Algebraic Elements of Graphs /:
This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications w...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
[2017]
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author's original work on graph embeddings, this book is an essential reference for researchers in graph theory. |
Beschreibung: | 1 online resource (xiv, 409 pages) : illustrations |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9783110480757 3110480751 3110481847 9783110481846 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1004878499 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 170913t20172017gw a ob 001 0 eng d | ||
040 | |a DEGRU |b eng |e rda |e pn |c DEGRU |d CHVBK |d GWDNB |d DEGRU |d OCLCQ |d IDEBK |d EBLCP |d COO |d YDX |d STF |d OCLCQ |d CNCGM |d OCLCO |d NRC |d OCLCF |d VRC |d CUS |d NAM |d OCLCQ |d COCUF |d MERUC |d LOA |d ZCU |d N$T |d ICG |d OCLCQ |d TKN |d K6U |d G3B |d IGB |d DKC |d UKAHL |d OCLCQ |d SDF |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d SXB |d OCLCQ |d OCLCO |d UKKRT | ||
016 | 7 | |a 1140816969 |2 DE-101 | |
019 | |a 1002281950 |a 1004555581 |a 1007046970 |a 1008629717 |a 1027547889 |a 1027764349 |a 1027979249 |a 1028076059 |a 1028107518 |a 1035507150 |a 1035873126 | ||
020 | |a 9783110480757 |q (electronic bk.) | ||
020 | |a 3110480751 |q (electronic bk.) | ||
020 | |a 3110481847 | ||
020 | |a 9783110481846 | ||
020 | |z 9783110481846 | ||
020 | |z 3110481847 | ||
020 | |z 9783110480733 | ||
020 | |z 3110480735 | ||
024 | 3 | |a 9783110481846 | |
024 | 7 | |a 10.1515/9783110481846 |2 doi | |
024 | 7 | |a urn:nbn:de:101:1-201710047308 |2 urn | |
035 | |a (OCoLC)1004878499 |z (OCoLC)1002281950 |z (OCoLC)1004555581 |z (OCoLC)1007046970 |z (OCoLC)1008629717 |z (OCoLC)1027547889 |z (OCoLC)1027764349 |z (OCoLC)1027979249 |z (OCoLC)1028076059 |z (OCoLC)1028107518 |z (OCoLC)1035507150 |z (OCoLC)1035873126 | ||
037 | |a 1036857 |b MIL | ||
050 | 4 | |a QA219 | |
072 | 7 | |a MAT002000 |2 bisacsh | |
072 | 7 | |a MAT012000 |2 bisacsh | |
072 | 7 | |a MAT036000 |2 bisacsh | |
072 | 7 | |a MAT038000 |2 bisacsh | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
082 | 7 | |8 1\p |a 510 |q DE-101 | |
084 | |a 510 |q DE-101 |2 sdnb | ||
049 | |a MAIN | ||
100 | 1 | |a Liu, Yanpei, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjr6YQdywGXC6mFbFb8BKb |0 http://id.loc.gov/authorities/names/n87935364 | |
245 | 1 | 0 | |a Algebraic Elements of Graphs / |c Yanpei Liu. |
264 | 1 | |a Berlin ; |a Boston : |b De Gruyter, |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (xiv, 409 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
347 | |b PDF | ||
505 | 0 | 0 | |t Frontmatter -- |t Preface (DG Edition) -- |t Preface (USTC Edition) -- |t Contents -- |t 1. Abstract Graphs -- |t 2. Abstract Maps -- |t 3. Duality -- |t 4. Orientability -- |t 5. Orientable Maps -- |t 6. Nonorientable Maps -- |t 7. Isomorphisms of Maps -- |t 8. Asymmetrization -- |t 9. Asymmetrized Petal Bundles -- |t 10. Asymmetrized Maps -- |t 11. Maps within Symmetry -- |t 12. Genus Polynomials -- |t 13. Census with Partitions -- |t 14. Equations with Partitions -- |t 15. Upper Maps of a Graph -- |t 16. Genera of a Graph -- |t 17. Isogemial Graphs -- |t 18. Surface Embeddability -- |t Appendix 1: Concepts of Polyhedra, Surfaces, Embeddings and Maps -- |t Appendix 2: Table of Genus Polynomials for Embeddings and Maps of Small Size -- |t Appendix 3: Atlas of Rooted and Unrooted Maps for Small Graphs -- |t Bibliography -- |t Author Index -- |t Subject Index. |
546 | |a In English. | ||
588 | 0 | |a Online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017). | |
504 | |a Includes bibliographical references and indexes. | ||
520 | |a This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author's original work on graph embeddings, this book is an essential reference for researchers in graph theory. | ||
650 | 0 | |a Representations of graphs. |0 http://id.loc.gov/authorities/subjects/sh85112943 | |
650 | 0 | |a Representations of algebras. |0 http://id.loc.gov/authorities/subjects/sh85112938 | |
650 | 0 | |a Associative algebras. |0 http://id.loc.gov/authorities/subjects/sh85008821 | |
650 | 6 | |a Représentations de graphes. | |
650 | 6 | |a Représentations des algèbres. | |
650 | 6 | |a Algèbres associatives. | |
650 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh | |
650 | 7 | |a Associative algebras |2 fast | |
650 | 7 | |a Representations of algebras |2 fast | |
650 | 7 | |a Representations of graphs |2 fast | |
653 | |a (Produktform)Electronic book text | ||
653 | |a (Zielgruppe)Fachpublikum/ Wissenschaft | ||
653 | |a (BISAC Subject Heading)MAT036000 | ||
653 | |a (BISAC Subject Heading)MAT038000: MAT038000 MATHEMATICS / Topology | ||
653 | |a (BISAC Subject Heading)MAT002000: MAT002000 MATHEMATICS / Algebra / General | ||
653 | |a (BISAC Subject Heading)MAT012000: MAT012000 MATHEMATICS / Geometry / General | ||
653 | |a (VLB-WN)9620 | ||
653 | |a (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke | ||
700 | 1 | |a University of Science and Technology China Press. | |
776 | 0 | 8 | |i Print version: |z 9783110481853 |
776 | 0 | 8 | |i Print version: |z 9783110480757 |
776 | 0 | 8 | |i Print version: |z 9783110480733 |
776 | 0 | 8 | |i Print version: |a Liu, Yanpei, 1939- |t Algebraic elements of graphs. |d Berlin ; Boston : Walter de Gruyter GmbH, [2017] |z 9783110480733 |w (DLC) 2017042339 |w (OCoLC)985076036 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595388 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595388 |3 Volltext |
938 | |a Kortext |b KTXT |n 312419 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH32848436 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35067969 | ||
938 | |a De Gruyter |b DEGR |n 9783110481846 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL5049532 | ||
938 | |a EBSCOhost |b EBSC |n 1595388 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38198119 | ||
938 | |a YBP Library Services |b YANK |n 12843703 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1004878499 |
---|---|
_version_ | 1829095119251308544 |
adam_text | |
any_adam_object | |
author | Liu, Yanpei |
author2 | University of Science and Technology China Press |
author2_role | |
author2_variant | u o s a t c p uosatcp |
author_GND | http://id.loc.gov/authorities/names/n87935364 |
author_facet | Liu, Yanpei University of Science and Technology China Press |
author_role | aut |
author_sort | Liu, Yanpei |
author_variant | y l yl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA219 |
callnumber-raw | QA219 |
callnumber-search | QA219 |
callnumber-sort | QA 3219 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface (DG Edition) -- Preface (USTC Edition) -- Contents -- 1. Abstract Graphs -- 2. Abstract Maps -- 3. Duality -- 4. Orientability -- 5. Orientable Maps -- 6. Nonorientable Maps -- 7. Isomorphisms of Maps -- 8. Asymmetrization -- 9. Asymmetrized Petal Bundles -- 10. Asymmetrized Maps -- 11. Maps within Symmetry -- 12. Genus Polynomials -- 13. Census with Partitions -- 14. Equations with Partitions -- 15. Upper Maps of a Graph -- 16. Genera of a Graph -- 17. Isogemial Graphs -- 18. Surface Embeddability -- Appendix 1: Concepts of Polyhedra, Surfaces, Embeddings and Maps -- Appendix 2: Table of Genus Polynomials for Embeddings and Maps of Small Size -- Appendix 3: Atlas of Rooted and Unrooted Maps for Small Graphs -- Bibliography -- Author Index -- Subject Index. |
ctrlnum | (OCoLC)1004878499 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05935cam a2201021Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1004878499</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">170913t20172017gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DEGRU</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DEGRU</subfield><subfield code="d">CHVBK</subfield><subfield code="d">GWDNB</subfield><subfield code="d">DEGRU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">COO</subfield><subfield code="d">YDX</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CNCGM</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NRC</subfield><subfield code="d">OCLCF</subfield><subfield code="d">VRC</subfield><subfield code="d">CUS</subfield><subfield code="d">NAM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">MERUC</subfield><subfield code="d">LOA</subfield><subfield code="d">ZCU</subfield><subfield code="d">N$T</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">K6U</subfield><subfield code="d">G3B</subfield><subfield code="d">IGB</subfield><subfield code="d">DKC</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SDF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKKRT</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1140816969</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1002281950</subfield><subfield code="a">1004555581</subfield><subfield code="a">1007046970</subfield><subfield code="a">1008629717</subfield><subfield code="a">1027547889</subfield><subfield code="a">1027764349</subfield><subfield code="a">1027979249</subfield><subfield code="a">1028076059</subfield><subfield code="a">1028107518</subfield><subfield code="a">1035507150</subfield><subfield code="a">1035873126</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110480757</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110480751</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110481847</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110481846</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110481846</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110481847</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110480733</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110480735</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110481846</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110481846</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:101:1-201710047308</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1004878499</subfield><subfield code="z">(OCoLC)1002281950</subfield><subfield code="z">(OCoLC)1004555581</subfield><subfield code="z">(OCoLC)1007046970</subfield><subfield code="z">(OCoLC)1008629717</subfield><subfield code="z">(OCoLC)1027547889</subfield><subfield code="z">(OCoLC)1027764349</subfield><subfield code="z">(OCoLC)1027979249</subfield><subfield code="z">(OCoLC)1028076059</subfield><subfield code="z">(OCoLC)1028107518</subfield><subfield code="z">(OCoLC)1035507150</subfield><subfield code="z">(OCoLC)1035873126</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">1036857</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA219</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT002000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT036000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">023000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">510</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="q">DE-101</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yanpei,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjr6YQdywGXC6mFbFb8BKb</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87935364</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic Elements of Graphs /</subfield><subfield code="c">Yanpei Liu.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 409 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="b">PDF</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface (DG Edition) --</subfield><subfield code="t">Preface (USTC Edition) --</subfield><subfield code="t">Contents --</subfield><subfield code="t">1. Abstract Graphs --</subfield><subfield code="t">2. Abstract Maps --</subfield><subfield code="t">3. Duality --</subfield><subfield code="t">4. Orientability --</subfield><subfield code="t">5. Orientable Maps --</subfield><subfield code="t">6. Nonorientable Maps --</subfield><subfield code="t">7. Isomorphisms of Maps --</subfield><subfield code="t">8. Asymmetrization --</subfield><subfield code="t">9. Asymmetrized Petal Bundles --</subfield><subfield code="t">10. Asymmetrized Maps --</subfield><subfield code="t">11. Maps within Symmetry --</subfield><subfield code="t">12. Genus Polynomials --</subfield><subfield code="t">13. Census with Partitions --</subfield><subfield code="t">14. Equations with Partitions --</subfield><subfield code="t">15. Upper Maps of a Graph --</subfield><subfield code="t">16. Genera of a Graph --</subfield><subfield code="t">17. Isogemial Graphs --</subfield><subfield code="t">18. Surface Embeddability --</subfield><subfield code="t">Appendix 1: Concepts of Polyhedra, Surfaces, Embeddings and Maps --</subfield><subfield code="t">Appendix 2: Table of Genus Polynomials for Embeddings and Maps of Small Size --</subfield><subfield code="t">Appendix 3: Atlas of Rooted and Unrooted Maps for Small Graphs --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Author Index --</subfield><subfield code="t">Subject Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author's original work on graph embeddings, this book is an essential reference for researchers in graph theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Representations of graphs.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112943</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Representations of algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112938</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Associative algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008821</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Représentations de graphes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Représentations des algèbres.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres associatives.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Essays.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Pre-Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Associative algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of graphs</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Produktform)Electronic book text</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Zielgruppe)Fachpublikum/ Wissenschaft</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT036000</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT038000: MAT038000 MATHEMATICS / Topology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT002000: MAT002000 MATHEMATICS / Algebra / General</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT012000: MAT012000 MATHEMATICS / Geometry / General</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(VLB-WN)9620</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">University of Science and Technology China Press.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9783110481853</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9783110480757</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9783110480733</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Liu, Yanpei, 1939-</subfield><subfield code="t">Algebraic elements of graphs.</subfield><subfield code="d">Berlin ; Boston : Walter de Gruyter GmbH, [2017]</subfield><subfield code="z">9783110480733</subfield><subfield code="w">(DLC) 2017042339</subfield><subfield code="w">(OCoLC)985076036</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595388</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1595388</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Kortext</subfield><subfield code="b">KTXT</subfield><subfield code="n">312419</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH32848436</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35067969</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110481846</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5049532</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1595388</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38198119</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12843703</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1004878499 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:43:57Z |
institution | BVB |
isbn | 9783110480757 3110480751 3110481847 9783110481846 |
language | English |
oclc_num | 1004878499 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 409 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter, |
record_format | marc |
spelling | Liu, Yanpei, author. https://id.oclc.org/worldcat/entity/E39PCjr6YQdywGXC6mFbFb8BKb http://id.loc.gov/authorities/names/n87935364 Algebraic Elements of Graphs / Yanpei Liu. Berlin ; Boston : De Gruyter, [2017] ©2017 1 online resource (xiv, 409 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Frontmatter -- Preface (DG Edition) -- Preface (USTC Edition) -- Contents -- 1. Abstract Graphs -- 2. Abstract Maps -- 3. Duality -- 4. Orientability -- 5. Orientable Maps -- 6. Nonorientable Maps -- 7. Isomorphisms of Maps -- 8. Asymmetrization -- 9. Asymmetrized Petal Bundles -- 10. Asymmetrized Maps -- 11. Maps within Symmetry -- 12. Genus Polynomials -- 13. Census with Partitions -- 14. Equations with Partitions -- 15. Upper Maps of a Graph -- 16. Genera of a Graph -- 17. Isogemial Graphs -- 18. Surface Embeddability -- Appendix 1: Concepts of Polyhedra, Surfaces, Embeddings and Maps -- Appendix 2: Table of Genus Polynomials for Embeddings and Maps of Small Size -- Appendix 3: Atlas of Rooted and Unrooted Maps for Small Graphs -- Bibliography -- Author Index -- Subject Index. In English. Online resource; title from PDF title page (publisher's Web site, viewed 13. Sep 2017). Includes bibliographical references and indexes. This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author's original work on graph embeddings, this book is an essential reference for researchers in graph theory. Representations of graphs. http://id.loc.gov/authorities/subjects/sh85112943 Representations of algebras. http://id.loc.gov/authorities/subjects/sh85112938 Associative algebras. http://id.loc.gov/authorities/subjects/sh85008821 Représentations de graphes. Représentations des algèbres. Algèbres associatives. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Associative algebras fast Representations of algebras fast Representations of graphs fast (Produktform)Electronic book text (Zielgruppe)Fachpublikum/ Wissenschaft (BISAC Subject Heading)MAT036000 (BISAC Subject Heading)MAT038000: MAT038000 MATHEMATICS / Topology (BISAC Subject Heading)MAT002000: MAT002000 MATHEMATICS / Algebra / General (BISAC Subject Heading)MAT012000: MAT012000 MATHEMATICS / Geometry / General (VLB-WN)9620 (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke University of Science and Technology China Press. Print version: 9783110481853 Print version: 9783110480757 Print version: 9783110480733 Print version: Liu, Yanpei, 1939- Algebraic elements of graphs. Berlin ; Boston : Walter de Gruyter GmbH, [2017] 9783110480733 (DLC) 2017042339 (OCoLC)985076036 |
spellingShingle | Liu, Yanpei Algebraic Elements of Graphs / Frontmatter -- Preface (DG Edition) -- Preface (USTC Edition) -- Contents -- 1. Abstract Graphs -- 2. Abstract Maps -- 3. Duality -- 4. Orientability -- 5. Orientable Maps -- 6. Nonorientable Maps -- 7. Isomorphisms of Maps -- 8. Asymmetrization -- 9. Asymmetrized Petal Bundles -- 10. Asymmetrized Maps -- 11. Maps within Symmetry -- 12. Genus Polynomials -- 13. Census with Partitions -- 14. Equations with Partitions -- 15. Upper Maps of a Graph -- 16. Genera of a Graph -- 17. Isogemial Graphs -- 18. Surface Embeddability -- Appendix 1: Concepts of Polyhedra, Surfaces, Embeddings and Maps -- Appendix 2: Table of Genus Polynomials for Embeddings and Maps of Small Size -- Appendix 3: Atlas of Rooted and Unrooted Maps for Small Graphs -- Bibliography -- Author Index -- Subject Index. Representations of graphs. http://id.loc.gov/authorities/subjects/sh85112943 Representations of algebras. http://id.loc.gov/authorities/subjects/sh85112938 Associative algebras. http://id.loc.gov/authorities/subjects/sh85008821 Représentations de graphes. Représentations des algèbres. Algèbres associatives. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Associative algebras fast Representations of algebras fast Representations of graphs fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85112943 http://id.loc.gov/authorities/subjects/sh85112938 http://id.loc.gov/authorities/subjects/sh85008821 |
title | Algebraic Elements of Graphs / |
title_alt | Frontmatter -- Preface (DG Edition) -- Preface (USTC Edition) -- Contents -- 1. Abstract Graphs -- 2. Abstract Maps -- 3. Duality -- 4. Orientability -- 5. Orientable Maps -- 6. Nonorientable Maps -- 7. Isomorphisms of Maps -- 8. Asymmetrization -- 9. Asymmetrized Petal Bundles -- 10. Asymmetrized Maps -- 11. Maps within Symmetry -- 12. Genus Polynomials -- 13. Census with Partitions -- 14. Equations with Partitions -- 15. Upper Maps of a Graph -- 16. Genera of a Graph -- 17. Isogemial Graphs -- 18. Surface Embeddability -- Appendix 1: Concepts of Polyhedra, Surfaces, Embeddings and Maps -- Appendix 2: Table of Genus Polynomials for Embeddings and Maps of Small Size -- Appendix 3: Atlas of Rooted and Unrooted Maps for Small Graphs -- Bibliography -- Author Index -- Subject Index. |
title_auth | Algebraic Elements of Graphs / |
title_exact_search | Algebraic Elements of Graphs / |
title_full | Algebraic Elements of Graphs / Yanpei Liu. |
title_fullStr | Algebraic Elements of Graphs / Yanpei Liu. |
title_full_unstemmed | Algebraic Elements of Graphs / Yanpei Liu. |
title_short | Algebraic Elements of Graphs / |
title_sort | algebraic elements of graphs |
topic | Representations of graphs. http://id.loc.gov/authorities/subjects/sh85112943 Representations of algebras. http://id.loc.gov/authorities/subjects/sh85112938 Associative algebras. http://id.loc.gov/authorities/subjects/sh85008821 Représentations de graphes. Représentations des algèbres. Algèbres associatives. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Associative algebras fast Representations of algebras fast Representations of graphs fast |
topic_facet | Representations of graphs. Representations of algebras. Associative algebras. Représentations de graphes. Représentations des algèbres. Algèbres associatives. MATHEMATICS Essays. MATHEMATICS Pre-Calculus. MATHEMATICS Reference. Associative algebras Representations of algebras Representations of graphs |
work_keys_str_mv | AT liuyanpei algebraicelementsofgraphs AT universityofscienceandtechnologychinapress algebraicelementsofgraphs |