -- 6.5 Planar Fields -- 7 Series Expansions -- 7.1 Azimuthal Fourier Series Expansions -- 7.1.1 Scalar Potentials -- 7.1.2 Vector Potentials -- 7.2 Radial Series Expansions -- 7.2.1 Scalar Potentials -- 7.2.2 Vector Potentials -- 7.2.3 Explicit Representations -- 7.3 Rotationally Symmetric Fields -- 7.3.1 Electrostatic Fields -- 7.3.2 Magnetic Fields -- 7.4 Multipole Fields -- 7.5 Planar Fields. 7.6 Fourier-Bessel Series Expansions -- 8 Boundary-Value Problems -- 8.1 Boundary-Value Problems in Electrostatics -- 8.2 Boundary Conditions in Magnetostatics -- 8.3 Examples of Boundary-Value Problems in Magnetostatics -- 8.3.1 Devices with Superconducting Yokes -- 8.3.2 Conventional Round Magnetic Lenses -- 8.3.3 Unconventional Round Magnetic Lenses -- 8.3.4 Toroidal Magnetic Deflection Systems -- 9 Integral Equations -- 9.1 Integral Equations for Scalar Potentials -- 9.1.1 General Theory -- 9.1.2 Dirichlet Problems -- 9.1.3 Neumann Problems -- 9.2 Problems with Interface Conditions -- 9.3 Reduction of the Dimensions -- 9.3.1 Dirichlet Problems -- 9.3.2 Interface Conditions -- 9.3.3 Planar Fields -- 9.4 Important Special Cases -- 9.4.1 Rotationally Symmetric Scalar Potentials -- 9.4.2 Rotationally Symmetric Vector Potentials -- 9.4.3 Unconventional Magnetic Lenses -- 9.4.4 Magnetic Deflection Coils -- 9.4.5 Multipole Systems -- 9.4.6 Small Perturbations of the Rotational Symmetry -- 9.5 Résumé -- 10 The Boundary-Element Method -- 10.1 Evaluation of the Fourier Integral Kernels -- 10.1.1 Introduction of Moduli -- 10.1.2 Radial Series Expansions -- 10.1.3 Recurrence Relations -- 10.1.4 Analytic Differentiation -- 10.2 Numerical Solution of One-Dimensional Integral Equations -- 10.2.1 Conventional Solution Techniques -- 10.2.2 The Charge Simulation Method -- 10.2.3 Combination with Interpolation Kernels -- 10.2.3.1 General formalism -- 10.2.3.2 Marginal positions -- 10.2.3.3 General properties -- 10.2.3.4 Solution of integral equations -- 10.2.3.5 Application to field calculations -- 10.2.4 Evaluation of Improper Integrals -- 10.3 Superposition of Aperture Fields -- 10.3.1 Electric Field of a Single Aperture -- 10.3.2 Superposition Procedure -- 10.3.3 Combination with the BEM -- 10.3.4 Extrapolation of the Number of Segments. 10.4 Three-Dimensional Dirichlet Problems -- 10.5 Examples of Applications of the Boundary-Element Method -- 11 The Finite-Difference Method (FDM) -- 11.1 The Choice of Grid -- 11.2 The Taylor Series Method -- 11.3 The Integration Method -- 11.4 Nine-Point Formulae -- 11.5 The Finite-Difference Method in Three Dimensions -- 11.6 Other Aspects of the Method -- 11.6.1 Expanding Spherical-Mesh Grid -- 11.6.2 Extrapolation on Multiple Grids -- 11.6.3 Combination with the BEM -- 11.7 Iterative Solution Techniques -- 12 The Finite-Element Method (FEM) -- 12.1 Formulation for Round Magnetic Lenses -- 12.2 Formulation for Self-adjoint Elliptic Equations -- 12.3 Solution of the Finite-Element Equations -- 12.4 Improvement of the Finite-Element Method -- 12.4.1 Introduction -- 12.4.2 Alternative Formulations -- 12.4.3 First- and Second-Order Finite-Element Methods (FOFEM and SOFEM) -- 12.5 Comparison and Combination of Different Methods -- 12.6 Deflection Units and Multipoles -- 12.7 Related Work -- 13 Field-Interpolation Techniques -- 13.1 One-Dimensional Differentiation and Interpolation -- 13.1.1 Hermite Interpolation -- 13.1.2 Cubic Splines -- 13.1.3 Differentiation Using Difference Schemes -- 13.1.4 Evaluation of Radial Series Expansions -- 13.2 Two-Dimensional Interpolation -- 13.2.1 Hermite Interpolation -- 13.2.2 The Use of Derivatives of Higher Order -- 13.3 Interpolation and the Finite-Element Method -- III. The Paraxial Approximation -- 14 Introduction to Paraxial Equations -- 15 Systems with an Axis of Rotational Symmetry -- 15.1 Derivation of the Paraxial Ray Equations from the General Ray Equations -- 15.1.1 Physical Significance of the Coordinate Rotation -- 15.2 Variational Derivation of the Paraxial Equations -- 15.3 Forms of the Paraxial Equations and General Properties of their Solutions -- 15.3.1 Reduced Coordinates. 15.3.2 Stigmatic Image Formation -- 15.3.3 The Wronskian -- 15.4 The Abbe Sine Condition and Herschel's Condition -- 15.5 Some Other Transformations -- 16 Gaussian Optics of Rotationally Symmetric Systems: Asymptotic Image Formation -- 16.1 Real and Asymptotic Image Formation -- 16.2 Asymptotic Cardinal Elements and Transfer Matrices -- 16.3 Gaussian Optics as a Projective Transformation (Collineation) -- 16.4 Use of the Angle Characteristic to Establish the Gaussian Optical Quantities -- 16.5 The Existence of Asymptotes -- 17 Gaussian Optics of Rotationally Symmetric Systems: Real Cardinal Elements -- 17.1 Real Cardinal Elements for High Magnification and High Demagnification -- 17.2 Osculating Cardinal Elements -- 17.3 Inversion of the Principal Planes -- 17.4 Approximate Formulae for the Cardinal Elements: The Thin-Lens Approximation and the Weak-Lens Approximation -- Magnetic Lenses -- Electrostatic Lenses -- 18 Electron Mirrors -- 18.1 Introduction -- 18.2 The Modified Temporal Representation -- 18.3 The Cartesian Representation -- 18.4 A Quadratic Transformation -- 19 Quadrupole Lenses -- 19.1 Paraxial Equations for Quadrupoles -- 19.2 Transaxial Lenses -- 20 Cylindrical Lenses -- IV. Aberrations -- 21 Introduction to Aberration Theory -- 22 Perturbation Theory: General Formalism -- 23 The Relation Between Permitted Types of Aberration and System Symmetry -- 23.1 Introduction -- 23.2 N=1 -- 23.2.1 N=1. Systems with a Plane of Symmetry -- 23.3 N=2 -- 23.3.1 N=2. Systems Possessing a Plane of Symmetry -- 23.4 N=3 -- 23.5 N=4 -- 23.6 N=5 and 6 -- 23.7 Systems with an Axis of Rotational Symmetry -- 23.8 Note on the Classification of Aberrations -- 23.8.1 Terms Independent of xo, yo (p=q=0): Aperture Aberrations -- 23.8.2 Terms Independent of xa, ya (r=s=0): Distortions -- 23.8.3 Intermediate Terms -- 23.8.4 Phase Shifts. Electron optics. http://id.loc.gov/authorities/subjects/sh85042227 Optics and Photonics Optique électronique. SCIENCE Physics Electricity. bisacsh SCIENCE Physics Electromagnetism. bisacsh Electron optics fast Kasper, E. (Erwin), 1933- https://id.oclc.org/worldcat/entity/E39PCjJCHQjGYfGBXfkmXKJGgX http://id.loc.gov/authorities/names/n88212715 has work: Volume one Principles of electron optics Basic geometrical optics (Text) https://id.oclc.org/worldcat/entity/E39PCG9pXXXfVtKRD64vKWdcMX https://id.oclc.org/worldcat/ontology/hasWork Print version: 9780081022566 0081022565 (OCoLC)974699158 |
spellingShingle | Hawkes, P. W. Principles of electron optics. Front Cover -- Principles of Electron Optics -- Copyright Page -- Contents -- Preface to the Second Edition -- Preface to the First Edition (Extracts) -- Acknowledgments -- 1 Introduction -- 1.1 Organization of the Subject -- 1.2 History -- I. Classical Mechanics -- 2 Relativistic Kinematics -- 2.1 The Lorentz Equation and General Considerations -- 2.2 Conservation of Energy -- 2.3 The Acceleration Potential -- 2.4 Definition of Coordinate Systems -- 2.5 Conservation of Axial Angular Momentum -- 3 Different Forms of Trajectory Equations -- 3.1 Parametric Representation in Terms of the Arc-Length -- 3.2 Relativistic Proper-Time Representation -- 3.3 The Cartesian Representation -- 3.4 Scaling Rules -- 4 Variational Principles -- 4.1 The Lagrange Formalism -- 4.2 General Rotationally Symmetric Systems -- 4.3 The Canonical Formalism -- 4.4 The Time-Independent Form of the Variational Principle -- 4.5 Static Rotationally Symmetric Systems -- 5 Hamiltonian Optics -- 5.1 Introduction of the Characteristic Function -- 5.2 The Hamilton-Jacobi Equation -- 5.3 The Analogy With Light Optics -- 5.4 The Influence of Vector Potentials -- 5.5 Gauge Transformations -- 5.6 Poincaré's Integral Invariant -- 5.7 The Problem of Uniqueness -- 5.8 Lie Algebra -- 5.9 Summary -- II. Calculation of Static Fields -- 6 Basic Concepts and Equations -- 6.1 General Considerations -- 6.2 Field Equations -- 6.3 Variational Principles -- 6.4 Rotationally Symmetric Fields -- 6.5 Planar Fields -- 7 Series Expansions -- 7.1 Azimuthal Fourier Series Expansions -- 7.1.1 Scalar Potentials -- 7.1.2 Vector Potentials -- 7.2 Radial Series Expansions -- 7.2.1 Scalar Potentials -- 7.2.2 Vector Potentials -- 7.2.3 Explicit Representations -- 7.3 Rotationally Symmetric Fields -- 7.3.1 Electrostatic Fields -- 7.3.2 Magnetic Fields -- 7.4 Multipole Fields -- 7.5 Planar Fields. 7.6 Fourier-Bessel Series Expansions -- 8 Boundary-Value Problems -- 8.1 Boundary-Value Problems in Electrostatics -- 8.2 Boundary Conditions in Magnetostatics -- 8.3 Examples of Boundary-Value Problems in Magnetostatics -- 8.3.1 Devices with Superconducting Yokes -- 8.3.2 Conventional Round Magnetic Lenses -- 8.3.3 Unconventional Round Magnetic Lenses -- 8.3.4 Toroidal Magnetic Deflection Systems -- 9 Integral Equations -- 9.1 Integral Equations for Scalar Potentials -- 9.1.1 General Theory -- 9.1.2 Dirichlet Problems -- 9.1.3 Neumann Problems -- 9.2 Problems with Interface Conditions -- 9.3 Reduction of the Dimensions -- 9.3.1 Dirichlet Problems -- 9.3.2 Interface Conditions -- 9.3.3 Planar Fields -- 9.4 Important Special Cases -- 9.4.1 Rotationally Symmetric Scalar Potentials -- 9.4.2 Rotationally Symmetric Vector Potentials -- 9.4.3 Unconventional Magnetic Lenses -- 9.4.4 Magnetic Deflection Coils -- 9.4.5 Multipole Systems -- 9.4.6 Small Perturbations of the Rotational Symmetry -- 9.5 Résumé -- 10 The Boundary-Element Method -- 10.1 Evaluation of the Fourier Integral Kernels -- 10.1.1 Introduction of Moduli -- 10.1.2 Radial Series Expansions -- 10.1.3 Recurrence Relations -- 10.1.4 Analytic Differentiation -- 10.2 Numerical Solution of One-Dimensional Integral Equations -- 10.2.1 Conventional Solution Techniques -- 10.2.2 The Charge Simulation Method -- 10.2.3 Combination with Interpolation Kernels -- 10.2.3.1 General formalism -- 10.2.3.2 Marginal positions -- 10.2.3.3 General properties -- 10.2.3.4 Solution of integral equations -- 10.2.3.5 Application to field calculations -- 10.2.4 Evaluation of Improper Integrals -- 10.3 Superposition of Aperture Fields -- 10.3.1 Electric Field of a Single Aperture -- 10.3.2 Superposition Procedure -- 10.3.3 Combination with the BEM -- 10.3.4 Extrapolation of the Number of Segments. 10.4 Three-Dimensional Dirichlet Problems -- 10.5 Examples of Applications of the Boundary-Element Method -- 11 The Finite-Difference Method (FDM) -- 11.1 The Choice of Grid -- 11.2 The Taylor Series Method -- 11.3 The Integration Method -- 11.4 Nine-Point Formulae -- 11.5 The Finite-Difference Method in Three Dimensions -- 11.6 Other Aspects of the Method -- 11.6.1 Expanding Spherical-Mesh Grid -- 11.6.2 Extrapolation on Multiple Grids -- 11.6.3 Combination with the BEM -- 11.7 Iterative Solution Techniques -- 12 The Finite-Element Method (FEM) -- 12.1 Formulation for Round Magnetic Lenses -- 12.2 Formulation for Self-adjoint Elliptic Equations -- 12.3 Solution of the Finite-Element Equations -- 12.4 Improvement of the Finite-Element Method -- 12.4.1 Introduction -- 12.4.2 Alternative Formulations -- 12.4.3 First- and Second-Order Finite-Element Methods (FOFEM and SOFEM) -- 12.5 Comparison and Combination of Different Methods -- 12.6 Deflection Units and Multipoles -- 12.7 Related Work -- 13 Field-Interpolation Techniques -- 13.1 One-Dimensional Differentiation and Interpolation -- 13.1.1 Hermite Interpolation -- 13.1.2 Cubic Splines -- 13.1.3 Differentiation Using Difference Schemes -- 13.1.4 Evaluation of Radial Series Expansions -- 13.2 Two-Dimensional Interpolation -- 13.2.1 Hermite Interpolation -- 13.2.2 The Use of Derivatives of Higher Order -- 13.3 Interpolation and the Finite-Element Method -- III. The Paraxial Approximation -- 14 Introduction to Paraxial Equations -- 15 Systems with an Axis of Rotational Symmetry -- 15.1 Derivation of the Paraxial Ray Equations from the General Ray Equations -- 15.1.1 Physical Significance of the Coordinate Rotation -- 15.2 Variational Derivation of the Paraxial Equations -- 15.3 Forms of the Paraxial Equations and General Properties of their Solutions -- 15.3.1 Reduced Coordinates. 15.3.2 Stigmatic Image Formation -- 15.3.3 The Wronskian -- 15.4 The Abbe Sine Condition and Herschel's Condition -- 15.5 Some Other Transformations -- 16 Gaussian Optics of Rotationally Symmetric Systems: Asymptotic Image Formation -- 16.1 Real and Asymptotic Image Formation -- 16.2 Asymptotic Cardinal Elements and Transfer Matrices -- 16.3 Gaussian Optics as a Projective Transformation (Collineation) -- 16.4 Use of the Angle Characteristic to Establish the Gaussian Optical Quantities -- 16.5 The Existence of Asymptotes -- 17 Gaussian Optics of Rotationally Symmetric Systems: Real Cardinal Elements -- 17.1 Real Cardinal Elements for High Magnification and High Demagnification -- 17.2 Osculating Cardinal Elements -- 17.3 Inversion of the Principal Planes -- 17.4 Approximate Formulae for the Cardinal Elements: The Thin-Lens Approximation and the Weak-Lens Approximation -- Magnetic Lenses -- Electrostatic Lenses -- 18 Electron Mirrors -- 18.1 Introduction -- 18.2 The Modified Temporal Representation -- 18.3 The Cartesian Representation -- 18.4 A Quadratic Transformation -- 19 Quadrupole Lenses -- 19.1 Paraxial Equations for Quadrupoles -- 19.2 Transaxial Lenses -- 20 Cylindrical Lenses -- IV. Aberrations -- 21 Introduction to Aberration Theory -- 22 Perturbation Theory: General Formalism -- 23 The Relation Between Permitted Types of Aberration and System Symmetry -- 23.1 Introduction -- 23.2 N=1 -- 23.2.1 N=1. Systems with a Plane of Symmetry -- 23.3 N=2 -- 23.3.1 N=2. Systems Possessing a Plane of Symmetry -- 23.4 N=3 -- 23.5 N=4 -- 23.6 N=5 and 6 -- 23.7 Systems with an Axis of Rotational Symmetry -- 23.8 Note on the Classification of Aberrations -- 23.8.1 Terms Independent of xo, yo (p=q=0): Aperture Aberrations -- 23.8.2 Terms Independent of xa, ya (r=s=0): Distortions -- 23.8.3 Intermediate Terms -- 23.8.4 Phase Shifts. Electron optics. http://id.loc.gov/authorities/subjects/sh85042227 Optics and Photonics Optique électronique. SCIENCE Physics Electricity. bisacsh SCIENCE Physics Electromagnetism. bisacsh Electron optics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85042227 |
title | Principles of electron optics. |
title_alt | Basic geometrical optics |
title_auth | Principles of electron optics. |
title_exact_search | Principles of electron optics. |
title_full | Principles of electron optics. Volume one, Basic geometrical optics / Peter Hawkes, Erwin Kasper. |
title_fullStr | Principles of electron optics. Volume one, Basic geometrical optics / Peter Hawkes, Erwin Kasper. |
title_full_unstemmed | Principles of electron optics. Volume one, Basic geometrical optics / Peter Hawkes, Erwin Kasper. |
title_short | Principles of electron optics. |
title_sort | principles of electron optics basic geometrical optics |
topic | Electron optics. http://id.loc.gov/authorities/subjects/sh85042227 Optics and Photonics Optique électronique. SCIENCE Physics Electricity. bisacsh SCIENCE Physics Electromagnetism. bisacsh Electron optics fast |
topic_facet | Electron optics. Optics and Photonics Optique électronique. SCIENCE Physics Electricity. SCIENCE Physics Electromagnetism. Electron optics |
work_keys_str_mv | AT hawkespw principlesofelectronopticsvolumeone AT kaspere principlesofelectronopticsvolumeone AT hawkespw basicgeometricaloptics AT kaspere basicgeometricaloptics |