Multivariable and Vector Calculus :: an Introduction.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Bloomfield :
Mercury Learning & Information,
2015.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 2.8 Extrema. |
Beschreibung: | 1 online resource (430 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781942270249 1942270240 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn993063117 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 170708s2015 xx ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d MERUC |d IDB |d OCLCQ |d YDX |d CNNOR |d N$T |d OCLCF |d AGLDB |d IGB |d AUW |d BTN |d MHW |d INTCL |d SNK |d STF |d CNCEN |d OCLCQ |d G3B |d S8I |d S8J |d S9I |d D6H |d DKC |d M8D |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 992787478 | ||
020 | |a 9781942270249 |q (electronic bk.) | ||
020 | |a 1942270240 |q (electronic bk.) | ||
020 | |z 9781942270256 | ||
020 | |z 1942270259 | ||
020 | |z 9781936420285 | ||
035 | |a (OCoLC)993063117 |z (OCoLC)992787478 | ||
050 | 4 | |a QA261 |b .M873 2015eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.63 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Santos, David A. | |
245 | 1 | 0 | |a Multivariable and Vector Calculus : |b an Introduction. |
260 | |a Bloomfield : |b Mercury Learning & Information, |c 2015. | ||
300 | |a 1 online resource (430 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Title Page; Copyright; Dedication; Contents; Preface; Acknowledgments; Chapter 1: Vectors and Parametric Curves; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions; 1.6 Parametric Curves on the Plane; 1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry. | |
505 | 8 | |a 1.15 Canonical Surfaces1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2: Differentiation; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein; 2.8 Extrema; 2.9 Lagrange Multipliers; Chapter 3: Integration; 3.1 Differential Forms; 3.2 Zero-Manifolds; 3.3 One-Manifolds; 3.4 Closed and Exact Forms; 3.5 Two-Manifolds; 3.6 Change of Variables in Double Integrals; 3.7 Change to Polar Coordinates; 3.8 Three-Manifolds. | |
505 | 8 | |a 3.9 Change of Variables in Triple Integrals3.10 Surface Integrals; 3.11 Green's, Stokes', and Gauss' Theorems; Appendix A: Maple; A.1 Getting Started and Windows of Maple; A.2 Arithmetic; A.3 Symbolic Computation; A.4 Assignments; A.5 Working with Output; A.6 Solving Equations; A.7 Plots with Maple; A.8 Limits and Derivatives; A.9 Integration; A.10 Matrix; Appendix B: MATLAB; B.1 Getting Started and Windows of MATLAB; B.1.1 Using MATLAB in Calculations; B.2 Plotting; B.2.1 Two-dimensional Plotting; B.2.2 Three-Dimensional Plotting; B.3 Programming in MATLAB; B.3.1 For Loops; B.3.2 While Loops. | |
505 | 8 | |a B.3.3 If, Else, and ElseifB. 3.4 Switch; B.4 Symbolic Computation; B.4.1 Simplifying Symbolic Expressions; B.4.2 Differentiating Symbolic Expressions; B.4.3 Integrating Symbolic Expressions; B.4.4 Limits Symbolic Expressions; B.4.5 Taylor Series Symbolic Expressions; B.4.6 Sums Symbolic Expressions; B.4.7 Solving Equations as Symbolic Expressions; Appendix C: Answers TO ODD-Numbered Exercises; Chapter 1; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions. | |
505 | 8 | |a 1.6 Parametric Curves on the Plane1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry; 1.15 Canonical Surfaces; 1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein. | |
500 | |a 2.8 Extrema. | ||
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a Vector analysis. |0 http://id.loc.gov/authorities/subjects/sh85142449 | |
650 | 6 | |a Analyse vectorielle. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Vector analysis |2 fast | |
700 | 1 | |a Musa, Sarhan M. | |
758 | |i has work: |a Multivariable and vector calculus (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGryxRXThtKM8wHBCWQXV3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Santos, David A. |t Multivariable and Vector Calculus : An Introduction. |d Bloomfield : Mercury Learning & Information, ©2015 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1809114 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33355255 | ||
938 | |a Askews and Holts Library Services |b ASKH |n BDZ0036946318 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4895117 | ||
938 | |a EBSCOhost |b EBSC |n 1809114 | ||
938 | |a YBP Library Services |b YANK |n 14669022 | ||
938 | |a YBP Library Services |b YANK |n 15361220 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn993063117 |
---|---|
_version_ | 1816882394407370752 |
adam_text | |
any_adam_object | |
author | Santos, David A. |
author2 | Musa, Sarhan M. |
author2_role | |
author2_variant | s m m sm smm |
author_facet | Santos, David A. Musa, Sarhan M. |
author_role | |
author_sort | Santos, David A. |
author_variant | d a s da das |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA261 |
callnumber-raw | QA261 .M873 2015eb |
callnumber-search | QA261 .M873 2015eb |
callnumber-sort | QA 3261 M873 42015EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Title Page; Copyright; Dedication; Contents; Preface; Acknowledgments; Chapter 1: Vectors and Parametric Curves; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions; 1.6 Parametric Curves on the Plane; 1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry. 1.15 Canonical Surfaces1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2: Differentiation; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein; 2.8 Extrema; 2.9 Lagrange Multipliers; Chapter 3: Integration; 3.1 Differential Forms; 3.2 Zero-Manifolds; 3.3 One-Manifolds; 3.4 Closed and Exact Forms; 3.5 Two-Manifolds; 3.6 Change of Variables in Double Integrals; 3.7 Change to Polar Coordinates; 3.8 Three-Manifolds. 3.9 Change of Variables in Triple Integrals3.10 Surface Integrals; 3.11 Green's, Stokes', and Gauss' Theorems; Appendix A: Maple; A.1 Getting Started and Windows of Maple; A.2 Arithmetic; A.3 Symbolic Computation; A.4 Assignments; A.5 Working with Output; A.6 Solving Equations; A.7 Plots with Maple; A.8 Limits and Derivatives; A.9 Integration; A.10 Matrix; Appendix B: MATLAB; B.1 Getting Started and Windows of MATLAB; B.1.1 Using MATLAB in Calculations; B.2 Plotting; B.2.1 Two-dimensional Plotting; B.2.2 Three-Dimensional Plotting; B.3 Programming in MATLAB; B.3.1 For Loops; B.3.2 While Loops. B.3.3 If, Else, and ElseifB. 3.4 Switch; B.4 Symbolic Computation; B.4.1 Simplifying Symbolic Expressions; B.4.2 Differentiating Symbolic Expressions; B.4.3 Integrating Symbolic Expressions; B.4.4 Limits Symbolic Expressions; B.4.5 Taylor Series Symbolic Expressions; B.4.6 Sums Symbolic Expressions; B.4.7 Solving Equations as Symbolic Expressions; Appendix C: Answers TO ODD-Numbered Exercises; Chapter 1; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions. 1.6 Parametric Curves on the Plane1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry; 1.15 Canonical Surfaces; 1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein. |
ctrlnum | (OCoLC)993063117 |
dewey-full | 515.63 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.63 |
dewey-search | 515.63 |
dewey-sort | 3515.63 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05484cam a2200637 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn993063117</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">170708s2015 xx ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">IDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">CNNOR</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">IGB</subfield><subfield code="d">AUW</subfield><subfield code="d">BTN</subfield><subfield code="d">MHW</subfield><subfield code="d">INTCL</subfield><subfield code="d">SNK</subfield><subfield code="d">STF</subfield><subfield code="d">CNCEN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">S8I</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">D6H</subfield><subfield code="d">DKC</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">992787478</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781942270249</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1942270240</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781942270256</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1942270259</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781936420285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)993063117</subfield><subfield code="z">(OCoLC)992787478</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA261</subfield><subfield code="b">.M873 2015eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.63</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santos, David A.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariable and Vector Calculus :</subfield><subfield code="b">an Introduction.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Bloomfield :</subfield><subfield code="b">Mercury Learning & Information,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (430 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Title Page; Copyright; Dedication; Contents; Preface; Acknowledgments; Chapter 1: Vectors and Parametric Curves; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions; 1.6 Parametric Curves on the Plane; 1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.15 Canonical Surfaces1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2: Differentiation; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein; 2.8 Extrema; 2.9 Lagrange Multipliers; Chapter 3: Integration; 3.1 Differential Forms; 3.2 Zero-Manifolds; 3.3 One-Manifolds; 3.4 Closed and Exact Forms; 3.5 Two-Manifolds; 3.6 Change of Variables in Double Integrals; 3.7 Change to Polar Coordinates; 3.8 Three-Manifolds.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.9 Change of Variables in Triple Integrals3.10 Surface Integrals; 3.11 Green's, Stokes', and Gauss' Theorems; Appendix A: Maple; A.1 Getting Started and Windows of Maple; A.2 Arithmetic; A.3 Symbolic Computation; A.4 Assignments; A.5 Working with Output; A.6 Solving Equations; A.7 Plots with Maple; A.8 Limits and Derivatives; A.9 Integration; A.10 Matrix; Appendix B: MATLAB; B.1 Getting Started and Windows of MATLAB; B.1.1 Using MATLAB in Calculations; B.2 Plotting; B.2.1 Two-dimensional Plotting; B.2.2 Three-Dimensional Plotting; B.3 Programming in MATLAB; B.3.1 For Loops; B.3.2 While Loops.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">B.3.3 If, Else, and ElseifB. 3.4 Switch; B.4 Symbolic Computation; B.4.1 Simplifying Symbolic Expressions; B.4.2 Differentiating Symbolic Expressions; B.4.3 Integrating Symbolic Expressions; B.4.4 Limits Symbolic Expressions; B.4.5 Taylor Series Symbolic Expressions; B.4.6 Sums Symbolic Expressions; B.4.7 Solving Equations as Symbolic Expressions; Appendix C: Answers TO ODD-Numbered Exercises; Chapter 1; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.6 Parametric Curves on the Plane1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry; 1.15 Canonical Surfaces; 1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.8 Extrema.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Vector analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85142449</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse vectorielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vector analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Musa, Sarhan M.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Multivariable and vector calculus (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGryxRXThtKM8wHBCWQXV3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Santos, David A.</subfield><subfield code="t">Multivariable and Vector Calculus : An Introduction.</subfield><subfield code="d">Bloomfield : Mercury Learning & Information, ©2015</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1809114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33355255</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">BDZ0036946318</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4895117</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1809114</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14669022</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15361220</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn993063117 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:55Z |
institution | BVB |
isbn | 9781942270249 1942270240 |
language | English |
oclc_num | 993063117 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (430 pages) |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Mercury Learning & Information, |
record_format | marc |
spelling | Santos, David A. Multivariable and Vector Calculus : an Introduction. Bloomfield : Mercury Learning & Information, 2015. 1 online resource (430 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Title Page; Copyright; Dedication; Contents; Preface; Acknowledgments; Chapter 1: Vectors and Parametric Curves; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions; 1.6 Parametric Curves on the Plane; 1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry. 1.15 Canonical Surfaces1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2: Differentiation; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein; 2.8 Extrema; 2.9 Lagrange Multipliers; Chapter 3: Integration; 3.1 Differential Forms; 3.2 Zero-Manifolds; 3.3 One-Manifolds; 3.4 Closed and Exact Forms; 3.5 Two-Manifolds; 3.6 Change of Variables in Double Integrals; 3.7 Change to Polar Coordinates; 3.8 Three-Manifolds. 3.9 Change of Variables in Triple Integrals3.10 Surface Integrals; 3.11 Green's, Stokes', and Gauss' Theorems; Appendix A: Maple; A.1 Getting Started and Windows of Maple; A.2 Arithmetic; A.3 Symbolic Computation; A.4 Assignments; A.5 Working with Output; A.6 Solving Equations; A.7 Plots with Maple; A.8 Limits and Derivatives; A.9 Integration; A.10 Matrix; Appendix B: MATLAB; B.1 Getting Started and Windows of MATLAB; B.1.1 Using MATLAB in Calculations; B.2 Plotting; B.2.1 Two-dimensional Plotting; B.2.2 Three-Dimensional Plotting; B.3 Programming in MATLAB; B.3.1 For Loops; B.3.2 While Loops. B.3.3 If, Else, and ElseifB. 3.4 Switch; B.4 Symbolic Computation; B.4.1 Simplifying Symbolic Expressions; B.4.2 Differentiating Symbolic Expressions; B.4.3 Integrating Symbolic Expressions; B.4.4 Limits Symbolic Expressions; B.4.5 Taylor Series Symbolic Expressions; B.4.6 Sums Symbolic Expressions; B.4.7 Solving Equations as Symbolic Expressions; Appendix C: Answers TO ODD-Numbered Exercises; Chapter 1; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions. 1.6 Parametric Curves on the Plane1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry; 1.15 Canonical Surfaces; 1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein. 2.8 Extrema. Includes bibliographical references and index. Vector analysis. http://id.loc.gov/authorities/subjects/sh85142449 Analyse vectorielle. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Vector analysis fast Musa, Sarhan M. has work: Multivariable and vector calculus (Text) https://id.oclc.org/worldcat/entity/E39PCGryxRXThtKM8wHBCWQXV3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Santos, David A. Multivariable and Vector Calculus : An Introduction. Bloomfield : Mercury Learning & Information, ©2015 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1809114 Volltext |
spellingShingle | Santos, David A. Multivariable and Vector Calculus : an Introduction. Title Page; Copyright; Dedication; Contents; Preface; Acknowledgments; Chapter 1: Vectors and Parametric Curves; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions; 1.6 Parametric Curves on the Plane; 1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry. 1.15 Canonical Surfaces1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2: Differentiation; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein; 2.8 Extrema; 2.9 Lagrange Multipliers; Chapter 3: Integration; 3.1 Differential Forms; 3.2 Zero-Manifolds; 3.3 One-Manifolds; 3.4 Closed and Exact Forms; 3.5 Two-Manifolds; 3.6 Change of Variables in Double Integrals; 3.7 Change to Polar Coordinates; 3.8 Three-Manifolds. 3.9 Change of Variables in Triple Integrals3.10 Surface Integrals; 3.11 Green's, Stokes', and Gauss' Theorems; Appendix A: Maple; A.1 Getting Started and Windows of Maple; A.2 Arithmetic; A.3 Symbolic Computation; A.4 Assignments; A.5 Working with Output; A.6 Solving Equations; A.7 Plots with Maple; A.8 Limits and Derivatives; A.9 Integration; A.10 Matrix; Appendix B: MATLAB; B.1 Getting Started and Windows of MATLAB; B.1.1 Using MATLAB in Calculations; B.2 Plotting; B.2.1 Two-dimensional Plotting; B.2.2 Three-Dimensional Plotting; B.3 Programming in MATLAB; B.3.1 For Loops; B.3.2 While Loops. B.3.3 If, Else, and ElseifB. 3.4 Switch; B.4 Symbolic Computation; B.4.1 Simplifying Symbolic Expressions; B.4.2 Differentiating Symbolic Expressions; B.4.3 Integrating Symbolic Expressions; B.4.4 Limits Symbolic Expressions; B.4.5 Taylor Series Symbolic Expressions; B.4.6 Sums Symbolic Expressions; B.4.7 Solving Equations as Symbolic Expressions; Appendix C: Answers TO ODD-Numbered Exercises; Chapter 1; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions. 1.6 Parametric Curves on the Plane1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry; 1.15 Canonical Surfaces; 1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein. Vector analysis. http://id.loc.gov/authorities/subjects/sh85142449 Analyse vectorielle. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Vector analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85142449 |
title | Multivariable and Vector Calculus : an Introduction. |
title_auth | Multivariable and Vector Calculus : an Introduction. |
title_exact_search | Multivariable and Vector Calculus : an Introduction. |
title_full | Multivariable and Vector Calculus : an Introduction. |
title_fullStr | Multivariable and Vector Calculus : an Introduction. |
title_full_unstemmed | Multivariable and Vector Calculus : an Introduction. |
title_short | Multivariable and Vector Calculus : |
title_sort | multivariable and vector calculus an introduction |
title_sub | an Introduction. |
topic | Vector analysis. http://id.loc.gov/authorities/subjects/sh85142449 Analyse vectorielle. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Vector analysis fast |
topic_facet | Vector analysis. Analyse vectorielle. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Vector analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1809114 |
work_keys_str_mv | AT santosdavida multivariableandvectorcalculusanintroduction AT musasarhanm multivariableandvectorcalculusanintroduction |