Complementation of normal subgroups :: in finite groups /
Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian norma...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
[2017]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented. |
Beschreibung: | 1 online resource (xii, 144 pages) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9783110480214 3110480212 9783110478921 3110478927 9783110480221 3110480220 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1004882917 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 170913t20172017gw ob 001 0 eng d | ||
040 | |a DEGRU |b eng |e rda |e pn |c DEGRU |d GWDNB |d OCLCQ |d IDEBK |d EBLCP |d COO |d IDB |d OCLCO |d OCLCQ |d OCLCO |d YDX |d N$T |d NRC |d NAM |d CNCGM |d OCLCQ |d AAA |d OCLCA |d COCUF |d STF |d MERUC |d LOA |d ZCU |d ICG |d OCLCQ |d OCLCO |d WYU |d TKN |d K6U |d G3B |d IGB |d DKC |d U3W |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d DEGRU |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO |d OCLCQ | ||
016 | 7 | |a 1140817159 |2 DE-101 | |
016 | 7 | |a 1140819550 |2 DE-101 | |
019 | |a 1004543980 |a 1006305160 | ||
020 | |a 9783110480214 | ||
020 | |a 3110480212 | ||
020 | |a 9783110478921 | ||
020 | |a 3110478927 | ||
020 | |a 9783110480221 | ||
020 | |a 3110480220 | ||
020 | |z 311047879X | ||
020 | |z 9783110478792 | ||
024 | 3 | |a 9783110480214 | |
024 | 3 | |a 9783110478921 | |
024 | 7 | |a urn:nbn:de:101:1-201710047442 |2 urn | |
024 | 7 | |a 10.1515/9783110480214 |2 doi | |
024 | 7 | |a urn:nbn:de:101:1-201710049675 |2 urn | |
035 | |a (OCoLC)1004882917 |z (OCoLC)1004543980 |z (OCoLC)1006305160 | ||
037 | |a 1036863 |b MIL | ||
050 | 4 | |a QA177 |b .K4945 2017eb | |
072 | 7 | |a MAT008000 |2 bisacsh | |
072 | 7 | |a MAT014000 |2 bisacsh | |
082 | 7 | |8 1\u |a 512.23 |q DE-101 |2 22/ger | |
084 | |a 510 |q DE-101 |2 sdnb | ||
049 | |a MAIN | ||
100 | 1 | |a Kirtland, Joseph, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjB4X3qQMHYkbXf4KQyXBd |0 http://id.loc.gov/authorities/names/nb2001007099 | |
245 | 1 | 0 | |a Complementation of normal subgroups : |b in finite groups / |c Joseph Kirtland. |
264 | 1 | |a Berlin ; |a Boston : |b De Gruyter, |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (xii, 144 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
347 | |b PDF | ||
505 | 0 | 0 | |t Frontmatter -- |t Preface -- |t Contents -- |t Notation -- |t 1. Prerequisites -- |t 2. The Schur-Zassenhaus theorem: A bit of history and motivation -- |t 3. Abelian and minimal normal subgroups -- |t 4. Reduction theorems -- |t 5. Subgroups in the chief series, derived series, and lower nilpotent series -- |t 6. Normal subgroups with abelian sylow subgroups -- |t 7. The formation generation -- |t 8. Groups with specific classes of subgroups complemented -- |t Bibliography -- |t Author index -- |t Subject index. |
520 | |a Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented. | ||
546 | |a In English. | ||
588 | 0 | |a Online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017). | |
504 | |a Includes bibliographical references and indexes. | ||
650 | 0 | |a Finite groups. |0 http://id.loc.gov/authorities/subjects/sh85048354 | |
650 | 0 | |a Sylow subgroups. |0 http://id.loc.gov/authorities/subjects/sh85131388 | |
650 | 6 | |a Groupes finis. | |
650 | 6 | |a Sous-groupes de Sylow. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Finite groups |2 fast | |
650 | 7 | |a Sylow subgroups |2 fast | |
650 | 7 | |a Endliche Gruppe |2 gnd | |
650 | 7 | |a Untergruppe |2 gnd |0 http://d-nb.info/gnd/4224972-7 | |
650 | 7 | |a Komplement |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4511279-4 | |
653 | |a (Produktform)Electronic book text | ||
653 | |a (Zielgruppe)Fachpublikum/ Wissenschaft | ||
653 | |a (BISAC Subject Heading)MAT014000 | ||
653 | |a (BISAC Subject Heading)MAT008000: MAT008000 MATHEMATICS / Discrete Mathematics | ||
653 | |a Normale Gruppe | ||
653 | |a Untergruppe | ||
653 | |a (VLB-WN)9620 | ||
653 | |a (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke | ||
758 | |i has work: |a Complementation of normal subgroups (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH8CqGYWRQ4qPR97HkdTQC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | |c bundle |z 9783110480221 | |
776 | 0 | |c EPUB |z 9783110478921 | |
776 | 0 | |c print |z 9783110478792 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595392 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33148767 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35067964 | ||
938 | |a De Gruyter |b DEGR |n 9783110480214 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5049538 | ||
938 | |a EBSCOhost |b EBSC |n 1595392 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38372111 | ||
938 | |a YBP Library Services |b YANK |n 13158382 | ||
938 | |a YBP Library Services |b YANK |n 13158421 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1004882917 |
---|---|
_version_ | 1816882401457995776 |
adam_text | |
any_adam_object | |
author | Kirtland, Joseph |
author_GND | http://id.loc.gov/authorities/names/nb2001007099 |
author_facet | Kirtland, Joseph |
author_role | aut |
author_sort | Kirtland, Joseph |
author_variant | j k jk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 .K4945 2017eb |
callnumber-search | QA177 .K4945 2017eb |
callnumber-sort | QA 3177 K4945 42017EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface -- Contents -- Notation -- 1. Prerequisites -- 2. The Schur-Zassenhaus theorem: A bit of history and motivation -- 3. Abelian and minimal normal subgroups -- 4. Reduction theorems -- 5. Subgroups in the chief series, derived series, and lower nilpotent series -- 6. Normal subgroups with abelian sylow subgroups -- 7. The formation generation -- 8. Groups with specific classes of subgroups complemented -- Bibliography -- Author index -- Subject index. |
ctrlnum | (OCoLC)1004882917 |
dewey-full | 512.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.23 |
dewey-search | 512.23 |
dewey-sort | 3512.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05169cam a2200973 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1004882917</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">170913t20172017gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DEGRU</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DEGRU</subfield><subfield code="d">GWDNB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">COO</subfield><subfield code="d">IDB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">NRC</subfield><subfield code="d">NAM</subfield><subfield code="d">CNCGM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AAA</subfield><subfield code="d">OCLCA</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">MERUC</subfield><subfield code="d">LOA</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">K6U</subfield><subfield code="d">G3B</subfield><subfield code="d">IGB</subfield><subfield code="d">DKC</subfield><subfield code="d">U3W</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1140817159</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1140819550</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1004543980</subfield><subfield code="a">1006305160</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110480214</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110480212</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110478921</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110478927</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110480221</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110480220</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">311047879X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110478792</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110480214</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110478921</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:101:1-201710047442</subfield><subfield code="2">urn</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110480214</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:101:1-201710049675</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1004882917</subfield><subfield code="z">(OCoLC)1004543980</subfield><subfield code="z">(OCoLC)1006305160</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">1036863</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA177</subfield><subfield code="b">.K4945 2017eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT008000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="8">1\u</subfield><subfield code="a">512.23</subfield><subfield code="q">DE-101</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="q">DE-101</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirtland, Joseph,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjB4X3qQMHYkbXf4KQyXBd</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2001007099</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complementation of normal subgroups :</subfield><subfield code="b">in finite groups /</subfield><subfield code="c">Joseph Kirtland.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 144 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="b">PDF</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Notation --</subfield><subfield code="t">1. Prerequisites --</subfield><subfield code="t">2. The Schur-Zassenhaus theorem: A bit of history and motivation --</subfield><subfield code="t">3. Abelian and minimal normal subgroups --</subfield><subfield code="t">4. Reduction theorems --</subfield><subfield code="t">5. Subgroups in the chief series, derived series, and lower nilpotent series --</subfield><subfield code="t">6. Normal subgroups with abelian sylow subgroups --</subfield><subfield code="t">7. The formation generation --</subfield><subfield code="t">8. Groups with specific classes of subgroups complemented --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Author index --</subfield><subfield code="t">Subject index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048354</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sylow subgroups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85131388</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Sous-groupes de Sylow.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sylow subgroups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Untergruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4224972-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Komplement</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4511279-4</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Produktform)Electronic book text</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Zielgruppe)Fachpublikum/ Wissenschaft</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT014000</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT008000: MAT008000 MATHEMATICS / Discrete Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Normale Gruppe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Untergruppe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(VLB-WN)9620</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Complementation of normal subgroups (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH8CqGYWRQ4qPR97HkdTQC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">bundle</subfield><subfield code="z">9783110480221</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">EPUB</subfield><subfield code="z">9783110478921</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">print</subfield><subfield code="z">9783110478792</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595392</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33148767</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35067964</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110480214</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5049538</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1595392</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38372111</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13158382</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13158421</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1004882917 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:28:02Z |
institution | BVB |
isbn | 9783110480214 3110480212 9783110478921 3110478927 9783110480221 3110480220 |
language | English |
oclc_num | 1004882917 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 144 pages) |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter, |
record_format | marc |
spelling | Kirtland, Joseph, author. https://id.oclc.org/worldcat/entity/E39PCjB4X3qQMHYkbXf4KQyXBd http://id.loc.gov/authorities/names/nb2001007099 Complementation of normal subgroups : in finite groups / Joseph Kirtland. Berlin ; Boston : De Gruyter, [2017] ©2017 1 online resource (xii, 144 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Frontmatter -- Preface -- Contents -- Notation -- 1. Prerequisites -- 2. The Schur-Zassenhaus theorem: A bit of history and motivation -- 3. Abelian and minimal normal subgroups -- 4. Reduction theorems -- 5. Subgroups in the chief series, derived series, and lower nilpotent series -- 6. Normal subgroups with abelian sylow subgroups -- 7. The formation generation -- 8. Groups with specific classes of subgroups complemented -- Bibliography -- Author index -- Subject index. Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented. In English. Online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017). Includes bibliographical references and indexes. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Sylow subgroups. http://id.loc.gov/authorities/subjects/sh85131388 Groupes finis. Sous-groupes de Sylow. MATHEMATICS Algebra Intermediate. bisacsh Finite groups fast Sylow subgroups fast Endliche Gruppe gnd Untergruppe gnd http://d-nb.info/gnd/4224972-7 Komplement Mathematik gnd http://d-nb.info/gnd/4511279-4 (Produktform)Electronic book text (Zielgruppe)Fachpublikum/ Wissenschaft (BISAC Subject Heading)MAT014000 (BISAC Subject Heading)MAT008000: MAT008000 MATHEMATICS / Discrete Mathematics Normale Gruppe Untergruppe (VLB-WN)9620 (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke has work: Complementation of normal subgroups (Text) https://id.oclc.org/worldcat/entity/E39PCH8CqGYWRQ4qPR97HkdTQC https://id.oclc.org/worldcat/ontology/hasWork bundle 9783110480221 EPUB 9783110478921 print 9783110478792 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595392 Volltext |
spellingShingle | Kirtland, Joseph Complementation of normal subgroups : in finite groups / Frontmatter -- Preface -- Contents -- Notation -- 1. Prerequisites -- 2. The Schur-Zassenhaus theorem: A bit of history and motivation -- 3. Abelian and minimal normal subgroups -- 4. Reduction theorems -- 5. Subgroups in the chief series, derived series, and lower nilpotent series -- 6. Normal subgroups with abelian sylow subgroups -- 7. The formation generation -- 8. Groups with specific classes of subgroups complemented -- Bibliography -- Author index -- Subject index. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Sylow subgroups. http://id.loc.gov/authorities/subjects/sh85131388 Groupes finis. Sous-groupes de Sylow. MATHEMATICS Algebra Intermediate. bisacsh Finite groups fast Sylow subgroups fast Endliche Gruppe gnd Untergruppe gnd http://d-nb.info/gnd/4224972-7 Komplement Mathematik gnd http://d-nb.info/gnd/4511279-4 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85048354 http://id.loc.gov/authorities/subjects/sh85131388 http://d-nb.info/gnd/4224972-7 http://d-nb.info/gnd/4511279-4 |
title | Complementation of normal subgroups : in finite groups / |
title_alt | Frontmatter -- Preface -- Contents -- Notation -- 1. Prerequisites -- 2. The Schur-Zassenhaus theorem: A bit of history and motivation -- 3. Abelian and minimal normal subgroups -- 4. Reduction theorems -- 5. Subgroups in the chief series, derived series, and lower nilpotent series -- 6. Normal subgroups with abelian sylow subgroups -- 7. The formation generation -- 8. Groups with specific classes of subgroups complemented -- Bibliography -- Author index -- Subject index. |
title_auth | Complementation of normal subgroups : in finite groups / |
title_exact_search | Complementation of normal subgroups : in finite groups / |
title_full | Complementation of normal subgroups : in finite groups / Joseph Kirtland. |
title_fullStr | Complementation of normal subgroups : in finite groups / Joseph Kirtland. |
title_full_unstemmed | Complementation of normal subgroups : in finite groups / Joseph Kirtland. |
title_short | Complementation of normal subgroups : |
title_sort | complementation of normal subgroups in finite groups |
title_sub | in finite groups / |
topic | Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Sylow subgroups. http://id.loc.gov/authorities/subjects/sh85131388 Groupes finis. Sous-groupes de Sylow. MATHEMATICS Algebra Intermediate. bisacsh Finite groups fast Sylow subgroups fast Endliche Gruppe gnd Untergruppe gnd http://d-nb.info/gnd/4224972-7 Komplement Mathematik gnd http://d-nb.info/gnd/4511279-4 |
topic_facet | Finite groups. Sylow subgroups. Groupes finis. Sous-groupes de Sylow. MATHEMATICS Algebra Intermediate. Finite groups Sylow subgroups Endliche Gruppe Untergruppe Komplement Mathematik |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595392 |
work_keys_str_mv | AT kirtlandjoseph complementationofnormalsubgroupsinfinitegroups |