Groups, graphs, and random walks /:
An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields.
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
[2017]
|
Schriftenreihe: | London Mathematical Society lecture note series ;
436. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields. |
Beschreibung: | Based on the workshop "Groups, Graphs and Random Walks," held in Cortona, Italy, on June 2-6, 2014, on the occasion of the 60th birthday of Wolfgang Woess An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubtedly stem. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781316818862 1316818861 9781316576571 1316576574 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn993878396 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 170717s2017 enk ob 101 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDX |d EBLCP |d UMI |d UIU |d STF |d MERER |d TOH |d OCLCQ |d UAB |d DEBBG |d IL4J6 |d U3W |d COO |d OCLCQ |d UOK |d CEF |d KSU |d VT2 |d INT |d OTZ |d AU@ |d WYU |d UWO |d OCLCQ |d C6I |d OCLCQ |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCL | ||
066 | |c (S | ||
019 | |a 994058626 |a 995450691 | ||
020 | |a 9781316818862 |q (electronic bk.) | ||
020 | |a 1316818861 |q (electronic bk.) | ||
020 | |z 9781316604403 | ||
020 | |z 1316604403 | ||
020 | |a 9781316576571 | ||
020 | |a 1316576574 | ||
035 | |a (OCoLC)993878396 |z (OCoLC)994058626 |z (OCoLC)995450691 | ||
037 | |a CL0500000879 |b Safari Books Online | ||
050 | 4 | |a QA274.73 |b .G76 2017eb | |
072 | 7 | |a MAT |x 003000 |2 bisacsh | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.2/82 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Groups, graphs, and random walks / |c edited by Tullio Ceccherini-Silberstein, Università degli Studi del Sannio, Italy, Maura Salvatori, Università degli Studi di Milano, Ecaterina Sava-Huss, Cornell University, New York. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c [2017] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London mathematical society lecture note series ; |v 436 | |
500 | |a Based on the workshop "Groups, Graphs and Random Walks," held in Cortona, Italy, on June 2-6, 2014, on the occasion of the 60th birthday of Wolfgang Woess | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |6 880-01 |a Cover; Series information ; Title page ; Copyright information ; Table of contents ; Preface; Conference Photographs; 1 Growth of Groups and Wreath Products; Introduction; 1. Wreath Products; 1.1. Actions; 1.2. History; 1.3. Generators for Wreath Products; 2. Growth of Groups; 2.1. Formal Growth; 2.2. Complete Growth Series; 2.3. Asymptotic Growth; 2.4. History; 3. Growth of Regular Wreath Products; 3.1. Wreath Products Over Finite Sets; 3.2. Lamplighter Groups; 3.3. Regular Wreath Products with Free Groups; 3.4. Travelling Salesmen; 3.5. Asymptotic Growth; 4. (Self- )similar Groups. | |
505 | 8 | |a 7.2. Finite-Valued Permutational Wreath Products7.3. Imbedding in the Derived Subgroup; 7.4. Spreading, Stabilizing, Rectifiable Sequences; 7.5. Subexponential Growth of Wreath Products; 8. Groups of Non-Uniform Exponential Growth; References; 2 Random Walks on Some Countable Groups; 1. Introduction; 1.1. Union of Finite Groups; 1.2. Direct Sums; 1.3. Other Examples; 2. Selected Technical Tools; 3. Random Walks on Increasing Union of Finite Groups; 3.1. On Diagonal Upper Bounds: Convex Combinations of Commuting Probability Densities. | |
500 | |a An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubtedly stem. | ||
505 | 8 | |a 3.2. On Diagonal Bounds: Convex Combinations of Haar Measures and Comparison4. Examples on mathbb S[sup((∞))] ; 4.1. Behavior of Convex Combinations of Uniforms; 4.2. Walks Based on Small Generating Sets of mathbb S[sub(n)] ; 5. Around the Recurrence/Transience Dichotomy; 6. Direct Sums of Finitely Generated Groups; 6.1. Examples on Direct Sums; 6.2. Comparison Inequalities; References; 3 The Cost of Distinguishing Graphs; 1. Introduction; 2. Preliminaries; 3. Finite Graphs; 4. Infinite Graphs; 4.1. A New Bound for Linear Growth; 4.2. Graphs with Two Ends; 4.3. The Main Result; 5. Outlook | |
520 | |a An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields. | ||
650 | 0 | |a Random walks (Mathematics) |v Congresses. | |
650 | 0 | |a Stochastic processes |v Congresses. | |
650 | 0 | |a Arithmetic groups |v Congresses. | |
650 | 6 | |a Marches aléatoires (Mathématiques) |v Congrès. | |
650 | 6 | |a Processus stochastiques |v Congrès. | |
650 | 6 | |a Groupes arithmétiques |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Procesos estocásticos |2 embne | |
650 | 7 | |a Arithmetic groups |2 fast | |
650 | 7 | |a Random walks (Mathematics) |2 fast | |
650 | 7 | |a Stochastic processes |2 fast | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Ceccherini-Silberstein, Tullio, |e editor. |0 http://id.loc.gov/authorities/names/nb2008004989 | |
700 | 1 | |a Salvatori, Maura, |e editor. |0 http://id.loc.gov/authorities/names/n2016023818 | |
700 | 1 | |a Sava-Huss, Ecaterina, |e editor. |0 http://id.loc.gov/authorities/names/n2016023821 | |
700 | 1 | |a Woess, Wolfgang, |d 1954- |1 https://id.oclc.org/worldcat/entity/E39PBJmy3V8PPcvkydGWcCwcT3 |0 http://id.loc.gov/authorities/names/n99034665 | |
758 | |i has work: |a Groups, graphs, and random walks (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFYDtrJpVRtVydhKWQf9CP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Groups, graphs, and random walks. |d Cambridge : Cambridge University Press, [2017] |z 9781316604403 |w (DLC) 2016019201 |w (OCoLC)948670194 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 436. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1526303 |3 Volltext |
880 | 8 | |6 505-01/(S |a AcknowledgmentReferences; Added in Proof; 4 A Construction of the Measurable Poisson Boundary: From Discrete to Continuous Groups; 1. G-Harmonic Functions and G-Poisson Boundary; 2. From Γ-Boundaries to G-Boundaries; 3. G-Poisson Boundary of Baumslag-Solitar Group; References; 5 Structure Trees, Networks and AlmostInvariant Sets; 1. Introduction; 2. Networks and Structure Trees; 2.1. Finite Networks; 2.2. The Algebra of Cuts; 2.3. Flows in Networks; 3. Almost Invariant Sets; 3.1. Relative Structure Trees; 4. H-Almost Stability; References; 6 Amenability of Trees; Introduction. | |
880 | 8 | |6 505-00/(S |a 4.1. Finite-State Self-Similar Groups4.2. Linear Groups; 4.3. Rooted Trees; 4.4. Similar Families of Groups; 4.5. The Grigorchuk Family G[sub(ω)] ; 5. Growth Estimates for Self-similar Groups; 5.1. A Lower Bound via Algebras; 5.2. Metrics on G[sub(ω)] ; 5.3. The G[sub(ω)] Are Infinite Torsion Groups; 5.4. Lower Growth Estimates for G[sub(ω)] ; 5.5. Upper Growth Estimates for G[sub(ω)] ; 6. Growth of Permutational Wreath Products; 6.1. The Growth of W[sub(ω)](H) ; 6.2. Proof of Theorem 6.2; 6.3. Illustrations; 7. Imbeddings and Subgroups; 7.1. Neumann's Proof. | |
938 | |a Askews and Holts Library Services |b ASKH |n AH34210817 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH32960430 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH32851976 | ||
938 | |a YBP Library Services |b YANK |n 14745928 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4866207 | ||
938 | |a YBP Library Services |b YANK |n 14694880 | ||
938 | |a YBP Library Services |b YANK |n 14695275 | ||
938 | |a EBSCOhost |b EBSC |n 1526303 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn993878396 |
---|---|
_version_ | 1816882395035467776 |
adam_text | |
any_adam_object | |
author2 | Ceccherini-Silberstein, Tullio Salvatori, Maura Sava-Huss, Ecaterina Woess, Wolfgang, 1954- |
author2_role | edt edt edt |
author2_variant | t c s tcs m s ms e s h esh w w ww |
author_GND | http://id.loc.gov/authorities/names/nb2008004989 http://id.loc.gov/authorities/names/n2016023818 http://id.loc.gov/authorities/names/n2016023821 http://id.loc.gov/authorities/names/n99034665 |
author_facet | Ceccherini-Silberstein, Tullio Salvatori, Maura Sava-Huss, Ecaterina Woess, Wolfgang, 1954- |
author_sort | Woess, Wolfgang, 1954- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.73 .G76 2017eb |
callnumber-search | QA274.73 .G76 2017eb |
callnumber-sort | QA 3274.73 G76 42017EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Series information ; Title page ; Copyright information ; Table of contents ; Preface; Conference Photographs; 1 Growth of Groups and Wreath Products; Introduction; 1. Wreath Products; 1.1. Actions; 1.2. History; 1.3. Generators for Wreath Products; 2. Growth of Groups; 2.1. Formal Growth; 2.2. Complete Growth Series; 2.3. Asymptotic Growth; 2.4. History; 3. Growth of Regular Wreath Products; 3.1. Wreath Products Over Finite Sets; 3.2. Lamplighter Groups; 3.3. Regular Wreath Products with Free Groups; 3.4. Travelling Salesmen; 3.5. Asymptotic Growth; 4. (Self- )similar Groups. 7.2. Finite-Valued Permutational Wreath Products7.3. Imbedding in the Derived Subgroup; 7.4. Spreading, Stabilizing, Rectifiable Sequences; 7.5. Subexponential Growth of Wreath Products; 8. Groups of Non-Uniform Exponential Growth; References; 2 Random Walks on Some Countable Groups; 1. Introduction; 1.1. Union of Finite Groups; 1.2. Direct Sums; 1.3. Other Examples; 2. Selected Technical Tools; 3. Random Walks on Increasing Union of Finite Groups; 3.1. On Diagonal Upper Bounds: Convex Combinations of Commuting Probability Densities. 3.2. On Diagonal Bounds: Convex Combinations of Haar Measures and Comparison4. Examples on mathbb S[sup((∞))] ; 4.1. Behavior of Convex Combinations of Uniforms; 4.2. Walks Based on Small Generating Sets of mathbb S[sub(n)] ; 5. Around the Recurrence/Transience Dichotomy; 6. Direct Sums of Finitely Generated Groups; 6.1. Examples on Direct Sums; 6.2. Comparison Inequalities; References; 3 The Cost of Distinguishing Graphs; 1. Introduction; 2. Preliminaries; 3. Finite Graphs; 4. Infinite Graphs; 4.1. A New Bound for Linear Growth; 4.2. Graphs with Two Ends; 4.3. The Main Result; 5. Outlook |
ctrlnum | (OCoLC)993878396 |
dewey-full | 519.2/82 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/82 |
dewey-search | 519.2/82 |
dewey-sort | 3519.2 282 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08166cam a2200853 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn993878396</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">170717s2017 enk ob 101 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UMI</subfield><subfield code="d">UIU</subfield><subfield code="d">STF</subfield><subfield code="d">MERER</subfield><subfield code="d">TOH</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">DEBBG</subfield><subfield code="d">IL4J6</subfield><subfield code="d">U3W</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UOK</subfield><subfield code="d">CEF</subfield><subfield code="d">KSU</subfield><subfield code="d">VT2</subfield><subfield code="d">INT</subfield><subfield code="d">OTZ</subfield><subfield code="d">AU@</subfield><subfield code="d">WYU</subfield><subfield code="d">UWO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">C6I</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">994058626</subfield><subfield code="a">995450691</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316818862</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316818861</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781316604403</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1316604403</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316576571</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316576574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)993878396</subfield><subfield code="z">(OCoLC)994058626</subfield><subfield code="z">(OCoLC)995450691</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000879</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA274.73</subfield><subfield code="b">.G76 2017eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2/82</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Groups, graphs, and random walks /</subfield><subfield code="c">edited by Tullio Ceccherini-Silberstein, Università degli Studi del Sannio, Italy, Maura Salvatori, Università degli Studi di Milano, Ecaterina Sava-Huss, Cornell University, New York.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London mathematical society lecture note series ;</subfield><subfield code="v">436</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Based on the workshop "Groups, Graphs and Random Walks," held in Cortona, Italy, on June 2-6, 2014, on the occasion of the 60th birthday of Wolfgang Woess</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Cover; Series information ; Title page ; Copyright information ; Table of contents ; Preface; Conference Photographs; 1 Growth of Groups and Wreath Products; Introduction; 1. Wreath Products; 1.1. Actions; 1.2. History; 1.3. Generators for Wreath Products; 2. Growth of Groups; 2.1. Formal Growth; 2.2. Complete Growth Series; 2.3. Asymptotic Growth; 2.4. History; 3. Growth of Regular Wreath Products; 3.1. Wreath Products Over Finite Sets; 3.2. Lamplighter Groups; 3.3. Regular Wreath Products with Free Groups; 3.4. Travelling Salesmen; 3.5. Asymptotic Growth; 4. (Self- )similar Groups.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2. Finite-Valued Permutational Wreath Products7.3. Imbedding in the Derived Subgroup; 7.4. Spreading, Stabilizing, Rectifiable Sequences; 7.5. Subexponential Growth of Wreath Products; 8. Groups of Non-Uniform Exponential Growth; References; 2 Random Walks on Some Countable Groups; 1. Introduction; 1.1. Union of Finite Groups; 1.2. Direct Sums; 1.3. Other Examples; 2. Selected Technical Tools; 3. Random Walks on Increasing Union of Finite Groups; 3.1. On Diagonal Upper Bounds: Convex Combinations of Commuting Probability Densities.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubtedly stem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2. On Diagonal Bounds: Convex Combinations of Haar Measures and Comparison4. Examples on mathbb S[sup((∞))] ; 4.1. Behavior of Convex Combinations of Uniforms; 4.2. Walks Based on Small Generating Sets of mathbb S[sub(n)] ; 5. Around the Recurrence/Transience Dichotomy; 6. Direct Sums of Finitely Generated Groups; 6.1. Examples on Direct Sums; 6.2. Comparison Inequalities; References; 3 The Cost of Distinguishing Graphs; 1. Introduction; 2. Preliminaries; 3. Finite Graphs; 4. Infinite Graphs; 4.1. A New Bound for Linear Growth; 4.2. Graphs with Two Ends; 4.3. The Main Result; 5. Outlook</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Random walks (Mathematics)</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic processes</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Arithmetic groups</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Marches aléatoires (Mathématiques)</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Processus stochastiques</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes arithmétiques</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Procesos estocásticos</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arithmetic groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random walks (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ceccherini-Silberstein, Tullio,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2008004989</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salvatori, Maura,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2016023818</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sava-Huss, Ecaterina,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2016023821</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woess, Wolfgang,</subfield><subfield code="d">1954-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJmy3V8PPcvkydGWcCwcT3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99034665</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Groups, graphs, and random walks (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFYDtrJpVRtVydhKWQf9CP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Groups, graphs, and random walks.</subfield><subfield code="d">Cambridge : Cambridge University Press, [2017]</subfield><subfield code="z">9781316604403</subfield><subfield code="w">(DLC) 2016019201</subfield><subfield code="w">(OCoLC)948670194</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">436.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1526303</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-01/(S</subfield><subfield code="a">AcknowledgmentReferences; Added in Proof; 4 A Construction of the Measurable Poisson Boundary: From Discrete to Continuous Groups; 1. G-Harmonic Functions and G-Poisson Boundary; 2. From Γ-Boundaries to G-Boundaries; 3. G-Poisson Boundary of Baumslag-Solitar Group; References; 5 Structure Trees, Networks and AlmostInvariant Sets; 1. Introduction; 2. Networks and Structure Trees; 2.1. Finite Networks; 2.2. The Algebra of Cuts; 2.3. Flows in Networks; 3. Almost Invariant Sets; 3.1. Relative Structure Trees; 4. H-Almost Stability; References; 6 Amenability of Trees; Introduction.</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">4.1. Finite-State Self-Similar Groups4.2. Linear Groups; 4.3. Rooted Trees; 4.4. Similar Families of Groups; 4.5. The Grigorchuk Family G[sub(ω)] ; 5. Growth Estimates for Self-similar Groups; 5.1. A Lower Bound via Algebras; 5.2. Metrics on G[sub(ω)] ; 5.3. The G[sub(ω)] Are Infinite Torsion Groups; 5.4. Lower Growth Estimates for G[sub(ω)] ; 5.5. Upper Growth Estimates for G[sub(ω)] ; 6. Growth of Permutational Wreath Products; 6.1. The Growth of W[sub(ω)](H) ; 6.2. Proof of Theorem 6.2; 6.3. Illustrations; 7. Imbeddings and Subgroups; 7.1. Neumann's Proof.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34210817</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH32960430</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH32851976</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14745928</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4866207</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14694880</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14695275</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1526303</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast |
genre_facet | Conference papers and proceedings |
id | ZDB-4-EBA-ocn993878396 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:56Z |
institution | BVB |
isbn | 9781316818862 1316818861 9781316576571 1316576574 |
language | English |
oclc_num | 993878396 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London mathematical society lecture note series ; |
spelling | Groups, graphs, and random walks / edited by Tullio Ceccherini-Silberstein, Università degli Studi del Sannio, Italy, Maura Salvatori, Università degli Studi di Milano, Ecaterina Sava-Huss, Cornell University, New York. Cambridge : Cambridge University Press, [2017] 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier London mathematical society lecture note series ; 436 Based on the workshop "Groups, Graphs and Random Walks," held in Cortona, Italy, on June 2-6, 2014, on the occasion of the 60th birthday of Wolfgang Woess Includes bibliographical references and index. Print version record. 880-01 Cover; Series information ; Title page ; Copyright information ; Table of contents ; Preface; Conference Photographs; 1 Growth of Groups and Wreath Products; Introduction; 1. Wreath Products; 1.1. Actions; 1.2. History; 1.3. Generators for Wreath Products; 2. Growth of Groups; 2.1. Formal Growth; 2.2. Complete Growth Series; 2.3. Asymptotic Growth; 2.4. History; 3. Growth of Regular Wreath Products; 3.1. Wreath Products Over Finite Sets; 3.2. Lamplighter Groups; 3.3. Regular Wreath Products with Free Groups; 3.4. Travelling Salesmen; 3.5. Asymptotic Growth; 4. (Self- )similar Groups. 7.2. Finite-Valued Permutational Wreath Products7.3. Imbedding in the Derived Subgroup; 7.4. Spreading, Stabilizing, Rectifiable Sequences; 7.5. Subexponential Growth of Wreath Products; 8. Groups of Non-Uniform Exponential Growth; References; 2 Random Walks on Some Countable Groups; 1. Introduction; 1.1. Union of Finite Groups; 1.2. Direct Sums; 1.3. Other Examples; 2. Selected Technical Tools; 3. Random Walks on Increasing Union of Finite Groups; 3.1. On Diagonal Upper Bounds: Convex Combinations of Commuting Probability Densities. An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubtedly stem. 3.2. On Diagonal Bounds: Convex Combinations of Haar Measures and Comparison4. Examples on mathbb S[sup((∞))] ; 4.1. Behavior of Convex Combinations of Uniforms; 4.2. Walks Based on Small Generating Sets of mathbb S[sub(n)] ; 5. Around the Recurrence/Transience Dichotomy; 6. Direct Sums of Finitely Generated Groups; 6.1. Examples on Direct Sums; 6.2. Comparison Inequalities; References; 3 The Cost of Distinguishing Graphs; 1. Introduction; 2. Preliminaries; 3. Finite Graphs; 4. Infinite Graphs; 4.1. A New Bound for Linear Growth; 4.2. Graphs with Two Ends; 4.3. The Main Result; 5. Outlook An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields. Random walks (Mathematics) Congresses. Stochastic processes Congresses. Arithmetic groups Congresses. Marches aléatoires (Mathématiques) Congrès. Processus stochastiques Congrès. Groupes arithmétiques Congrès. MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Procesos estocásticos embne Arithmetic groups fast Random walks (Mathematics) fast Stochastic processes fast Conference papers and proceedings fast Ceccherini-Silberstein, Tullio, editor. http://id.loc.gov/authorities/names/nb2008004989 Salvatori, Maura, editor. http://id.loc.gov/authorities/names/n2016023818 Sava-Huss, Ecaterina, editor. http://id.loc.gov/authorities/names/n2016023821 Woess, Wolfgang, 1954- https://id.oclc.org/worldcat/entity/E39PBJmy3V8PPcvkydGWcCwcT3 http://id.loc.gov/authorities/names/n99034665 has work: Groups, graphs, and random walks (Text) https://id.oclc.org/worldcat/entity/E39PCFYDtrJpVRtVydhKWQf9CP https://id.oclc.org/worldcat/ontology/hasWork Print version: Groups, graphs, and random walks. Cambridge : Cambridge University Press, [2017] 9781316604403 (DLC) 2016019201 (OCoLC)948670194 London Mathematical Society lecture note series ; 436. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1526303 Volltext 505-01/(S AcknowledgmentReferences; Added in Proof; 4 A Construction of the Measurable Poisson Boundary: From Discrete to Continuous Groups; 1. G-Harmonic Functions and G-Poisson Boundary; 2. From Γ-Boundaries to G-Boundaries; 3. G-Poisson Boundary of Baumslag-Solitar Group; References; 5 Structure Trees, Networks and AlmostInvariant Sets; 1. Introduction; 2. Networks and Structure Trees; 2.1. Finite Networks; 2.2. The Algebra of Cuts; 2.3. Flows in Networks; 3. Almost Invariant Sets; 3.1. Relative Structure Trees; 4. H-Almost Stability; References; 6 Amenability of Trees; Introduction. 505-00/(S 4.1. Finite-State Self-Similar Groups4.2. Linear Groups; 4.3. Rooted Trees; 4.4. Similar Families of Groups; 4.5. The Grigorchuk Family G[sub(ω)] ; 5. Growth Estimates for Self-similar Groups; 5.1. A Lower Bound via Algebras; 5.2. Metrics on G[sub(ω)] ; 5.3. The G[sub(ω)] Are Infinite Torsion Groups; 5.4. Lower Growth Estimates for G[sub(ω)] ; 5.5. Upper Growth Estimates for G[sub(ω)] ; 6. Growth of Permutational Wreath Products; 6.1. The Growth of W[sub(ω)](H) ; 6.2. Proof of Theorem 6.2; 6.3. Illustrations; 7. Imbeddings and Subgroups; 7.1. Neumann's Proof. |
spellingShingle | Groups, graphs, and random walks / London Mathematical Society lecture note series ; Cover; Series information ; Title page ; Copyright information ; Table of contents ; Preface; Conference Photographs; 1 Growth of Groups and Wreath Products; Introduction; 1. Wreath Products; 1.1. Actions; 1.2. History; 1.3. Generators for Wreath Products; 2. Growth of Groups; 2.1. Formal Growth; 2.2. Complete Growth Series; 2.3. Asymptotic Growth; 2.4. History; 3. Growth of Regular Wreath Products; 3.1. Wreath Products Over Finite Sets; 3.2. Lamplighter Groups; 3.3. Regular Wreath Products with Free Groups; 3.4. Travelling Salesmen; 3.5. Asymptotic Growth; 4. (Self- )similar Groups. 7.2. Finite-Valued Permutational Wreath Products7.3. Imbedding in the Derived Subgroup; 7.4. Spreading, Stabilizing, Rectifiable Sequences; 7.5. Subexponential Growth of Wreath Products; 8. Groups of Non-Uniform Exponential Growth; References; 2 Random Walks on Some Countable Groups; 1. Introduction; 1.1. Union of Finite Groups; 1.2. Direct Sums; 1.3. Other Examples; 2. Selected Technical Tools; 3. Random Walks on Increasing Union of Finite Groups; 3.1. On Diagonal Upper Bounds: Convex Combinations of Commuting Probability Densities. 3.2. On Diagonal Bounds: Convex Combinations of Haar Measures and Comparison4. Examples on mathbb S[sup((∞))] ; 4.1. Behavior of Convex Combinations of Uniforms; 4.2. Walks Based on Small Generating Sets of mathbb S[sub(n)] ; 5. Around the Recurrence/Transience Dichotomy; 6. Direct Sums of Finitely Generated Groups; 6.1. Examples on Direct Sums; 6.2. Comparison Inequalities; References; 3 The Cost of Distinguishing Graphs; 1. Introduction; 2. Preliminaries; 3. Finite Graphs; 4. Infinite Graphs; 4.1. A New Bound for Linear Growth; 4.2. Graphs with Two Ends; 4.3. The Main Result; 5. Outlook Random walks (Mathematics) Congresses. Stochastic processes Congresses. Arithmetic groups Congresses. Marches aléatoires (Mathématiques) Congrès. Processus stochastiques Congrès. Groupes arithmétiques Congrès. MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Procesos estocásticos embne Arithmetic groups fast Random walks (Mathematics) fast Stochastic processes fast |
title | Groups, graphs, and random walks / |
title_auth | Groups, graphs, and random walks / |
title_exact_search | Groups, graphs, and random walks / |
title_full | Groups, graphs, and random walks / edited by Tullio Ceccherini-Silberstein, Università degli Studi del Sannio, Italy, Maura Salvatori, Università degli Studi di Milano, Ecaterina Sava-Huss, Cornell University, New York. |
title_fullStr | Groups, graphs, and random walks / edited by Tullio Ceccherini-Silberstein, Università degli Studi del Sannio, Italy, Maura Salvatori, Università degli Studi di Milano, Ecaterina Sava-Huss, Cornell University, New York. |
title_full_unstemmed | Groups, graphs, and random walks / edited by Tullio Ceccherini-Silberstein, Università degli Studi del Sannio, Italy, Maura Salvatori, Università degli Studi di Milano, Ecaterina Sava-Huss, Cornell University, New York. |
title_short | Groups, graphs, and random walks / |
title_sort | groups graphs and random walks |
topic | Random walks (Mathematics) Congresses. Stochastic processes Congresses. Arithmetic groups Congresses. Marches aléatoires (Mathématiques) Congrès. Processus stochastiques Congrès. Groupes arithmétiques Congrès. MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Procesos estocásticos embne Arithmetic groups fast Random walks (Mathematics) fast Stochastic processes fast |
topic_facet | Random walks (Mathematics) Congresses. Stochastic processes Congresses. Arithmetic groups Congresses. Marches aléatoires (Mathématiques) Congrès. Processus stochastiques Congrès. Groupes arithmétiques Congrès. MATHEMATICS Applied. MATHEMATICS Probability & Statistics General. Procesos estocásticos Arithmetic groups Random walks (Mathematics) Stochastic processes Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1526303 |
work_keys_str_mv | AT ceccherinisilbersteintullio groupsgraphsandrandomwalks AT salvatorimaura groupsgraphsandrandomwalks AT savahussecaterina groupsgraphsandrandomwalks AT woesswolfgang groupsgraphsandrandomwalks |