Theory of interacting quantum fields /:
This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 2...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
[2012]
|
Schriftenreihe: | De Gruyter studies in mathematics ;
39. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts. |
Beschreibung: | Restrictions on access to electronic version: access available to SOAS staff and students only, using SOAS id and password. |
Beschreibung: | 1 online resource (xx, 568 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 549-561) and index. |
ISBN: | 9783110250626 3110250624 9783110250633 3110250632 9783119163378 3119163376 |
ISSN: | 0179-0986 ; |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn993343088 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 120405s2012 gw a ob 001 0 eng d | ||
010 | |a 2012013207 | ||
040 | |a LOA |b eng |e rda |e pn |c LOA |d YDXCP |d N$T |d E7B |d CDX |d MHW |d OCLCF |d DEBSZ |d UIU |d AGLDB |d COO |d OCLCO |d OCLCQ |d MERUC |d OTZ |d ICG |d ZCU |d K6U |d D6H |d STF |d WRM |d OCLCQ |d VTS |d VT2 |d AU@ |d WYU |d OCLCQ |d YOU |d LVT |d TKN |d U3G |d DKC |d CEF |d UKAHL |d UX1 |d OCLCQ |d AJS |d UWK |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
066 | |c (S | ||
019 | |a 811964412 |a 1058092628 |a 1076710398 |a 1081238903 |a 1148099088 |a 1152990446 |a 1228545309 | ||
020 | |a 9783110250626 |q (print ; |q alk. paper) | ||
020 | |a 3110250624 | ||
020 | |a 9783110250633 |q (e-book) | ||
020 | |a 3110250632 | ||
020 | |a 9783119163378 | ||
020 | |a 3119163376 | ||
035 | |a (OCoLC)993343088 |z (OCoLC)811964412 |z (OCoLC)1058092628 |z (OCoLC)1076710398 |z (OCoLC)1081238903 |z (OCoLC)1148099088 |z (OCoLC)1152990446 |z (OCoLC)1228545309 | ||
050 | 4 | |a QC174.45 |b .R42 2012 | |
072 | 7 | |a QC |2 lcco | |
072 | 7 | |a QA |2 lcco | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
082 | 7 | |a 530.14/3 |2 23 | |
084 | |a UO 4000 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Rebenko, Alekseĭ Lukich. | |
245 | 1 | 0 | |a Theory of interacting quantum fields / |c Alexei L. Rebenko. |
264 | 1 | |a Berlin ; |a Boston : |b De Gruyter, |c [2012] | |
264 | 4 | |c ©2012 | |
300 | |a 1 online resource (xx, 568 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a De Gruyter studies in mathematics, |x 0179-0986 ; |v 39 | |
500 | |a Restrictions on access to electronic version: access available to SOAS staff and students only, using SOAS id and password. | ||
504 | |a Includes bibliographical references (pages 549-561) and index. | ||
505 | 0 | 0 | |t Frontmatter -- |t Preface -- |t Notation -- |t Contents -- |t Chapter 0. Introduction -- |t Part I. Symmetry Groups of Elementary Particles -- |t Chapter 1. Lorentz Group -- |t Chapter 2. Groups of Internal Symmetries -- |t Chapter 3. Problems to Part I -- |t Part II. Classical Theory of the Free Fields -- |t Chapter 4. Lagrangian and Hamiltonian Formalisms of the Classical Field Theory -- |t Chapter 5. Classical Theory of Free Scalar Fields -- |t Chapter 6. Spinor Field -- |t Chapter 7. Vector Fields -- |t Chapter 8. Electromagnetic Field -- |t Chapter 9. Equations for Fields with Higher Spins -- |t Chapter 10. Problems to Part II -- |t Part III. Classical Theory of Interacting Fields -- |t Chapter 11. Gauge Theory of the Electromagnetic Interaction -- |t Chapter 12. Classical Theory of Yang-Mills Fields -- |t Chapter 13. Masses of Particles and Spontaneous Breaking of Symmetry -- |t Chapter 14. On the Construction of the General Lagrangian of Interacting Fields -- |t Chapter 15. Solutions of the Equations for Classical Fields: Solitary Waves, Solitons, Instantons -- |t Chapter 16. Problems to Part III -- |t Part IV. Second Quantization of Fields -- |t Chapter 17. Axioms and General Principles of Quantization -- |t Chapter 18. Quantization of the Free Scalar Field -- |t Chapter 19. Quantization of the Free Spinor Field -- |t Chapter 20. Quantization of the Vector and Electromagnetic Fields. Specific Features of the Quantization of Gauge Fields -- |t Chapter 21. CPT. Spin and Statistics -- |t Chapter 22. Representations of Commutation and Anticommutation Relations -- |t Chapter 23. Green Functions -- |t Chapter 24. Problems to Part IV -- |t Part V. Quantum Theory of Interacting Fields. General Problems -- |t Chapter 25. Construction of Quantum Interacting Fields and Problems of This Construction -- |t Chapter 26. Scattering Theory. Scattering Matrix -- |t Chapter 27. Equations for Coefficient Functions of the S-Matrix -- |t Chapter 28. Green Functions and Scattering Matrix -- |t Chapter 29. On Renormalization in Perturbation Theory -- |t Chapter 30. Method of Functional (Path) Integrals in Quantized Field Theory -- |t Chapter 31. Problems to Part V -- |t Part VI. Axiomatic and Euclidean Field Theories -- |t Chapter 32. Wightman Axiomatics -- |t Chapter 33. Other Axiomatic Approaches -- |t Chapter 35. Euclidean Axiomatics -- |t Chapter 36. Problems to Part VI -- |t Part VII. Quantum Theory of Gauge Fields -- |t Chapter 37. Quantum Electrodynamics (QED) -- |t Chapter 38. Quantization of Gauge Fields -- |t Chapter 39. Standard Models of Interactions -- |t Chapter 40. Problems to Part VII -- |t Appendix. Hints for the Solution of Problems -- |t Bibliography -- |t Index. |
520 | |a This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts. | ||
650 | 0 | |a Quantum field theory. |0 http://id.loc.gov/authorities/subjects/sh85109461 | |
650 | 6 | |a Théorie quantique des champs. | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Quantum field theory |2 fast | |
650 | 7 | |a Quantenfeldtheorie |2 gnd |0 http://d-nb.info/gnd/4047984-5 | |
776 | 0 | 8 | |i Print version: |z 9783110250626 |z 3110250624 |w (DLC) 2012013207 |w (OCoLC)784708360 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 39. |x 0179-0986 |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494127 |3 Volltext |
880 | 8 | |6 505-00/(S |a 5.5.3 Time Reversal T̂̂ -- 5.5.4 ĈP̂T̂̂-Invariance -- 5.6 Representations of the Lorentz Group in the Space of States -- 5.7 Lagrangian Formalism of the Scalar Field. Dynamic Invariants -- 6 Spinor Field -- 6.1 Dirac Equation -- 6.1.1 Construction of the Dirac Equation -- 6.1.2 Properties of Dirac Matrices. Conjugate Equation -- 6.2 Relativistic Invariance -- 6.2.1 Transformation Properties of the Spinor Field -- 6.2.2 On Reducible and Irreducible Spinor Representations -- 6.2.3 Transformation Properties of Bilinear Forms δψOψ -- 6.3 Solutions of the Dirac Equation -- 6.3.1 Structure of Solutions in the Momentum Space -- 6.3.2 Classification of Solutions. Helicity -- 6.3.3 Relations Between Spinors -- 6.3.4 Wave Functions of the Electron and Positron. Charge Conjugation -- 6.3.5 ĈP̂T̂̂-Transformation -- 6.4 Lagrangian Formalism -- 6.5 Representations of the Lorentz Group -- 6.5.1 Hilbert Space of States -- 6.5.2 Representations of the Lorentz Group in the Space of States -- 6.6 Applications of the Dirac Equation -- 6.6.1 Dirac Equation in the Presence of External Fields -- 6.7 Massless Spinor Field -- 6.7.1 Two-component Massless Spinor Field -- 6.7.2 Relativistic Invariance -- 6.7.3 Are There Actual Particles Corresponding to the Massless Spinor FieldsPhysical Interpretation of Solutions. Neutrino -- 6.7.4 Lagrangian and Dynamic Invariants -- 6.7.5 On the Mass of Neutrino and Majorana Spinors -- 7 Vector Fields -- 7.1 Lagrangian Formalism -- 7.2 Representations in the Momentum Space -- 7.3 Decomposition into the Longitudinal and Transverse Components -- 7.4 P̂, T̂̂, Ĉ-Transformations -- 8 Electromagnetic Field -- 8.1 Maxwell Equations -- 8.2 Potential of the Electromagnetic Field. | |
938 | |a Askews and Holts Library Services |b ASKH |n AH25310596 | ||
938 | |a Coutts Information Services |b COUT |n 24023842 | ||
938 | |a ebrary |b EBRY |n ebr10606462 | ||
938 | |a EBSCOhost |b EBSC |n 494127 | ||
938 | |a YBP Library Services |b YANK |n 9753322 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn993343088 |
---|---|
_version_ | 1816882394539491328 |
adam_text | |
any_adam_object | |
author | Rebenko, Alekseĭ Lukich |
author_facet | Rebenko, Alekseĭ Lukich |
author_role | |
author_sort | Rebenko, Alekseĭ Lukich |
author_variant | a l r al alr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.45 .R42 2012 |
callnumber-search | QC174.45 .R42 2012 |
callnumber-sort | QC 3174.45 R42 42012 |
callnumber-subject | QC - Physics |
classification_rvk | UO 4000 |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface -- Notation -- Contents -- Chapter 0. Introduction -- Part I. Symmetry Groups of Elementary Particles -- Chapter 1. Lorentz Group -- Chapter 2. Groups of Internal Symmetries -- Chapter 3. Problems to Part I -- Part II. Classical Theory of the Free Fields -- Chapter 4. Lagrangian and Hamiltonian Formalisms of the Classical Field Theory -- Chapter 5. Classical Theory of Free Scalar Fields -- Chapter 6. Spinor Field -- Chapter 7. Vector Fields -- Chapter 8. Electromagnetic Field -- Chapter 9. Equations for Fields with Higher Spins -- Chapter 10. Problems to Part II -- Part III. Classical Theory of Interacting Fields -- Chapter 11. Gauge Theory of the Electromagnetic Interaction -- Chapter 12. Classical Theory of Yang-Mills Fields -- Chapter 13. Masses of Particles and Spontaneous Breaking of Symmetry -- Chapter 14. On the Construction of the General Lagrangian of Interacting Fields -- Chapter 15. Solutions of the Equations for Classical Fields: Solitary Waves, Solitons, Instantons -- Chapter 16. Problems to Part III -- Part IV. Second Quantization of Fields -- Chapter 17. Axioms and General Principles of Quantization -- Chapter 18. Quantization of the Free Scalar Field -- Chapter 19. Quantization of the Free Spinor Field -- Chapter 20. Quantization of the Vector and Electromagnetic Fields. Specific Features of the Quantization of Gauge Fields -- Chapter 21. CPT. Spin and Statistics -- Chapter 22. Representations of Commutation and Anticommutation Relations -- Chapter 23. Green Functions -- Chapter 24. Problems to Part IV -- Part V. Quantum Theory of Interacting Fields. General Problems -- Chapter 25. Construction of Quantum Interacting Fields and Problems of This Construction -- Chapter 26. Scattering Theory. Scattering Matrix -- Chapter 27. Equations for Coefficient Functions of the S-Matrix -- Chapter 28. Green Functions and Scattering Matrix -- Chapter 29. On Renormalization in Perturbation Theory -- Chapter 30. Method of Functional (Path) Integrals in Quantized Field Theory -- Chapter 31. Problems to Part V -- Part VI. Axiomatic and Euclidean Field Theories -- Chapter 32. Wightman Axiomatics -- Chapter 33. Other Axiomatic Approaches -- Chapter 35. Euclidean Axiomatics -- Chapter 36. Problems to Part VI -- Part VII. Quantum Theory of Gauge Fields -- Chapter 37. Quantum Electrodynamics (QED) -- Chapter 38. Quantization of Gauge Fields -- Chapter 39. Standard Models of Interactions -- Chapter 40. Problems to Part VII -- Appendix. Hints for the Solution of Problems -- Bibliography -- Index. |
ctrlnum | (OCoLC)993343088 |
dewey-full | 530.14/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/3 |
dewey-search | 530.14/3 |
dewey-sort | 3530.14 13 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07822cam a2200661Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn993343088</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">120405s2012 gw a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2012013207</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LOA</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">LOA</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">CDX</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OTZ</subfield><subfield code="d">ICG</subfield><subfield code="d">ZCU</subfield><subfield code="d">K6U</subfield><subfield code="d">D6H</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YOU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">U3G</subfield><subfield code="d">DKC</subfield><subfield code="d">CEF</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UX1</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">UWK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">811964412</subfield><subfield code="a">1058092628</subfield><subfield code="a">1076710398</subfield><subfield code="a">1081238903</subfield><subfield code="a">1148099088</subfield><subfield code="a">1152990446</subfield><subfield code="a">1228545309</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250626</subfield><subfield code="q">(print ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110250624</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250633</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110250632</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783119163378</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3119163376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)993343088</subfield><subfield code="z">(OCoLC)811964412</subfield><subfield code="z">(OCoLC)1058092628</subfield><subfield code="z">(OCoLC)1076710398</subfield><subfield code="z">(OCoLC)1081238903</subfield><subfield code="z">(OCoLC)1148099088</subfield><subfield code="z">(OCoLC)1152990446</subfield><subfield code="z">(OCoLC)1228545309</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.45</subfield><subfield code="b">.R42 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QC</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.14/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rebenko, Alekseĭ Lukich.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of interacting quantum fields /</subfield><subfield code="c">Alexei L. Rebenko.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2012]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 568 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics,</subfield><subfield code="x">0179-0986 ;</subfield><subfield code="v">39</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Restrictions on access to electronic version: access available to SOAS staff and students only, using SOAS id and password.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 549-561) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Notation --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Chapter 0. Introduction --</subfield><subfield code="t">Part I. Symmetry Groups of Elementary Particles --</subfield><subfield code="t">Chapter 1. Lorentz Group --</subfield><subfield code="t">Chapter 2. Groups of Internal Symmetries --</subfield><subfield code="t">Chapter 3. Problems to Part I --</subfield><subfield code="t">Part II. Classical Theory of the Free Fields --</subfield><subfield code="t">Chapter 4. Lagrangian and Hamiltonian Formalisms of the Classical Field Theory --</subfield><subfield code="t">Chapter 5. Classical Theory of Free Scalar Fields --</subfield><subfield code="t">Chapter 6. Spinor Field --</subfield><subfield code="t">Chapter 7. Vector Fields --</subfield><subfield code="t">Chapter 8. Electromagnetic Field --</subfield><subfield code="t">Chapter 9. Equations for Fields with Higher Spins --</subfield><subfield code="t">Chapter 10. Problems to Part II --</subfield><subfield code="t">Part III. Classical Theory of Interacting Fields --</subfield><subfield code="t">Chapter 11. Gauge Theory of the Electromagnetic Interaction --</subfield><subfield code="t">Chapter 12. Classical Theory of Yang-Mills Fields --</subfield><subfield code="t">Chapter 13. Masses of Particles and Spontaneous Breaking of Symmetry --</subfield><subfield code="t">Chapter 14. On the Construction of the General Lagrangian of Interacting Fields --</subfield><subfield code="t">Chapter 15. Solutions of the Equations for Classical Fields: Solitary Waves, Solitons, Instantons --</subfield><subfield code="t">Chapter 16. Problems to Part III --</subfield><subfield code="t">Part IV. Second Quantization of Fields --</subfield><subfield code="t">Chapter 17. Axioms and General Principles of Quantization --</subfield><subfield code="t">Chapter 18. Quantization of the Free Scalar Field --</subfield><subfield code="t">Chapter 19. Quantization of the Free Spinor Field --</subfield><subfield code="t">Chapter 20. Quantization of the Vector and Electromagnetic Fields. Specific Features of the Quantization of Gauge Fields --</subfield><subfield code="t">Chapter 21. CPT. Spin and Statistics --</subfield><subfield code="t">Chapter 22. Representations of Commutation and Anticommutation Relations --</subfield><subfield code="t">Chapter 23. Green Functions --</subfield><subfield code="t">Chapter 24. Problems to Part IV --</subfield><subfield code="t">Part V. Quantum Theory of Interacting Fields. General Problems --</subfield><subfield code="t">Chapter 25. Construction of Quantum Interacting Fields and Problems of This Construction --</subfield><subfield code="t">Chapter 26. Scattering Theory. Scattering Matrix --</subfield><subfield code="t">Chapter 27. Equations for Coefficient Functions of the S-Matrix --</subfield><subfield code="t">Chapter 28. Green Functions and Scattering Matrix --</subfield><subfield code="t">Chapter 29. On Renormalization in Perturbation Theory --</subfield><subfield code="t">Chapter 30. Method of Functional (Path) Integrals in Quantized Field Theory --</subfield><subfield code="t">Chapter 31. Problems to Part V --</subfield><subfield code="t">Part VI. Axiomatic and Euclidean Field Theories --</subfield><subfield code="t">Chapter 32. Wightman Axiomatics --</subfield><subfield code="t">Chapter 33. Other Axiomatic Approaches --</subfield><subfield code="t">Chapter 35. Euclidean Axiomatics --</subfield><subfield code="t">Chapter 36. Problems to Part VI --</subfield><subfield code="t">Part VII. Quantum Theory of Gauge Fields --</subfield><subfield code="t">Chapter 37. Quantum Electrodynamics (QED) --</subfield><subfield code="t">Chapter 38. Quantization of Gauge Fields --</subfield><subfield code="t">Chapter 39. Standard Models of Interactions --</subfield><subfield code="t">Chapter 40. Problems to Part VII --</subfield><subfield code="t">Appendix. Hints for the Solution of Problems --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum field theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109461</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique des champs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Waves & Wave Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum field theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4047984-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9783110250626</subfield><subfield code="z">3110250624</subfield><subfield code="w">(DLC) 2012013207</subfield><subfield code="w">(OCoLC)784708360</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">39.</subfield><subfield code="x">0179-0986</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494127</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">5.5.3 Time Reversal T̂̂ -- 5.5.4 ĈP̂T̂̂-Invariance -- 5.6 Representations of the Lorentz Group in the Space of States -- 5.7 Lagrangian Formalism of the Scalar Field. Dynamic Invariants -- 6 Spinor Field -- 6.1 Dirac Equation -- 6.1.1 Construction of the Dirac Equation -- 6.1.2 Properties of Dirac Matrices. Conjugate Equation -- 6.2 Relativistic Invariance -- 6.2.1 Transformation Properties of the Spinor Field -- 6.2.2 On Reducible and Irreducible Spinor Representations -- 6.2.3 Transformation Properties of Bilinear Forms δψOψ -- 6.3 Solutions of the Dirac Equation -- 6.3.1 Structure of Solutions in the Momentum Space -- 6.3.2 Classification of Solutions. Helicity -- 6.3.3 Relations Between Spinors -- 6.3.4 Wave Functions of the Electron and Positron. Charge Conjugation -- 6.3.5 ĈP̂T̂̂-Transformation -- 6.4 Lagrangian Formalism -- 6.5 Representations of the Lorentz Group -- 6.5.1 Hilbert Space of States -- 6.5.2 Representations of the Lorentz Group in the Space of States -- 6.6 Applications of the Dirac Equation -- 6.6.1 Dirac Equation in the Presence of External Fields -- 6.7 Massless Spinor Field -- 6.7.1 Two-component Massless Spinor Field -- 6.7.2 Relativistic Invariance -- 6.7.3 Are There Actual Particles Corresponding to the Massless Spinor FieldsPhysical Interpretation of Solutions. Neutrino -- 6.7.4 Lagrangian and Dynamic Invariants -- 6.7.5 On the Mass of Neutrino and Majorana Spinors -- 7 Vector Fields -- 7.1 Lagrangian Formalism -- 7.2 Representations in the Momentum Space -- 7.3 Decomposition into the Longitudinal and Transverse Components -- 7.4 P̂, T̂̂, Ĉ-Transformations -- 8 Electromagnetic Field -- 8.1 Maxwell Equations -- 8.2 Potential of the Electromagnetic Field.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25310596</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">24023842</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10606462</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">494127</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9753322</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn993343088 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:27:55Z |
institution | BVB |
isbn | 9783110250626 3110250624 9783110250633 3110250632 9783119163378 3119163376 |
issn | 0179-0986 ; |
language | English |
lccn | 2012013207 |
oclc_num | 993343088 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xx, 568 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter studies in mathematics, |
spelling | Rebenko, Alekseĭ Lukich. Theory of interacting quantum fields / Alexei L. Rebenko. Berlin ; Boston : De Gruyter, [2012] ©2012 1 online resource (xx, 568 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file De Gruyter studies in mathematics, 0179-0986 ; 39 Restrictions on access to electronic version: access available to SOAS staff and students only, using SOAS id and password. Includes bibliographical references (pages 549-561) and index. Frontmatter -- Preface -- Notation -- Contents -- Chapter 0. Introduction -- Part I. Symmetry Groups of Elementary Particles -- Chapter 1. Lorentz Group -- Chapter 2. Groups of Internal Symmetries -- Chapter 3. Problems to Part I -- Part II. Classical Theory of the Free Fields -- Chapter 4. Lagrangian and Hamiltonian Formalisms of the Classical Field Theory -- Chapter 5. Classical Theory of Free Scalar Fields -- Chapter 6. Spinor Field -- Chapter 7. Vector Fields -- Chapter 8. Electromagnetic Field -- Chapter 9. Equations for Fields with Higher Spins -- Chapter 10. Problems to Part II -- Part III. Classical Theory of Interacting Fields -- Chapter 11. Gauge Theory of the Electromagnetic Interaction -- Chapter 12. Classical Theory of Yang-Mills Fields -- Chapter 13. Masses of Particles and Spontaneous Breaking of Symmetry -- Chapter 14. On the Construction of the General Lagrangian of Interacting Fields -- Chapter 15. Solutions of the Equations for Classical Fields: Solitary Waves, Solitons, Instantons -- Chapter 16. Problems to Part III -- Part IV. Second Quantization of Fields -- Chapter 17. Axioms and General Principles of Quantization -- Chapter 18. Quantization of the Free Scalar Field -- Chapter 19. Quantization of the Free Spinor Field -- Chapter 20. Quantization of the Vector and Electromagnetic Fields. Specific Features of the Quantization of Gauge Fields -- Chapter 21. CPT. Spin and Statistics -- Chapter 22. Representations of Commutation and Anticommutation Relations -- Chapter 23. Green Functions -- Chapter 24. Problems to Part IV -- Part V. Quantum Theory of Interacting Fields. General Problems -- Chapter 25. Construction of Quantum Interacting Fields and Problems of This Construction -- Chapter 26. Scattering Theory. Scattering Matrix -- Chapter 27. Equations for Coefficient Functions of the S-Matrix -- Chapter 28. Green Functions and Scattering Matrix -- Chapter 29. On Renormalization in Perturbation Theory -- Chapter 30. Method of Functional (Path) Integrals in Quantized Field Theory -- Chapter 31. Problems to Part V -- Part VI. Axiomatic and Euclidean Field Theories -- Chapter 32. Wightman Axiomatics -- Chapter 33. Other Axiomatic Approaches -- Chapter 35. Euclidean Axiomatics -- Chapter 36. Problems to Part VI -- Part VII. Quantum Theory of Gauge Fields -- Chapter 37. Quantum Electrodynamics (QED) -- Chapter 38. Quantization of Gauge Fields -- Chapter 39. Standard Models of Interactions -- Chapter 40. Problems to Part VII -- Appendix. Hints for the Solution of Problems -- Bibliography -- Index. This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts. Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Théorie quantique des champs. SCIENCE Waves & Wave Mechanics. bisacsh Quantum field theory fast Quantenfeldtheorie gnd http://d-nb.info/gnd/4047984-5 Print version: 9783110250626 3110250624 (DLC) 2012013207 (OCoLC)784708360 De Gruyter studies in mathematics ; 39. 0179-0986 http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494127 Volltext 505-00/(S 5.5.3 Time Reversal T̂̂ -- 5.5.4 ĈP̂T̂̂-Invariance -- 5.6 Representations of the Lorentz Group in the Space of States -- 5.7 Lagrangian Formalism of the Scalar Field. Dynamic Invariants -- 6 Spinor Field -- 6.1 Dirac Equation -- 6.1.1 Construction of the Dirac Equation -- 6.1.2 Properties of Dirac Matrices. Conjugate Equation -- 6.2 Relativistic Invariance -- 6.2.1 Transformation Properties of the Spinor Field -- 6.2.2 On Reducible and Irreducible Spinor Representations -- 6.2.3 Transformation Properties of Bilinear Forms δψOψ -- 6.3 Solutions of the Dirac Equation -- 6.3.1 Structure of Solutions in the Momentum Space -- 6.3.2 Classification of Solutions. Helicity -- 6.3.3 Relations Between Spinors -- 6.3.4 Wave Functions of the Electron and Positron. Charge Conjugation -- 6.3.5 ĈP̂T̂̂-Transformation -- 6.4 Lagrangian Formalism -- 6.5 Representations of the Lorentz Group -- 6.5.1 Hilbert Space of States -- 6.5.2 Representations of the Lorentz Group in the Space of States -- 6.6 Applications of the Dirac Equation -- 6.6.1 Dirac Equation in the Presence of External Fields -- 6.7 Massless Spinor Field -- 6.7.1 Two-component Massless Spinor Field -- 6.7.2 Relativistic Invariance -- 6.7.3 Are There Actual Particles Corresponding to the Massless Spinor FieldsPhysical Interpretation of Solutions. Neutrino -- 6.7.4 Lagrangian and Dynamic Invariants -- 6.7.5 On the Mass of Neutrino and Majorana Spinors -- 7 Vector Fields -- 7.1 Lagrangian Formalism -- 7.2 Representations in the Momentum Space -- 7.3 Decomposition into the Longitudinal and Transverse Components -- 7.4 P̂, T̂̂, Ĉ-Transformations -- 8 Electromagnetic Field -- 8.1 Maxwell Equations -- 8.2 Potential of the Electromagnetic Field. |
spellingShingle | Rebenko, Alekseĭ Lukich Theory of interacting quantum fields / De Gruyter studies in mathematics ; Frontmatter -- Preface -- Notation -- Contents -- Chapter 0. Introduction -- Part I. Symmetry Groups of Elementary Particles -- Chapter 1. Lorentz Group -- Chapter 2. Groups of Internal Symmetries -- Chapter 3. Problems to Part I -- Part II. Classical Theory of the Free Fields -- Chapter 4. Lagrangian and Hamiltonian Formalisms of the Classical Field Theory -- Chapter 5. Classical Theory of Free Scalar Fields -- Chapter 6. Spinor Field -- Chapter 7. Vector Fields -- Chapter 8. Electromagnetic Field -- Chapter 9. Equations for Fields with Higher Spins -- Chapter 10. Problems to Part II -- Part III. Classical Theory of Interacting Fields -- Chapter 11. Gauge Theory of the Electromagnetic Interaction -- Chapter 12. Classical Theory of Yang-Mills Fields -- Chapter 13. Masses of Particles and Spontaneous Breaking of Symmetry -- Chapter 14. On the Construction of the General Lagrangian of Interacting Fields -- Chapter 15. Solutions of the Equations for Classical Fields: Solitary Waves, Solitons, Instantons -- Chapter 16. Problems to Part III -- Part IV. Second Quantization of Fields -- Chapter 17. Axioms and General Principles of Quantization -- Chapter 18. Quantization of the Free Scalar Field -- Chapter 19. Quantization of the Free Spinor Field -- Chapter 20. Quantization of the Vector and Electromagnetic Fields. Specific Features of the Quantization of Gauge Fields -- Chapter 21. CPT. Spin and Statistics -- Chapter 22. Representations of Commutation and Anticommutation Relations -- Chapter 23. Green Functions -- Chapter 24. Problems to Part IV -- Part V. Quantum Theory of Interacting Fields. General Problems -- Chapter 25. Construction of Quantum Interacting Fields and Problems of This Construction -- Chapter 26. Scattering Theory. Scattering Matrix -- Chapter 27. Equations for Coefficient Functions of the S-Matrix -- Chapter 28. Green Functions and Scattering Matrix -- Chapter 29. On Renormalization in Perturbation Theory -- Chapter 30. Method of Functional (Path) Integrals in Quantized Field Theory -- Chapter 31. Problems to Part V -- Part VI. Axiomatic and Euclidean Field Theories -- Chapter 32. Wightman Axiomatics -- Chapter 33. Other Axiomatic Approaches -- Chapter 35. Euclidean Axiomatics -- Chapter 36. Problems to Part VI -- Part VII. Quantum Theory of Gauge Fields -- Chapter 37. Quantum Electrodynamics (QED) -- Chapter 38. Quantization of Gauge Fields -- Chapter 39. Standard Models of Interactions -- Chapter 40. Problems to Part VII -- Appendix. Hints for the Solution of Problems -- Bibliography -- Index. Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Théorie quantique des champs. SCIENCE Waves & Wave Mechanics. bisacsh Quantum field theory fast Quantenfeldtheorie gnd http://d-nb.info/gnd/4047984-5 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85109461 http://d-nb.info/gnd/4047984-5 |
title | Theory of interacting quantum fields / |
title_alt | Frontmatter -- Preface -- Notation -- Contents -- Chapter 0. Introduction -- Part I. Symmetry Groups of Elementary Particles -- Chapter 1. Lorentz Group -- Chapter 2. Groups of Internal Symmetries -- Chapter 3. Problems to Part I -- Part II. Classical Theory of the Free Fields -- Chapter 4. Lagrangian and Hamiltonian Formalisms of the Classical Field Theory -- Chapter 5. Classical Theory of Free Scalar Fields -- Chapter 6. Spinor Field -- Chapter 7. Vector Fields -- Chapter 8. Electromagnetic Field -- Chapter 9. Equations for Fields with Higher Spins -- Chapter 10. Problems to Part II -- Part III. Classical Theory of Interacting Fields -- Chapter 11. Gauge Theory of the Electromagnetic Interaction -- Chapter 12. Classical Theory of Yang-Mills Fields -- Chapter 13. Masses of Particles and Spontaneous Breaking of Symmetry -- Chapter 14. On the Construction of the General Lagrangian of Interacting Fields -- Chapter 15. Solutions of the Equations for Classical Fields: Solitary Waves, Solitons, Instantons -- Chapter 16. Problems to Part III -- Part IV. Second Quantization of Fields -- Chapter 17. Axioms and General Principles of Quantization -- Chapter 18. Quantization of the Free Scalar Field -- Chapter 19. Quantization of the Free Spinor Field -- Chapter 20. Quantization of the Vector and Electromagnetic Fields. Specific Features of the Quantization of Gauge Fields -- Chapter 21. CPT. Spin and Statistics -- Chapter 22. Representations of Commutation and Anticommutation Relations -- Chapter 23. Green Functions -- Chapter 24. Problems to Part IV -- Part V. Quantum Theory of Interacting Fields. General Problems -- Chapter 25. Construction of Quantum Interacting Fields and Problems of This Construction -- Chapter 26. Scattering Theory. Scattering Matrix -- Chapter 27. Equations for Coefficient Functions of the S-Matrix -- Chapter 28. Green Functions and Scattering Matrix -- Chapter 29. On Renormalization in Perturbation Theory -- Chapter 30. Method of Functional (Path) Integrals in Quantized Field Theory -- Chapter 31. Problems to Part V -- Part VI. Axiomatic and Euclidean Field Theories -- Chapter 32. Wightman Axiomatics -- Chapter 33. Other Axiomatic Approaches -- Chapter 35. Euclidean Axiomatics -- Chapter 36. Problems to Part VI -- Part VII. Quantum Theory of Gauge Fields -- Chapter 37. Quantum Electrodynamics (QED) -- Chapter 38. Quantization of Gauge Fields -- Chapter 39. Standard Models of Interactions -- Chapter 40. Problems to Part VII -- Appendix. Hints for the Solution of Problems -- Bibliography -- Index. |
title_auth | Theory of interacting quantum fields / |
title_exact_search | Theory of interacting quantum fields / |
title_full | Theory of interacting quantum fields / Alexei L. Rebenko. |
title_fullStr | Theory of interacting quantum fields / Alexei L. Rebenko. |
title_full_unstemmed | Theory of interacting quantum fields / Alexei L. Rebenko. |
title_short | Theory of interacting quantum fields / |
title_sort | theory of interacting quantum fields |
topic | Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Théorie quantique des champs. SCIENCE Waves & Wave Mechanics. bisacsh Quantum field theory fast Quantenfeldtheorie gnd http://d-nb.info/gnd/4047984-5 |
topic_facet | Quantum field theory. Théorie quantique des champs. SCIENCE Waves & Wave Mechanics. Quantum field theory Quantenfeldtheorie |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494127 |
work_keys_str_mv | AT rebenkoalekseilukich theoryofinteractingquantumfields |