What is a mathematical concept? /:
Responding to widespread interest within cultural studies and social inquiry, this book addresses the question 'what is a mathematical concept?' using a variety of vanguard theories in the humanities and posthumanities. Tapping historical, philosophical, sociological and psychological pers...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY :
Cambridge University Press,
2017.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Responding to widespread interest within cultural studies and social inquiry, this book addresses the question 'what is a mathematical concept?' using a variety of vanguard theories in the humanities and posthumanities. Tapping historical, philosophical, sociological and psychological perspectives, each chapter explores the question of how mathematics comes to matter. Of interest to scholars across the usual disciplinary divides, this book tracks mathematics as a cultural activity, drawing connections with empirical practice. Unlike other books in this area, it is highly interdisciplinary, devoted to exploring the ontology of mathematics as it plays out in different contexts. This book will appeal to scholars who are interested in particular mathematical habits - creative diagramming, structural mappings, material agency, interdisciplinary coverings - that shed light on both mathematics and other disciplines. Chapters are also relevant to social sciences and humanities scholars, as each offers philosophical insight into mathematics and how we might live mathematically. Leading thinkers in mathematics, philosophy and education offer new insights into the fundamental question: what is a mathematical concept? |
Beschreibung: | 1 online resource (xii, 288 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781108224284 1108224288 9781108216180 1108216188 9781316471128 1316471128 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1000054311 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 170808t20172017nyua ob 001 0 eng d | ||
040 | |a LGG |b eng |e rda |e pn |c LGG |d IDEBK |d YDX |d N$T |d EBLCP |d CNCGM |d MERER |d N$T |d OCLCQ |d OSU |d OCLCO |d NAM |d OCLCQ |d OL$ |d OCLCQ |d OCLCO |d OCLCQ |d S9M |d KAT |d OCLCL |d SFB |d OCLCQ | ||
020 | |a 9781108224284 |q (electronic bk.) | ||
020 | |a 1108224288 |q (electronic bk.) | ||
020 | |a 9781108216180 |q (PDF ebook) | ||
020 | |a 1108216188 |q (PDF ebook) | ||
020 | |a 9781316471128 |q (ebook) | ||
020 | |a 1316471128 |q (ebook) | ||
020 | |z 9781107134638 |q (hardcover ; |q alk. paper) | ||
035 | |a (OCoLC)1000054311 | ||
050 | 4 | |a QA10.7 |b .W43 2017eb | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
082 | 7 | |a 510.1 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a What is a mathematical concept? / |c edited by Elizabeth de Freitas, Manchester Metropolitan University ; Nathalie Sinclair, Simon Fraser University ; Alf Coles, University of Bristol. |
264 | 1 | |a New York, NY : |b Cambridge University Press, |c 2017. | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (xii, 288 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |g Introduction -- |t Of Polyhedra and pyjamas : Platonism and induction in meaning-finitist mathematics / |r Michael J. Barany -- |t Mathematical concepts? : the view from ancient history / |r Reviel Netz -- |t On treating mathematical drawings as artworks / |r Juliette Kennedy -- |t Concepts as generative devices / |r Elizabeth de Freitas, |r Nathalie Sinclair -- |t Bernhard Riemann's conceptual mathematics and pedagogy of mathematical concepts / |r Arkady Plotnitsky -- |t Deleuze and the conceptualizable character of mathematical theories / |r Simon Duffy -- |t The vertical unity of the concept of space / |r David Corfield -- |t The perfectoid concept : test case for an absent theory / |r Michael Harris -- |t Queering mathematical concepts / |r Heather Mendick -- |t Mathematics concepts in the news / |r Richard Barwell, |r Yasmine Abtahi -- |t Concepts and commodities in mathematical learning / |r Tony Brown -- |t A relational view of mathematical concepts / |r Alf Coles -- |t Cultural concepts concretely / |r Wolff-Michael Roth -- |t Ideas as species / |r Brent Davis -- |t Inhabiting mathematical concepts / |r Ricardo Nemirovsky -- |t Afterword. Making a thing of it : some conceptual commentary / |r David Pimm |
520 | 8 | |a Responding to widespread interest within cultural studies and social inquiry, this book addresses the question 'what is a mathematical concept?' using a variety of vanguard theories in the humanities and posthumanities. Tapping historical, philosophical, sociological and psychological perspectives, each chapter explores the question of how mathematics comes to matter. Of interest to scholars across the usual disciplinary divides, this book tracks mathematics as a cultural activity, drawing connections with empirical practice. Unlike other books in this area, it is highly interdisciplinary, devoted to exploring the ontology of mathematics as it plays out in different contexts. This book will appeal to scholars who are interested in particular mathematical habits - creative diagramming, structural mappings, material agency, interdisciplinary coverings - that shed light on both mathematics and other disciplines. Chapters are also relevant to social sciences and humanities scholars, as each offers philosophical insight into mathematics and how we might live mathematically. | |
520 | |a Leading thinkers in mathematics, philosophy and education offer new insights into the fundamental question: what is a mathematical concept? | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Mathematics |x Social aspects. |0 http://id.loc.gov/authorities/subjects/sh2021006792 | |
650 | 0 | |a Mathematics |x Philosophy. |0 http://id.loc.gov/authorities/subjects/sh85082153 | |
650 | 6 | |a Mathématiques |x Philosophie. | |
650 | 0 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh |
650 | 0 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh |
650 | 0 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh |
650 | 7 | |a Matemáticas |x Filosofía |2 embne | |
650 | 7 | |a Matemáticas |x Aspectos sociales |2 embne | |
650 | 7 | |a Matemáticas |x Ensayos |2 embne | |
650 | 7 | |a Mathematics |x Philosophy |2 fast | |
650 | 7 | |a Mathematics |x Social aspects |2 fast | |
700 | 1 | |a De Freitas, Elizabeth, |e editor. | |
700 | 1 | |a Sinclair, Nathalie, |e editor. | |
700 | 1 | |a Coles, Alf, |e editor. | |
758 | |i has work: |a What is a mathematical concept? (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGFgtg9jTTFmrBGfRx6jwd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512507 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL4941673 | ||
938 | |a EBSCOhost |b EBSC |n 1512507 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38684853 | ||
938 | |a YBP Library Services |b YANK |n 14745909 | ||
938 | |a YBP Library Services |b YANK |n 14753620 | ||
938 | |a YBP Library Services |b YANK |n 14747168 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1000054311 |
---|---|
_version_ | 1816882397306683392 |
adam_text | |
any_adam_object | |
author2 | De Freitas, Elizabeth Sinclair, Nathalie Coles, Alf |
author2_role | edt edt edt |
author2_variant | f e d fe fed n s ns a c ac |
author_additional | Michael J. Barany -- Reviel Netz -- Juliette Kennedy -- Elizabeth de Freitas, Nathalie Sinclair -- Arkady Plotnitsky -- Simon Duffy -- David Corfield -- Michael Harris -- Heather Mendick -- Richard Barwell, Yasmine Abtahi -- Tony Brown -- Alf Coles -- Wolff-Michael Roth -- Brent Davis -- Ricardo Nemirovsky -- David Pimm |
author_facet | De Freitas, Elizabeth Sinclair, Nathalie Coles, Alf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA10 |
callnumber-raw | QA10.7 .W43 2017eb |
callnumber-search | QA10.7 .W43 2017eb |
callnumber-sort | QA 210.7 W43 42017EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Of Polyhedra and pyjamas : Platonism and induction in meaning-finitist mathematics / Mathematical concepts? : the view from ancient history / On treating mathematical drawings as artworks / Concepts as generative devices / Bernhard Riemann's conceptual mathematics and pedagogy of mathematical concepts / Deleuze and the conceptualizable character of mathematical theories / The vertical unity of the concept of space / The perfectoid concept : test case for an absent theory / Queering mathematical concepts / Mathematics concepts in the news / Concepts and commodities in mathematical learning / A relational view of mathematical concepts / Cultural concepts concretely / Ideas as species / Inhabiting mathematical concepts / Afterword. Making a thing of it : some conceptual commentary / |
ctrlnum | (OCoLC)1000054311 |
dewey-full | 510.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.1 |
dewey-search | 510.1 |
dewey-sort | 3510.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05332cam a2200697 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1000054311</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">170808t20172017nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LGG</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">LGG</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">CNCGM</subfield><subfield code="d">MERER</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NAM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S9M</subfield><subfield code="d">KAT</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108224284</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108224288</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108216180</subfield><subfield code="q">(PDF ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108216188</subfield><subfield code="q">(PDF ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316471128</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316471128</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107134638</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1000054311</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA10.7</subfield><subfield code="b">.W43 2017eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">023000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">What is a mathematical concept? /</subfield><subfield code="c">edited by Elizabeth de Freitas, Manchester Metropolitan University ; Nathalie Sinclair, Simon Fraser University ; Alf Coles, University of Bristol.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 288 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Introduction --</subfield><subfield code="t">Of Polyhedra and pyjamas : Platonism and induction in meaning-finitist mathematics /</subfield><subfield code="r">Michael J. Barany --</subfield><subfield code="t">Mathematical concepts? : the view from ancient history /</subfield><subfield code="r">Reviel Netz --</subfield><subfield code="t">On treating mathematical drawings as artworks /</subfield><subfield code="r">Juliette Kennedy --</subfield><subfield code="t">Concepts as generative devices /</subfield><subfield code="r">Elizabeth de Freitas,</subfield><subfield code="r">Nathalie Sinclair --</subfield><subfield code="t">Bernhard Riemann's conceptual mathematics and pedagogy of mathematical concepts /</subfield><subfield code="r">Arkady Plotnitsky --</subfield><subfield code="t">Deleuze and the conceptualizable character of mathematical theories /</subfield><subfield code="r">Simon Duffy --</subfield><subfield code="t">The vertical unity of the concept of space /</subfield><subfield code="r">David Corfield --</subfield><subfield code="t">The perfectoid concept : test case for an absent theory /</subfield><subfield code="r">Michael Harris --</subfield><subfield code="t">Queering mathematical concepts /</subfield><subfield code="r">Heather Mendick --</subfield><subfield code="t">Mathematics concepts in the news /</subfield><subfield code="r">Richard Barwell,</subfield><subfield code="r">Yasmine Abtahi --</subfield><subfield code="t">Concepts and commodities in mathematical learning /</subfield><subfield code="r">Tony Brown --</subfield><subfield code="t">A relational view of mathematical concepts /</subfield><subfield code="r">Alf Coles --</subfield><subfield code="t">Cultural concepts concretely /</subfield><subfield code="r">Wolff-Michael Roth --</subfield><subfield code="t">Ideas as species /</subfield><subfield code="r">Brent Davis --</subfield><subfield code="t">Inhabiting mathematical concepts /</subfield><subfield code="r">Ricardo Nemirovsky --</subfield><subfield code="t">Afterword. Making a thing of it : some conceptual commentary /</subfield><subfield code="r">David Pimm</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Responding to widespread interest within cultural studies and social inquiry, this book addresses the question 'what is a mathematical concept?' using a variety of vanguard theories in the humanities and posthumanities. Tapping historical, philosophical, sociological and psychological perspectives, each chapter explores the question of how mathematics comes to matter. Of interest to scholars across the usual disciplinary divides, this book tracks mathematics as a cultural activity, drawing connections with empirical practice. Unlike other books in this area, it is highly interdisciplinary, devoted to exploring the ontology of mathematics as it plays out in different contexts. This book will appeal to scholars who are interested in particular mathematical habits - creative diagramming, structural mappings, material agency, interdisciplinary coverings - that shed light on both mathematics and other disciplines. Chapters are also relevant to social sciences and humanities scholars, as each offers philosophical insight into mathematics and how we might live mathematically.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Leading thinkers in mathematics, philosophy and education offer new insights into the fundamental question: what is a mathematical concept?</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield><subfield code="x">Social aspects.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2021006792</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield><subfield code="x">Philosophy.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082153</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques</subfield><subfield code="x">Philosophie.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Essays.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Pre-Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matemáticas</subfield><subfield code="x">Filosofía</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matemáticas</subfield><subfield code="x">Aspectos sociales</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matemáticas</subfield><subfield code="x">Ensayos</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="x">Philosophy</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="x">Social aspects</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Freitas, Elizabeth,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sinclair, Nathalie,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coles, Alf,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">What is a mathematical concept? (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGFgtg9jTTFmrBGfRx6jwd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512507</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4941673</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1512507</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38684853</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14745909</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14753620</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14747168</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1000054311 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:27:58Z |
institution | BVB |
isbn | 9781108224284 1108224288 9781108216180 1108216188 9781316471128 1316471128 |
language | English |
oclc_num | 1000054311 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 288 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | What is a mathematical concept? / edited by Elizabeth de Freitas, Manchester Metropolitan University ; Nathalie Sinclair, Simon Fraser University ; Alf Coles, University of Bristol. New York, NY : Cambridge University Press, 2017. ©2017 1 online resource (xii, 288 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Introduction -- Of Polyhedra and pyjamas : Platonism and induction in meaning-finitist mathematics / Michael J. Barany -- Mathematical concepts? : the view from ancient history / Reviel Netz -- On treating mathematical drawings as artworks / Juliette Kennedy -- Concepts as generative devices / Elizabeth de Freitas, Nathalie Sinclair -- Bernhard Riemann's conceptual mathematics and pedagogy of mathematical concepts / Arkady Plotnitsky -- Deleuze and the conceptualizable character of mathematical theories / Simon Duffy -- The vertical unity of the concept of space / David Corfield -- The perfectoid concept : test case for an absent theory / Michael Harris -- Queering mathematical concepts / Heather Mendick -- Mathematics concepts in the news / Richard Barwell, Yasmine Abtahi -- Concepts and commodities in mathematical learning / Tony Brown -- A relational view of mathematical concepts / Alf Coles -- Cultural concepts concretely / Wolff-Michael Roth -- Ideas as species / Brent Davis -- Inhabiting mathematical concepts / Ricardo Nemirovsky -- Afterword. Making a thing of it : some conceptual commentary / David Pimm Responding to widespread interest within cultural studies and social inquiry, this book addresses the question 'what is a mathematical concept?' using a variety of vanguard theories in the humanities and posthumanities. Tapping historical, philosophical, sociological and psychological perspectives, each chapter explores the question of how mathematics comes to matter. Of interest to scholars across the usual disciplinary divides, this book tracks mathematics as a cultural activity, drawing connections with empirical practice. Unlike other books in this area, it is highly interdisciplinary, devoted to exploring the ontology of mathematics as it plays out in different contexts. This book will appeal to scholars who are interested in particular mathematical habits - creative diagramming, structural mappings, material agency, interdisciplinary coverings - that shed light on both mathematics and other disciplines. Chapters are also relevant to social sciences and humanities scholars, as each offers philosophical insight into mathematics and how we might live mathematically. Leading thinkers in mathematics, philosophy and education offer new insights into the fundamental question: what is a mathematical concept? Print version record. Mathematics Social aspects. http://id.loc.gov/authorities/subjects/sh2021006792 Mathematics Philosophy. http://id.loc.gov/authorities/subjects/sh85082153 Mathématiques Philosophie. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Matemáticas Filosofía embne Matemáticas Aspectos sociales embne Matemáticas Ensayos embne Mathematics Philosophy fast Mathematics Social aspects fast De Freitas, Elizabeth, editor. Sinclair, Nathalie, editor. Coles, Alf, editor. has work: What is a mathematical concept? (Text) https://id.oclc.org/worldcat/entity/E39PCGFgtg9jTTFmrBGfRx6jwd https://id.oclc.org/worldcat/ontology/hasWork FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512507 Volltext |
spellingShingle | What is a mathematical concept? / Of Polyhedra and pyjamas : Platonism and induction in meaning-finitist mathematics / Mathematical concepts? : the view from ancient history / On treating mathematical drawings as artworks / Concepts as generative devices / Bernhard Riemann's conceptual mathematics and pedagogy of mathematical concepts / Deleuze and the conceptualizable character of mathematical theories / The vertical unity of the concept of space / The perfectoid concept : test case for an absent theory / Queering mathematical concepts / Mathematics concepts in the news / Concepts and commodities in mathematical learning / A relational view of mathematical concepts / Cultural concepts concretely / Ideas as species / Inhabiting mathematical concepts / Afterword. Making a thing of it : some conceptual commentary / Mathematics Social aspects. http://id.loc.gov/authorities/subjects/sh2021006792 Mathematics Philosophy. http://id.loc.gov/authorities/subjects/sh85082153 Mathématiques Philosophie. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Matemáticas Filosofía embne Matemáticas Aspectos sociales embne Matemáticas Ensayos embne Mathematics Philosophy fast Mathematics Social aspects fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2021006792 http://id.loc.gov/authorities/subjects/sh85082153 |
title | What is a mathematical concept? / |
title_alt | Of Polyhedra and pyjamas : Platonism and induction in meaning-finitist mathematics / Mathematical concepts? : the view from ancient history / On treating mathematical drawings as artworks / Concepts as generative devices / Bernhard Riemann's conceptual mathematics and pedagogy of mathematical concepts / Deleuze and the conceptualizable character of mathematical theories / The vertical unity of the concept of space / The perfectoid concept : test case for an absent theory / Queering mathematical concepts / Mathematics concepts in the news / Concepts and commodities in mathematical learning / A relational view of mathematical concepts / Cultural concepts concretely / Ideas as species / Inhabiting mathematical concepts / Afterword. Making a thing of it : some conceptual commentary / |
title_auth | What is a mathematical concept? / |
title_exact_search | What is a mathematical concept? / |
title_full | What is a mathematical concept? / edited by Elizabeth de Freitas, Manchester Metropolitan University ; Nathalie Sinclair, Simon Fraser University ; Alf Coles, University of Bristol. |
title_fullStr | What is a mathematical concept? / edited by Elizabeth de Freitas, Manchester Metropolitan University ; Nathalie Sinclair, Simon Fraser University ; Alf Coles, University of Bristol. |
title_full_unstemmed | What is a mathematical concept? / edited by Elizabeth de Freitas, Manchester Metropolitan University ; Nathalie Sinclair, Simon Fraser University ; Alf Coles, University of Bristol. |
title_short | What is a mathematical concept? / |
title_sort | what is a mathematical concept |
topic | Mathematics Social aspects. http://id.loc.gov/authorities/subjects/sh2021006792 Mathematics Philosophy. http://id.loc.gov/authorities/subjects/sh85082153 Mathématiques Philosophie. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Matemáticas Filosofía embne Matemáticas Aspectos sociales embne Matemáticas Ensayos embne Mathematics Philosophy fast Mathematics Social aspects fast |
topic_facet | Mathematics Social aspects. Mathematics Philosophy. Mathématiques Philosophie. MATHEMATICS Essays. MATHEMATICS Pre-Calculus. MATHEMATICS Reference. Matemáticas Filosofía Matemáticas Aspectos sociales Matemáticas Ensayos Mathematics Philosophy Mathematics Social aspects |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512507 |
work_keys_str_mv | AT defreitaselizabeth whatisamathematicalconcept AT sinclairnathalie whatisamathematicalconcept AT colesalf whatisamathematicalconcept |