Pattern recognition on oriented matroids /:
Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
[2017]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities - the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon. The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs. ContentsOriented Matroids, the Pattern Recognition Problem, and Tope CommitteesBoolean IntervalsDehn-Sommerville Type RelationsFarey SubsequencesBlocking Sets of Set Families, and Absolute Blocking Constructions in PosetsCommittees of Set Families, and Relative Blocking Constructions in PosetsLayers of Tope CommitteesThree-Tope CommitteesHalfspaces, Convex Sets, and Tope CommitteesTope Committees and Reorientations of Oriented MatroidsTopes and Critical CommitteesCritical Committees and Distance SignalsSymmetric Cycles in the Hypercube Graphs. |
Beschreibung: | 1 online resource (xi, 219 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110531145 3110531143 9783110530841 3110530848 9783110531152 3110531151 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1004883055 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 170913t20172017gw a ob 001 0 eng d | ||
040 | |a DEGRU |b eng |e rda |e pn |c DEGRU |d GWDNB |d OCLCQ |d IDEBK |d EBLCP |d YDX |d STF |d UBY |d WTU |d OCLCQ |d N$T |d CNCGM |d OCLCF |d NAM |d OCLCQ |d OCLCO |d CUS |d OCLCQ |d COCUF |d MERUC |d LOA |d ZCU |d UMC |d ICG |d VT2 |d OCLCQ |d WYU |d TKN |d K6U |d G3B |d IGB |d DKC |d U3W |d UKAHL |d OCLCQ |d UMI |d OCLCQ |d AJS |d OCLCQ |d AAA |d OCLCO |d OCLCQ |d DEGRU |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
016 | 7 | |a 1140816489 |2 DE-101 | |
019 | |a 1004537758 |a 1004577877 |a 1004717053 |a 1006306381 |a 1013754268 |a 1028641655 |a 1033613479 |a 1033680761 |a 1049608257 |a 1061065468 |a 1066470317 |a 1081238635 | ||
020 | |a 9783110531145 | ||
020 | |a 3110531143 | ||
020 | |a 9783110530841 | ||
020 | |a 3110530848 | ||
020 | |a 9783110531152 | ||
020 | |a 3110531151 | ||
020 | |z 3110530716 | ||
020 | |z 9783110530711 | ||
024 | 3 | |a 9783110531145 | |
024 | 7 | |a 10.1515/9783110531145 |2 doi | |
024 | 7 | |a urn:nbn:de:101:1-201710046974 |2 urn | |
035 | |a (OCoLC)1004883055 |z (OCoLC)1004537758 |z (OCoLC)1004577877 |z (OCoLC)1004717053 |z (OCoLC)1006306381 |z (OCoLC)1013754268 |z (OCoLC)1028641655 |z (OCoLC)1033613479 |z (OCoLC)1033680761 |z (OCoLC)1049608257 |z (OCoLC)1061065468 |z (OCoLC)1066470317 |z (OCoLC)1081238635 | ||
037 | |a 1036841 |b MIL | ||
050 | 4 | |a QA166.6 |b .M38 2017 | |
072 | 7 | |a COM018000 |2 bisacsh | |
072 | 7 | |a COM021030 |2 bisacsh | |
072 | 7 | |a COM051300 |2 bisacsh | |
072 | 7 | |a MAT036000 |2 bisacsh | |
082 | 7 | |8 1\p |a 510 |q DE-101 | |
084 | |a 510 |q DE-101 |2 sdnb | ||
049 | |a MAIN | ||
100 | 1 | |a Matveev, Andrey O., |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjqM6MJJJvBPMwJJRHy7jK |0 http://id.loc.gov/authorities/names/no2018051846 | |
245 | 1 | 0 | |a Pattern recognition on oriented matroids / |c Andrey O. Matveev. |
264 | 1 | |a Berlin ; |a Boston : |b De Gruyter, |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (xi, 219 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
347 | |b PDF | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |t Frontmatter -- |t Preface -- |t Contents -- |t Committees for Pattern Recognition: Infeasible Systems of Linear Inequalities, Hyperplane Arrangements, and Realizable Oriented Matroids -- |t 1. Oriented Matroids, the Pattern Recognition Problem, and Tope Committees -- |t 2. Boolean Intervals -- |t 3. Dehn-Sommerville Type Relations -- |t 4. Farey Subsequences -- |t 5. Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets -- |t 6. Committees of Set Families, and Relative Blocking Constructions in Posets -- |t 7. Layers of Tope Committees -- |t 8. Three-Tope Committees -- |t 9. Halfspaces, Convex Sets, and Tope Committees -- |t 10. Tope Committees and Reorientations of Oriented Matroids -- |t 11. Topes and Critical Committees -- |t 12. Critical Committees and Distance Signals -- |t 13. Symmetric Cycles in the Hypercube Graphs -- |t Bibliography -- |t List of Notation -- |t Index. |
520 | |a Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities - the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon. The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs. ContentsOriented Matroids, the Pattern Recognition Problem, and Tope CommitteesBoolean IntervalsDehn-Sommerville Type RelationsFarey SubsequencesBlocking Sets of Set Families, and Absolute Blocking Constructions in PosetsCommittees of Set Families, and Relative Blocking Constructions in PosetsLayers of Tope CommitteesThree-Tope CommitteesHalfspaces, Convex Sets, and Tope CommitteesTope Committees and Reorientations of Oriented MatroidsTopes and Critical CommitteesCritical Committees and Distance SignalsSymmetric Cycles in the Hypercube Graphs. | ||
546 | |a In English. | ||
588 | 0 | |a Online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017). | |
650 | 0 | |a Oriented matroids. |0 http://id.loc.gov/authorities/subjects/sh2001008367 | |
650 | 6 | |a Matroïdes orientés. | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Oriented matroids |2 fast | |
650 | 7 | |a Orientiertes Matroid |2 gnd |0 http://d-nb.info/gnd/4232299-6 | |
650 | 7 | |a Mustererkennung |2 gnd |0 http://d-nb.info/gnd/4040936-3 | |
653 | |a (Produktform)Electronic book text | ||
653 | |a (Zielgruppe)Fachpublikum/ Wissenschaft | ||
653 | |a (BISAC Subject Heading)MAT036000 | ||
653 | |a (BISAC Subject Heading)COM021030: COM021030 COMPUTERS / Database Management / Data Mining | ||
653 | |a (BISAC Subject Heading)COM018000: COM018000 COMPUTERS / Data Processing | ||
653 | |a (BISAC Subject Heading)COM051300: COM051300 COMPUTERS / Programming / Algorithms | ||
653 | |a Graphentheorie | ||
653 | |a Committee methods in pattern recognition, hypercubes, hyperplane arrangements, infeasible systems of linear inequalities, oriented matroids | ||
653 | |a Kombinatorik | ||
653 | |a Mustererkennung | ||
653 | |a Data Mining | ||
653 | |a Lineares Gleichungssystem | ||
653 | |a (VLB-WN)9620 | ||
653 | |a (BISAC Subject Heading)COM018000: COM018000 COMPUTERS / Data Processing / General | ||
653 | |a (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke | ||
758 | |i has work: |a Pattern recognition on oriented matroids (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGkKfyHKMRh7wcTCHKXC43 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | |c bundle |z 9783110531152 | |
776 | 0 | |c EPUB |z 9783110530841 | |
776 | 0 | |c print |z 9783110530711 | |
776 | 0 | 8 | |i Print version: |a Matveev, Andrey O. |t Pattern recognition on oriented matroids. |d Berlin : De Gruyter, [2017] |z 3110530716 |w (DLC) 2017297301 |w (OCoLC)973803342 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595372 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH32848666 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35152276 | ||
938 | |a De Gruyter |b DEGR |n 9783110531145 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5049515 | ||
938 | |a EBSCOhost |b EBSC |n 1595372 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis37720473 | ||
938 | |a YBP Library Services |b YANK |n 13232742 | ||
938 | |a YBP Library Services |b YANK |n 14812353 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1004883055 |
---|---|
_version_ | 1816882401383546880 |
adam_text | |
any_adam_object | |
author | Matveev, Andrey O. |
author_GND | http://id.loc.gov/authorities/names/no2018051846 |
author_facet | Matveev, Andrey O. |
author_role | aut |
author_sort | Matveev, Andrey O. |
author_variant | a o m ao aom |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA166 |
callnumber-raw | QA166.6 .M38 2017 |
callnumber-search | QA166.6 .M38 2017 |
callnumber-sort | QA 3166.6 M38 42017 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface -- Contents -- Committees for Pattern Recognition: Infeasible Systems of Linear Inequalities, Hyperplane Arrangements, and Realizable Oriented Matroids -- 1. Oriented Matroids, the Pattern Recognition Problem, and Tope Committees -- 2. Boolean Intervals -- 3. Dehn-Sommerville Type Relations -- 4. Farey Subsequences -- 5. Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets -- 6. Committees of Set Families, and Relative Blocking Constructions in Posets -- 7. Layers of Tope Committees -- 8. Three-Tope Committees -- 9. Halfspaces, Convex Sets, and Tope Committees -- 10. Tope Committees and Reorientations of Oriented Matroids -- 11. Topes and Critical Committees -- 12. Critical Committees and Distance Signals -- 13. Symmetric Cycles in the Hypercube Graphs -- Bibliography -- List of Notation -- Index. |
ctrlnum | (OCoLC)1004883055 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08593cam a2200997Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1004883055</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">170913t20172017gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DEGRU</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DEGRU</subfield><subfield code="d">GWDNB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">STF</subfield><subfield code="d">UBY</subfield><subfield code="d">WTU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">CNCGM</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NAM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">MERUC</subfield><subfield code="d">LOA</subfield><subfield code="d">ZCU</subfield><subfield code="d">UMC</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">K6U</subfield><subfield code="d">G3B</subfield><subfield code="d">IGB</subfield><subfield code="d">DKC</subfield><subfield code="d">U3W</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UMI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AAA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1140816489</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1004537758</subfield><subfield code="a">1004577877</subfield><subfield code="a">1004717053</subfield><subfield code="a">1006306381</subfield><subfield code="a">1013754268</subfield><subfield code="a">1028641655</subfield><subfield code="a">1033613479</subfield><subfield code="a">1033680761</subfield><subfield code="a">1049608257</subfield><subfield code="a">1061065468</subfield><subfield code="a">1066470317</subfield><subfield code="a">1081238635</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110531145</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110531143</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110530841</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110530848</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110531152</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110531151</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110530716</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110530711</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110531145</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110531145</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:101:1-201710046974</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1004883055</subfield><subfield code="z">(OCoLC)1004537758</subfield><subfield code="z">(OCoLC)1004577877</subfield><subfield code="z">(OCoLC)1004717053</subfield><subfield code="z">(OCoLC)1006306381</subfield><subfield code="z">(OCoLC)1013754268</subfield><subfield code="z">(OCoLC)1028641655</subfield><subfield code="z">(OCoLC)1033613479</subfield><subfield code="z">(OCoLC)1033680761</subfield><subfield code="z">(OCoLC)1049608257</subfield><subfield code="z">(OCoLC)1061065468</subfield><subfield code="z">(OCoLC)1066470317</subfield><subfield code="z">(OCoLC)1081238635</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">1036841</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA166.6</subfield><subfield code="b">.M38 2017</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM021030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM051300</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT036000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">510</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="q">DE-101</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matveev, Andrey O.,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjqM6MJJJvBPMwJJRHy7jK</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2018051846</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern recognition on oriented matroids /</subfield><subfield code="c">Andrey O. Matveev.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 219 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="b">PDF</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Committees for Pattern Recognition: Infeasible Systems of Linear Inequalities, Hyperplane Arrangements, and Realizable Oriented Matroids --</subfield><subfield code="t">1. Oriented Matroids, the Pattern Recognition Problem, and Tope Committees --</subfield><subfield code="t">2. Boolean Intervals --</subfield><subfield code="t">3. Dehn-Sommerville Type Relations --</subfield><subfield code="t">4. Farey Subsequences --</subfield><subfield code="t">5. Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets --</subfield><subfield code="t">6. Committees of Set Families, and Relative Blocking Constructions in Posets --</subfield><subfield code="t">7. Layers of Tope Committees --</subfield><subfield code="t">8. Three-Tope Committees --</subfield><subfield code="t">9. Halfspaces, Convex Sets, and Tope Committees --</subfield><subfield code="t">10. Tope Committees and Reorientations of Oriented Matroids --</subfield><subfield code="t">11. Topes and Critical Committees --</subfield><subfield code="t">12. Critical Committees and Distance Signals --</subfield><subfield code="t">13. Symmetric Cycles in the Hypercube Graphs --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">List of Notation --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities - the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon. The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs. ContentsOriented Matroids, the Pattern Recognition Problem, and Tope CommitteesBoolean IntervalsDehn-Sommerville Type RelationsFarey SubsequencesBlocking Sets of Set Families, and Absolute Blocking Constructions in PosetsCommittees of Set Families, and Relative Blocking Constructions in PosetsLayers of Tope CommitteesThree-Tope CommitteesHalfspaces, Convex Sets, and Tope CommitteesTope Committees and Reorientations of Oriented MatroidsTopes and Critical CommitteesCritical Committees and Distance SignalsSymmetric Cycles in the Hypercube Graphs.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Oriented matroids.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2001008367</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matroïdes orientés.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oriented matroids</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orientiertes Matroid</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4232299-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4040936-3</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Produktform)Electronic book text</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Zielgruppe)Fachpublikum/ Wissenschaft</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT036000</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)COM021030: COM021030 COMPUTERS / Database Management / Data Mining</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)COM018000: COM018000 COMPUTERS / Data Processing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)COM051300: COM051300 COMPUTERS / Programming / Algorithms</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Graphentheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Committee methods in pattern recognition, hypercubes, hyperplane arrangements, infeasible systems of linear inequalities, oriented matroids</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kombinatorik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mustererkennung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Mining</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lineares Gleichungssystem</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(VLB-WN)9620</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)COM018000: COM018000 COMPUTERS / Data Processing / General</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Pattern recognition on oriented matroids (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGkKfyHKMRh7wcTCHKXC43</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">bundle</subfield><subfield code="z">9783110531152</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">EPUB</subfield><subfield code="z">9783110530841</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">print</subfield><subfield code="z">9783110530711</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Matveev, Andrey O.</subfield><subfield code="t">Pattern recognition on oriented matroids.</subfield><subfield code="d">Berlin : De Gruyter, [2017]</subfield><subfield code="z">3110530716</subfield><subfield code="w">(DLC) 2017297301</subfield><subfield code="w">(OCoLC)973803342</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595372</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH32848666</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35152276</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110531145</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5049515</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1595372</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis37720473</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13232742</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14812353</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1004883055 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:28:02Z |
institution | BVB |
isbn | 9783110531145 3110531143 9783110530841 3110530848 9783110531152 3110531151 |
language | English |
oclc_num | 1004883055 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 219 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter, |
record_format | marc |
spelling | Matveev, Andrey O., author. https://id.oclc.org/worldcat/entity/E39PCjqM6MJJJvBPMwJJRHy7jK http://id.loc.gov/authorities/names/no2018051846 Pattern recognition on oriented matroids / Andrey O. Matveev. Berlin ; Boston : De Gruyter, [2017] ©2017 1 online resource (xi, 219 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Includes bibliographical references and index. Frontmatter -- Preface -- Contents -- Committees for Pattern Recognition: Infeasible Systems of Linear Inequalities, Hyperplane Arrangements, and Realizable Oriented Matroids -- 1. Oriented Matroids, the Pattern Recognition Problem, and Tope Committees -- 2. Boolean Intervals -- 3. Dehn-Sommerville Type Relations -- 4. Farey Subsequences -- 5. Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets -- 6. Committees of Set Families, and Relative Blocking Constructions in Posets -- 7. Layers of Tope Committees -- 8. Three-Tope Committees -- 9. Halfspaces, Convex Sets, and Tope Committees -- 10. Tope Committees and Reorientations of Oriented Matroids -- 11. Topes and Critical Committees -- 12. Critical Committees and Distance Signals -- 13. Symmetric Cycles in the Hypercube Graphs -- Bibliography -- List of Notation -- Index. Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities - the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon. The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs. ContentsOriented Matroids, the Pattern Recognition Problem, and Tope CommitteesBoolean IntervalsDehn-Sommerville Type RelationsFarey SubsequencesBlocking Sets of Set Families, and Absolute Blocking Constructions in PosetsCommittees of Set Families, and Relative Blocking Constructions in PosetsLayers of Tope CommitteesThree-Tope CommitteesHalfspaces, Convex Sets, and Tope CommitteesTope Committees and Reorientations of Oriented MatroidsTopes and Critical CommitteesCritical Committees and Distance SignalsSymmetric Cycles in the Hypercube Graphs. In English. Online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017). Oriented matroids. http://id.loc.gov/authorities/subjects/sh2001008367 Matroïdes orientés. MATHEMATICS General. bisacsh Oriented matroids fast Orientiertes Matroid gnd http://d-nb.info/gnd/4232299-6 Mustererkennung gnd http://d-nb.info/gnd/4040936-3 (Produktform)Electronic book text (Zielgruppe)Fachpublikum/ Wissenschaft (BISAC Subject Heading)MAT036000 (BISAC Subject Heading)COM021030: COM021030 COMPUTERS / Database Management / Data Mining (BISAC Subject Heading)COM018000: COM018000 COMPUTERS / Data Processing (BISAC Subject Heading)COM051300: COM051300 COMPUTERS / Programming / Algorithms Graphentheorie Committee methods in pattern recognition, hypercubes, hyperplane arrangements, infeasible systems of linear inequalities, oriented matroids Kombinatorik Mustererkennung Data Mining Lineares Gleichungssystem (VLB-WN)9620 (BISAC Subject Heading)COM018000: COM018000 COMPUTERS / Data Processing / General (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke has work: Pattern recognition on oriented matroids (Text) https://id.oclc.org/worldcat/entity/E39PCGkKfyHKMRh7wcTCHKXC43 https://id.oclc.org/worldcat/ontology/hasWork bundle 9783110531152 EPUB 9783110530841 print 9783110530711 Print version: Matveev, Andrey O. Pattern recognition on oriented matroids. Berlin : De Gruyter, [2017] 3110530716 (DLC) 2017297301 (OCoLC)973803342 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595372 Volltext |
spellingShingle | Matveev, Andrey O. Pattern recognition on oriented matroids / Frontmatter -- Preface -- Contents -- Committees for Pattern Recognition: Infeasible Systems of Linear Inequalities, Hyperplane Arrangements, and Realizable Oriented Matroids -- 1. Oriented Matroids, the Pattern Recognition Problem, and Tope Committees -- 2. Boolean Intervals -- 3. Dehn-Sommerville Type Relations -- 4. Farey Subsequences -- 5. Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets -- 6. Committees of Set Families, and Relative Blocking Constructions in Posets -- 7. Layers of Tope Committees -- 8. Three-Tope Committees -- 9. Halfspaces, Convex Sets, and Tope Committees -- 10. Tope Committees and Reorientations of Oriented Matroids -- 11. Topes and Critical Committees -- 12. Critical Committees and Distance Signals -- 13. Symmetric Cycles in the Hypercube Graphs -- Bibliography -- List of Notation -- Index. Oriented matroids. http://id.loc.gov/authorities/subjects/sh2001008367 Matroïdes orientés. MATHEMATICS General. bisacsh Oriented matroids fast Orientiertes Matroid gnd http://d-nb.info/gnd/4232299-6 Mustererkennung gnd http://d-nb.info/gnd/4040936-3 |
subject_GND | http://id.loc.gov/authorities/subjects/sh2001008367 http://d-nb.info/gnd/4232299-6 http://d-nb.info/gnd/4040936-3 |
title | Pattern recognition on oriented matroids / |
title_alt | Frontmatter -- Preface -- Contents -- Committees for Pattern Recognition: Infeasible Systems of Linear Inequalities, Hyperplane Arrangements, and Realizable Oriented Matroids -- 1. Oriented Matroids, the Pattern Recognition Problem, and Tope Committees -- 2. Boolean Intervals -- 3. Dehn-Sommerville Type Relations -- 4. Farey Subsequences -- 5. Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets -- 6. Committees of Set Families, and Relative Blocking Constructions in Posets -- 7. Layers of Tope Committees -- 8. Three-Tope Committees -- 9. Halfspaces, Convex Sets, and Tope Committees -- 10. Tope Committees and Reorientations of Oriented Matroids -- 11. Topes and Critical Committees -- 12. Critical Committees and Distance Signals -- 13. Symmetric Cycles in the Hypercube Graphs -- Bibliography -- List of Notation -- Index. |
title_auth | Pattern recognition on oriented matroids / |
title_exact_search | Pattern recognition on oriented matroids / |
title_full | Pattern recognition on oriented matroids / Andrey O. Matveev. |
title_fullStr | Pattern recognition on oriented matroids / Andrey O. Matveev. |
title_full_unstemmed | Pattern recognition on oriented matroids / Andrey O. Matveev. |
title_short | Pattern recognition on oriented matroids / |
title_sort | pattern recognition on oriented matroids |
topic | Oriented matroids. http://id.loc.gov/authorities/subjects/sh2001008367 Matroïdes orientés. MATHEMATICS General. bisacsh Oriented matroids fast Orientiertes Matroid gnd http://d-nb.info/gnd/4232299-6 Mustererkennung gnd http://d-nb.info/gnd/4040936-3 |
topic_facet | Oriented matroids. Matroïdes orientés. MATHEMATICS General. Oriented matroids Orientiertes Matroid Mustererkennung |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595372 |
work_keys_str_mv | AT matveevandreyo patternrecognitiononorientedmatroids |