Liquid chromatography.: Volume 1, Fundamentals and instrumentation /
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands :
Elsevier,
[2017]
|
Ausgabe: | Second edition. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource. |
ISBN: | 9780128093450 0128093455 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn991854368 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 170627s2017 ne o 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d UIU |d YDX |d OPELS |d MERER |d OCLCF |d UPM |d OCLCQ |d UAB |d STF |d D6H |d KNOVL |d ERL |d U3W |d CEF |d UMR |d OCLCQ |d LVT |d LQU |d S2H |d OCLCO |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCA |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 992182354 |a 1105194484 |a 1105574040 | ||
020 | |a 9780128093450 |q (electronic bk.) | ||
020 | |a 0128093455 |q (electronic bk.) | ||
020 | |z 9780128053935 | ||
020 | |z 0128053933 | ||
035 | |a (OCoLC)991854368 |z (OCoLC)992182354 |z (OCoLC)1105194484 |z (OCoLC)1105574040 | ||
050 | 4 | |a QD79.C454 | |
072 | 7 | |a SCI |x 013010 |2 bisacsh | |
082 | 7 | |a 543.0894 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Liquid chromatography. |n Volume 1, |p Fundamentals and instrumentation / |c edited by Salvatore Fanali, Paul R. Haddad, Colin F. Poole, Marja-Liisa Riekkola. |
246 | 3 | 0 | |a Fundamentals and instrumentation |
250 | |a Second edition. | ||
264 | 1 | |a Amsterdam, Netherlands : |b Elsevier, |c [2017] | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Vendor-supplied metadata. | |
500 | |a Includes index. | ||
505 | 0 | |a Front Cover -- Liquid Chromatography: Fundamentals and Instrumentation -- Copyright -- Contents -- Contributors -- Chapter 1: Milestones in the development of liquid chromatography -- 1.1 Introduction -- 1.1.1 Developments Before 1960 -- 1.1.2 HPLC at the Beginning -- 1.2 HPLC Theory and Practice -- 1.2.1 New HPLC Modes and Techniques -- 1.2.2 Selection of Conditions for the Control of Selectivity -- 1.3 Columns -- 1.3.1 Particles and Column Packing -- 1.3.2 Stationary Phases and Selectivity -- 1.4 Equipment -- 1.5 Detectors -- Apologies and Acknowledgments -- References -- Further Reading -- Chapter 2: Kinetic theories of liquid chromatography -- 2.1 Introduction -- 2.2 Macroscopic Kinetic Theories -- 2.2.1 Lumped Kinetic Model -- 2.2.1.1 van Deemter plate height equation -- 2.2.2 General Rate Model -- 2.2.2.1 General rate model for monolith columns -- 2.2.2.2 General rate model for core-shell particles -- 2.2.2.3 Moment analysis -- 2.2.3 Lumped Pore Diffusion Model -- 2.2.4 Equivalence of the Macroscopic Kinetic Models -- 2.2.5 Kinetic Theory of Nonlinear Chromatography -- 2.3 Microscopic Kinetic Theories -- 2.3.1 Stochastic Model -- 2.3.1.1 Stochastic-dispersive model -- First passage time -- 2.3.2 Giddings Plate Height Equation -- 2.3.3 Monte Carlo Simulations of Nonlinear Chromatography -- 2.4 Comparison of the Microscopic and the Macroscopic Kinetic Models -- References -- Further Reading -- Chapter 3: Column technology in liquid chromatography -- 3.1 Introduction -- 3.2 Column Design and Hardware -- 3.2.1 Column History in Brief -- 3.2.2 Column Hardware -- 3.2.3 Column Miniaturization -- 3.3 Column Packing Materials and Stationary Phases -- 3.3.1 Terminology -- 3.3.2 Classification of LC Columns -- 3.3.3 Packing Materials [21] -- 3.3.3.1 Particle shape, size, and size distribution -- 3.3.3.2 Pore structure parameters. | |
505 | 8 | |a 3.3.3.3 Surface functionalization of silica-the key to gaining selectivity -- 3.3.3.4 Surface functionalization of silica-the way to bonded silica columns -- 3.3.4 Major Synthesis Routes -- 3.3.4.1 Physicochemical characterization of bonded silica -- 3.3.4.2 Column packing procedures for analytical columns -- 3.3.4.3 Examples for selective bonded silica columns -- 3.3.4.4 The potential of multimodal or multifunctional bonded columns -- 3.4 Column Systems and Operations -- 3.4.1 Choice of Average Particle Size and Column Internal Diameter -- 3.4.2 Equilibration Time -- 3.4.3 Choice of Optimum-Flow Conditions -- 3.4.4 Column Back Pressure -- 3.4.5 Choice of Column Temperature -- 3.4.6 Column Capacity and Loadability -- 3.5 Chromatographic Column Testing and Evaluation -- 3.5.1 Chromatographic Testing -- 3.5.1.1 Hydrophobicity -- 3.5.1.2 Silanophilic activity -- 3.5.1.3 Polar selectivity -- 3.5.1.4 Shape selectivity -- 3.5.1.5 Metal content -- 3.6 Column Maintenance and Troubleshooting -- 3.6.1 Silica-Based Columns -- 3.6.1.1 General guidelines -- 3.6.2 pH Stability -- 3.6.3 Mechanical Stability -- 3.6.4 Mobile Phases (Eluents) -- 3.6.4.1 Proper storage of HPLC columns -- 3.6.4.2 Regeneration of a column -- 3.6.5 Regeneration of RP Packings -- 3.6.6 Polymer-Based Columns -- 3.6.6.1 General guidelines -- 3.6.7 Hydrophobic Unmodified Polystyrene-Divinylbenzene (Ps-Dvb) -- 3.6.8 Polymer-Based Ion-Exchangers -- 3.6.9 Regeneration of Polymer Materials -- 3.7 Today's Column Market-an Evaluation, Comparison, and Critical Appraisal -- 3.7.1 Development During 2000-16 -- 3.7.2 A Column Comparison -- 3.8 Conclusion: Where Do We Go Next? Science vs. Market -- References -- Chapter 4: Reversed-phase liquid chromatography -- 4.1 Introduction -- 4.2 General Features -- 4.2.1 Solvent Strength -- 4.2.2 Exothermodynamic Relationships. | |
505 | 8 | |a 4.2.3 Thermodynamic Considerations -- 4.3 System Considerations -- 4.3.1 Interphase Model -- 4.3.2 Molecular Dynamics Simulations -- 4.4 Linear Free Energy Relationships -- 4.4.1 Solvation Parameter Model -- 4.4.1.1 Analysis of system constants -- 4.4.1.2 Pore dewetting -- 4.4.1.3 Steric resistance and shape selectivity -- 4.4.1.4 Electrostatic interactions -- 4.4.1.5 Gradient elution -- 4.4.2 Hydrophobic-Subtraction Model -- 4.5 Conclusions -- References -- Chapter 5: Secondary chemical equilibria in reversed-phase liquid chromatography -- 5.1 Introduction -- 5.2 Acid-Base Equilibria -- 5.2.1 Changes in Retention With pH -- 5.2.2 Buffers and Measurement of pH -- 5.3 Ion Interaction Chromatography -- 5.3.1 Retention Mechanism -- 5.3.2 Common Reagents and Operational Modes -- 5.3.3 Separation of Inorganic Anions -- 5.3.4 The Silanol Effect and Its Suppression With Amine Compounds -- 5.3.5 Use of Perfluorinated Carboxylate Anions and Chaotropic Ions as Additives -- 5.3.6 Use of ILs as Additives -- 5.3.7 Measurement of the Enhancement of Column Performance Using Additives -- 5.4 Micellar Liquid Chromatography -- 5.4.1 An Additional Secondary Equilibrium in the Mobile Phase -- 5.4.2 Hybrid Micellar Liquid Chromatography -- 5.4.3 Microemulsion Liquid Chromatography -- 5.5 Metal Complexation -- 5.5.1 Determination of Metal Ions -- 5.5.2 Determination of Organic Compounds -- 5.6 Use of Redox Reactions -- References -- Chapter 6: Hydrophilic interaction liquid chromatography -- 6.1 Introduction -- 6.2 Principles of HILIC -- 6.2.1 Thermodynamics of Adsorption -- 6.2.2 Adsorption Kinetics -- 6.3 Stationary and mobile phases commonly employed in HILIC -- 6.3.1 Stationary Phases -- 6.3.1.1 Silica gel -- 6.3.1.2 Chemically bonded phases -- 6.3.1.3 Ion exchange and zwitterionic stationary phase -- 6.3.1.4 Hydrophilic macromolecules bonded phases. | |
505 | 8 | |a 6.3.1.5 Surface-confined ionic liquids stationary phases -- 6.3.2 Mobile Phases -- 6.4 Applications -- References -- Chapter 7: Hydrophobic interaction chromatography* -- 7.1 Introduction -- 7.2 Hydrophobic Interactions and Retention Mechanisms in HIC -- 7.2.1 Hydrophobic Interactions -- 7.2.2 Retention Mechanisms in HIC -- 7.3 Parameters That Affect HIC -- 7.3.1 Stationary Phase -- 7.3.1.1 Base matrix -- 7.3.1.2 Ligands -- 7.3.2 Mobile Phase -- 7.3.2.1 Type and concentration of salt -- 7.3.2.2 pH -- 7.3.2.3 Additives -- 7.3.2.4 Temperature -- 7.3.3 Biomolecules Hydrophobicity -- 7.4 Purification Strategies -- 7.5 Experimental Considerations -- 7.6 Recent Selected Applications -- 7.7 Conclusions -- References -- Chapter 8: Liquid-solid chromatography -- 8.1 Introduction -- 8.2 Retention and Separation -- 8.2.1 The Retention Process ("Mechanism") -- 8.2.2 Solute and Solvent Localization -- 8.2.3 Selectivity -- 8.3 Method Development -- 8.3.1 Thin-Layer Chromatography -- 8.3.2 Selection of the Mobile Phase -- 8.3.3 Example of Method Development -- 8.4 Problems in the Use of Normal-Phase Chromatography -- References -- Further Reading -- Chapter 9: Ion chromatography -- 9.1 Introduction -- 9.1.1 Definitions -- 9.1.2 History -- 9.2 Basic Principles and Separation Modes -- 9.2.1 Ion-Exchange Chromatography -- 9.2.2 Ion-Exclusion Chromatography -- 9.2.3 Chelation Ion Chromatography -- 9.2.4 Zwitterionic Ion Chromatography -- 9.2.5 Eluents for IC -- 9.2.5.1 Typical eluents for anion exchange -- 9.2.5.2 Typical eluents for cation exchange -- 9.3 Instrumentation -- 9.3.1 IC Columns -- 9.3.1.1 Anion-exchange columns -- 9.3.1.2 Cation-exchange columns -- 9.3.2 Eluent Generators -- 9.3.3 Detection in IC -- 9.3.3.1 Conductimetric detection -- Nonsuppressed conductivity -- Suppressed conductivity -- 9.3.3.2 Electrochemical detection -- Charge detector. | |
505 | 8 | |a Amperometry -- 9.3.3.3 Spectroscopic detection -- Photometric detection -- Postcolumn reaction detection -- 9.3.3.4 Mass spectrometry -- 9.4 Applications -- 9.4.1 Industrial Applications -- 9.4.2 Environmental Applications -- References -- Further Reading -- Chapter 10: Size-exclusion chromatography -- 10.1 Introduction -- 10.2 Historical Background -- 10.3 Retention in SEC -- 10.3.1 A Size-Exclusion Process -- 10.3.2 An Entropy-Controlled Process -- 10.3.3 An Equilibrium Process -- 10.4 Band Broadening in SEC -- 10.4.1 Extra-column effects -- 10.5 Resolution in SEC -- 10.6 SEC Enters the Modern Era: The Determination of Absolute Molar Mass -- 10.6.1 Universal Calibration and Online Viscometry -- 10.6.2 SLS Detection -- 10.7 Multidetector Separations, Physicochemical Characterization, 2D Techniques -- 10.8 Conclusions -- Acknowledgment and Disclaimer -- References -- Chapter 11: Interaction polymer chromatography -- 11.1 Introduction -- 11.2 Fundamentals of ipc -- 11.2.1 Retention Mechanisms -- 11.2.2 Thermodynamics of Polymer Chromatography -- 11.2.3 Modes of Polymer Chromatography -- 11.2.4 Modeling of the Chromatographic Process -- 11.3 Individual IPC Techniques -- 11.3.1 Equipment and Chromatographic Media -- 11.3.2 Nomenclature -- 11.3.3 Isocratic Techniques -- 11.3.3.1 Liquid chromatography at critical conditions -- 11.3.3.2 Barrier techniques -- 11.3.4 Gradient Techniques -- 11.3.4.1 Liquid adsorption chromatography -- 11.3.4.2 Gradient elution at CPA -- 11.3.4.3 Liquid precipitation chromatography -- 11.3.4.4 Temperature gradient interaction chromatography -- 11.4 Conclusion -- References -- Chapter 12: Affinity chromatography -- 12.1 Introduction -- 12.2 Basic Components of Affinity Chromatography -- 12.3 Bioaffinity Chromatography -- 12.4 Immunoaffinity Chromatography -- 12.5 Dye-Ligand and Biomimetic Affinity Chromatography. | |
650 | 0 | |a Liquid chromatography. |0 http://id.loc.gov/authorities/subjects/sh85077354 | |
650 | 2 | |a Chromatography, Liquid |0 https://id.nlm.nih.gov/mesh/D002853 | |
650 | 6 | |a Chromatographie en phase liquide. | |
650 | 7 | |a liquid chromatography. |2 aat | |
650 | 7 | |a SCIENCE / Chemistry / Analytic |2 bisacsh | |
650 | 7 | |a Liquid chromatography |2 fast | |
700 | 1 | |a Fanali, Salvatore, |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJkHhWDYbfwxmcMmGyj9jC |0 http://id.loc.gov/authorities/names/n2013180614 | |
700 | 1 | |a Haddad, Paul R., |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJdCqTr6Mggdq6bJp46dwC |0 http://id.loc.gov/authorities/names/n90630980 | |
700 | 1 | |a Poole, Colin F., |e editor. | |
700 | 1 | |a Riekkola, Marja-Liisa, |e editor. | |
758 | |i has work: |a Liquid chromatography Volume 1 Fundamentals and instrumentation (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGfFqjRRW47KhX4YDxqB8C |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 0128053933 |z 9780128053935 |w (OCoLC)964303423 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780128053935 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1158800 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 1158800 | ||
938 | |a YBP Library Services |b YANK |n 14658557 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn991854368 |
---|---|
_version_ | 1816882393318948864 |
adam_text | |
any_adam_object | |
author2 | Fanali, Salvatore Haddad, Paul R. Poole, Colin F. Riekkola, Marja-Liisa |
author2_role | edt edt edt edt |
author2_variant | s f sf p r h pr prh c f p cf cfp m l r mlr |
author_GND | http://id.loc.gov/authorities/names/n2013180614 http://id.loc.gov/authorities/names/n90630980 |
author_facet | Fanali, Salvatore Haddad, Paul R. Poole, Colin F. Riekkola, Marja-Liisa |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QD79 |
callnumber-raw | QD79.C454 |
callnumber-search | QD79.C454 |
callnumber-sort | QD 279 C454 |
callnumber-subject | QD - Chemistry |
collection | ZDB-4-EBA |
contents | Front Cover -- Liquid Chromatography: Fundamentals and Instrumentation -- Copyright -- Contents -- Contributors -- Chapter 1: Milestones in the development of liquid chromatography -- 1.1 Introduction -- 1.1.1 Developments Before 1960 -- 1.1.2 HPLC at the Beginning -- 1.2 HPLC Theory and Practice -- 1.2.1 New HPLC Modes and Techniques -- 1.2.2 Selection of Conditions for the Control of Selectivity -- 1.3 Columns -- 1.3.1 Particles and Column Packing -- 1.3.2 Stationary Phases and Selectivity -- 1.4 Equipment -- 1.5 Detectors -- Apologies and Acknowledgments -- References -- Further Reading -- Chapter 2: Kinetic theories of liquid chromatography -- 2.1 Introduction -- 2.2 Macroscopic Kinetic Theories -- 2.2.1 Lumped Kinetic Model -- 2.2.1.1 van Deemter plate height equation -- 2.2.2 General Rate Model -- 2.2.2.1 General rate model for monolith columns -- 2.2.2.2 General rate model for core-shell particles -- 2.2.2.3 Moment analysis -- 2.2.3 Lumped Pore Diffusion Model -- 2.2.4 Equivalence of the Macroscopic Kinetic Models -- 2.2.5 Kinetic Theory of Nonlinear Chromatography -- 2.3 Microscopic Kinetic Theories -- 2.3.1 Stochastic Model -- 2.3.1.1 Stochastic-dispersive model -- First passage time -- 2.3.2 Giddings Plate Height Equation -- 2.3.3 Monte Carlo Simulations of Nonlinear Chromatography -- 2.4 Comparison of the Microscopic and the Macroscopic Kinetic Models -- References -- Further Reading -- Chapter 3: Column technology in liquid chromatography -- 3.1 Introduction -- 3.2 Column Design and Hardware -- 3.2.1 Column History in Brief -- 3.2.2 Column Hardware -- 3.2.3 Column Miniaturization -- 3.3 Column Packing Materials and Stationary Phases -- 3.3.1 Terminology -- 3.3.2 Classification of LC Columns -- 3.3.3 Packing Materials [21] -- 3.3.3.1 Particle shape, size, and size distribution -- 3.3.3.2 Pore structure parameters. 3.3.3.3 Surface functionalization of silica-the key to gaining selectivity -- 3.3.3.4 Surface functionalization of silica-the way to bonded silica columns -- 3.3.4 Major Synthesis Routes -- 3.3.4.1 Physicochemical characterization of bonded silica -- 3.3.4.2 Column packing procedures for analytical columns -- 3.3.4.3 Examples for selective bonded silica columns -- 3.3.4.4 The potential of multimodal or multifunctional bonded columns -- 3.4 Column Systems and Operations -- 3.4.1 Choice of Average Particle Size and Column Internal Diameter -- 3.4.2 Equilibration Time -- 3.4.3 Choice of Optimum-Flow Conditions -- 3.4.4 Column Back Pressure -- 3.4.5 Choice of Column Temperature -- 3.4.6 Column Capacity and Loadability -- 3.5 Chromatographic Column Testing and Evaluation -- 3.5.1 Chromatographic Testing -- 3.5.1.1 Hydrophobicity -- 3.5.1.2 Silanophilic activity -- 3.5.1.3 Polar selectivity -- 3.5.1.4 Shape selectivity -- 3.5.1.5 Metal content -- 3.6 Column Maintenance and Troubleshooting -- 3.6.1 Silica-Based Columns -- 3.6.1.1 General guidelines -- 3.6.2 pH Stability -- 3.6.3 Mechanical Stability -- 3.6.4 Mobile Phases (Eluents) -- 3.6.4.1 Proper storage of HPLC columns -- 3.6.4.2 Regeneration of a column -- 3.6.5 Regeneration of RP Packings -- 3.6.6 Polymer-Based Columns -- 3.6.6.1 General guidelines -- 3.6.7 Hydrophobic Unmodified Polystyrene-Divinylbenzene (Ps-Dvb) -- 3.6.8 Polymer-Based Ion-Exchangers -- 3.6.9 Regeneration of Polymer Materials -- 3.7 Today's Column Market-an Evaluation, Comparison, and Critical Appraisal -- 3.7.1 Development During 2000-16 -- 3.7.2 A Column Comparison -- 3.8 Conclusion: Where Do We Go Next? Science vs. Market -- References -- Chapter 4: Reversed-phase liquid chromatography -- 4.1 Introduction -- 4.2 General Features -- 4.2.1 Solvent Strength -- 4.2.2 Exothermodynamic Relationships. 4.2.3 Thermodynamic Considerations -- 4.3 System Considerations -- 4.3.1 Interphase Model -- 4.3.2 Molecular Dynamics Simulations -- 4.4 Linear Free Energy Relationships -- 4.4.1 Solvation Parameter Model -- 4.4.1.1 Analysis of system constants -- 4.4.1.2 Pore dewetting -- 4.4.1.3 Steric resistance and shape selectivity -- 4.4.1.4 Electrostatic interactions -- 4.4.1.5 Gradient elution -- 4.4.2 Hydrophobic-Subtraction Model -- 4.5 Conclusions -- References -- Chapter 5: Secondary chemical equilibria in reversed-phase liquid chromatography -- 5.1 Introduction -- 5.2 Acid-Base Equilibria -- 5.2.1 Changes in Retention With pH -- 5.2.2 Buffers and Measurement of pH -- 5.3 Ion Interaction Chromatography -- 5.3.1 Retention Mechanism -- 5.3.2 Common Reagents and Operational Modes -- 5.3.3 Separation of Inorganic Anions -- 5.3.4 The Silanol Effect and Its Suppression With Amine Compounds -- 5.3.5 Use of Perfluorinated Carboxylate Anions and Chaotropic Ions as Additives -- 5.3.6 Use of ILs as Additives -- 5.3.7 Measurement of the Enhancement of Column Performance Using Additives -- 5.4 Micellar Liquid Chromatography -- 5.4.1 An Additional Secondary Equilibrium in the Mobile Phase -- 5.4.2 Hybrid Micellar Liquid Chromatography -- 5.4.3 Microemulsion Liquid Chromatography -- 5.5 Metal Complexation -- 5.5.1 Determination of Metal Ions -- 5.5.2 Determination of Organic Compounds -- 5.6 Use of Redox Reactions -- References -- Chapter 6: Hydrophilic interaction liquid chromatography -- 6.1 Introduction -- 6.2 Principles of HILIC -- 6.2.1 Thermodynamics of Adsorption -- 6.2.2 Adsorption Kinetics -- 6.3 Stationary and mobile phases commonly employed in HILIC -- 6.3.1 Stationary Phases -- 6.3.1.1 Silica gel -- 6.3.1.2 Chemically bonded phases -- 6.3.1.3 Ion exchange and zwitterionic stationary phase -- 6.3.1.4 Hydrophilic macromolecules bonded phases. 6.3.1.5 Surface-confined ionic liquids stationary phases -- 6.3.2 Mobile Phases -- 6.4 Applications -- References -- Chapter 7: Hydrophobic interaction chromatography* -- 7.1 Introduction -- 7.2 Hydrophobic Interactions and Retention Mechanisms in HIC -- 7.2.1 Hydrophobic Interactions -- 7.2.2 Retention Mechanisms in HIC -- 7.3 Parameters That Affect HIC -- 7.3.1 Stationary Phase -- 7.3.1.1 Base matrix -- 7.3.1.2 Ligands -- 7.3.2 Mobile Phase -- 7.3.2.1 Type and concentration of salt -- 7.3.2.2 pH -- 7.3.2.3 Additives -- 7.3.2.4 Temperature -- 7.3.3 Biomolecules Hydrophobicity -- 7.4 Purification Strategies -- 7.5 Experimental Considerations -- 7.6 Recent Selected Applications -- 7.7 Conclusions -- References -- Chapter 8: Liquid-solid chromatography -- 8.1 Introduction -- 8.2 Retention and Separation -- 8.2.1 The Retention Process ("Mechanism") -- 8.2.2 Solute and Solvent Localization -- 8.2.3 Selectivity -- 8.3 Method Development -- 8.3.1 Thin-Layer Chromatography -- 8.3.2 Selection of the Mobile Phase -- 8.3.3 Example of Method Development -- 8.4 Problems in the Use of Normal-Phase Chromatography -- References -- Further Reading -- Chapter 9: Ion chromatography -- 9.1 Introduction -- 9.1.1 Definitions -- 9.1.2 History -- 9.2 Basic Principles and Separation Modes -- 9.2.1 Ion-Exchange Chromatography -- 9.2.2 Ion-Exclusion Chromatography -- 9.2.3 Chelation Ion Chromatography -- 9.2.4 Zwitterionic Ion Chromatography -- 9.2.5 Eluents for IC -- 9.2.5.1 Typical eluents for anion exchange -- 9.2.5.2 Typical eluents for cation exchange -- 9.3 Instrumentation -- 9.3.1 IC Columns -- 9.3.1.1 Anion-exchange columns -- 9.3.1.2 Cation-exchange columns -- 9.3.2 Eluent Generators -- 9.3.3 Detection in IC -- 9.3.3.1 Conductimetric detection -- Nonsuppressed conductivity -- Suppressed conductivity -- 9.3.3.2 Electrochemical detection -- Charge detector. Amperometry -- 9.3.3.3 Spectroscopic detection -- Photometric detection -- Postcolumn reaction detection -- 9.3.3.4 Mass spectrometry -- 9.4 Applications -- 9.4.1 Industrial Applications -- 9.4.2 Environmental Applications -- References -- Further Reading -- Chapter 10: Size-exclusion chromatography -- 10.1 Introduction -- 10.2 Historical Background -- 10.3 Retention in SEC -- 10.3.1 A Size-Exclusion Process -- 10.3.2 An Entropy-Controlled Process -- 10.3.3 An Equilibrium Process -- 10.4 Band Broadening in SEC -- 10.4.1 Extra-column effects -- 10.5 Resolution in SEC -- 10.6 SEC Enters the Modern Era: The Determination of Absolute Molar Mass -- 10.6.1 Universal Calibration and Online Viscometry -- 10.6.2 SLS Detection -- 10.7 Multidetector Separations, Physicochemical Characterization, 2D Techniques -- 10.8 Conclusions -- Acknowledgment and Disclaimer -- References -- Chapter 11: Interaction polymer chromatography -- 11.1 Introduction -- 11.2 Fundamentals of ipc -- 11.2.1 Retention Mechanisms -- 11.2.2 Thermodynamics of Polymer Chromatography -- 11.2.3 Modes of Polymer Chromatography -- 11.2.4 Modeling of the Chromatographic Process -- 11.3 Individual IPC Techniques -- 11.3.1 Equipment and Chromatographic Media -- 11.3.2 Nomenclature -- 11.3.3 Isocratic Techniques -- 11.3.3.1 Liquid chromatography at critical conditions -- 11.3.3.2 Barrier techniques -- 11.3.4 Gradient Techniques -- 11.3.4.1 Liquid adsorption chromatography -- 11.3.4.2 Gradient elution at CPA -- 11.3.4.3 Liquid precipitation chromatography -- 11.3.4.4 Temperature gradient interaction chromatography -- 11.4 Conclusion -- References -- Chapter 12: Affinity chromatography -- 12.1 Introduction -- 12.2 Basic Components of Affinity Chromatography -- 12.3 Bioaffinity Chromatography -- 12.4 Immunoaffinity Chromatography -- 12.5 Dye-Ligand and Biomimetic Affinity Chromatography. |
ctrlnum | (OCoLC)991854368 |
dewey-full | 543.0894 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 543 - Analytical chemistry |
dewey-raw | 543.0894 |
dewey-search | 543.0894 |
dewey-sort | 3543.0894 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12103cam a2200613 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn991854368</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">170627s2017 ne o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">UIU</subfield><subfield code="d">YDX</subfield><subfield code="d">OPELS</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UPM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">STF</subfield><subfield code="d">D6H</subfield><subfield code="d">KNOVL</subfield><subfield code="d">ERL</subfield><subfield code="d">U3W</subfield><subfield code="d">CEF</subfield><subfield code="d">UMR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">LQU</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">992182354</subfield><subfield code="a">1105194484</subfield><subfield code="a">1105574040</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128093450</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128093455</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780128053935</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0128053933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)991854368</subfield><subfield code="z">(OCoLC)992182354</subfield><subfield code="z">(OCoLC)1105194484</subfield><subfield code="z">(OCoLC)1105574040</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QD79.C454</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">013010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">543.0894</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Liquid chromatography.</subfield><subfield code="n">Volume 1,</subfield><subfield code="p">Fundamentals and instrumentation /</subfield><subfield code="c">edited by Salvatore Fanali, Paul R. Haddad, Colin F. Poole, Marja-Liisa Riekkola.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Fundamentals and instrumentation</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands :</subfield><subfield code="b">Elsevier,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Vendor-supplied metadata.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- Liquid Chromatography: Fundamentals and Instrumentation -- Copyright -- Contents -- Contributors -- Chapter 1: Milestones in the development of liquid chromatography -- 1.1 Introduction -- 1.1.1 Developments Before 1960 -- 1.1.2 HPLC at the Beginning -- 1.2 HPLC Theory and Practice -- 1.2.1 New HPLC Modes and Techniques -- 1.2.2 Selection of Conditions for the Control of Selectivity -- 1.3 Columns -- 1.3.1 Particles and Column Packing -- 1.3.2 Stationary Phases and Selectivity -- 1.4 Equipment -- 1.5 Detectors -- Apologies and Acknowledgments -- References -- Further Reading -- Chapter 2: Kinetic theories of liquid chromatography -- 2.1 Introduction -- 2.2 Macroscopic Kinetic Theories -- 2.2.1 Lumped Kinetic Model -- 2.2.1.1 van Deemter plate height equation -- 2.2.2 General Rate Model -- 2.2.2.1 General rate model for monolith columns -- 2.2.2.2 General rate model for core-shell particles -- 2.2.2.3 Moment analysis -- 2.2.3 Lumped Pore Diffusion Model -- 2.2.4 Equivalence of the Macroscopic Kinetic Models -- 2.2.5 Kinetic Theory of Nonlinear Chromatography -- 2.3 Microscopic Kinetic Theories -- 2.3.1 Stochastic Model -- 2.3.1.1 Stochastic-dispersive model -- First passage time -- 2.3.2 Giddings Plate Height Equation -- 2.3.3 Monte Carlo Simulations of Nonlinear Chromatography -- 2.4 Comparison of the Microscopic and the Macroscopic Kinetic Models -- References -- Further Reading -- Chapter 3: Column technology in liquid chromatography -- 3.1 Introduction -- 3.2 Column Design and Hardware -- 3.2.1 Column History in Brief -- 3.2.2 Column Hardware -- 3.2.3 Column Miniaturization -- 3.3 Column Packing Materials and Stationary Phases -- 3.3.1 Terminology -- 3.3.2 Classification of LC Columns -- 3.3.3 Packing Materials [21] -- 3.3.3.1 Particle shape, size, and size distribution -- 3.3.3.2 Pore structure parameters.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.3.3 Surface functionalization of silica-the key to gaining selectivity -- 3.3.3.4 Surface functionalization of silica-the way to bonded silica columns -- 3.3.4 Major Synthesis Routes -- 3.3.4.1 Physicochemical characterization of bonded silica -- 3.3.4.2 Column packing procedures for analytical columns -- 3.3.4.3 Examples for selective bonded silica columns -- 3.3.4.4 The potential of multimodal or multifunctional bonded columns -- 3.4 Column Systems and Operations -- 3.4.1 Choice of Average Particle Size and Column Internal Diameter -- 3.4.2 Equilibration Time -- 3.4.3 Choice of Optimum-Flow Conditions -- 3.4.4 Column Back Pressure -- 3.4.5 Choice of Column Temperature -- 3.4.6 Column Capacity and Loadability -- 3.5 Chromatographic Column Testing and Evaluation -- 3.5.1 Chromatographic Testing -- 3.5.1.1 Hydrophobicity -- 3.5.1.2 Silanophilic activity -- 3.5.1.3 Polar selectivity -- 3.5.1.4 Shape selectivity -- 3.5.1.5 Metal content -- 3.6 Column Maintenance and Troubleshooting -- 3.6.1 Silica-Based Columns -- 3.6.1.1 General guidelines -- 3.6.2 pH Stability -- 3.6.3 Mechanical Stability -- 3.6.4 Mobile Phases (Eluents) -- 3.6.4.1 Proper storage of HPLC columns -- 3.6.4.2 Regeneration of a column -- 3.6.5 Regeneration of RP Packings -- 3.6.6 Polymer-Based Columns -- 3.6.6.1 General guidelines -- 3.6.7 Hydrophobic Unmodified Polystyrene-Divinylbenzene (Ps-Dvb) -- 3.6.8 Polymer-Based Ion-Exchangers -- 3.6.9 Regeneration of Polymer Materials -- 3.7 Today's Column Market-an Evaluation, Comparison, and Critical Appraisal -- 3.7.1 Development During 2000-16 -- 3.7.2 A Column Comparison -- 3.8 Conclusion: Where Do We Go Next? Science vs. Market -- References -- Chapter 4: Reversed-phase liquid chromatography -- 4.1 Introduction -- 4.2 General Features -- 4.2.1 Solvent Strength -- 4.2.2 Exothermodynamic Relationships.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.3 Thermodynamic Considerations -- 4.3 System Considerations -- 4.3.1 Interphase Model -- 4.3.2 Molecular Dynamics Simulations -- 4.4 Linear Free Energy Relationships -- 4.4.1 Solvation Parameter Model -- 4.4.1.1 Analysis of system constants -- 4.4.1.2 Pore dewetting -- 4.4.1.3 Steric resistance and shape selectivity -- 4.4.1.4 Electrostatic interactions -- 4.4.1.5 Gradient elution -- 4.4.2 Hydrophobic-Subtraction Model -- 4.5 Conclusions -- References -- Chapter 5: Secondary chemical equilibria in reversed-phase liquid chromatography -- 5.1 Introduction -- 5.2 Acid-Base Equilibria -- 5.2.1 Changes in Retention With pH -- 5.2.2 Buffers and Measurement of pH -- 5.3 Ion Interaction Chromatography -- 5.3.1 Retention Mechanism -- 5.3.2 Common Reagents and Operational Modes -- 5.3.3 Separation of Inorganic Anions -- 5.3.4 The Silanol Effect and Its Suppression With Amine Compounds -- 5.3.5 Use of Perfluorinated Carboxylate Anions and Chaotropic Ions as Additives -- 5.3.6 Use of ILs as Additives -- 5.3.7 Measurement of the Enhancement of Column Performance Using Additives -- 5.4 Micellar Liquid Chromatography -- 5.4.1 An Additional Secondary Equilibrium in the Mobile Phase -- 5.4.2 Hybrid Micellar Liquid Chromatography -- 5.4.3 Microemulsion Liquid Chromatography -- 5.5 Metal Complexation -- 5.5.1 Determination of Metal Ions -- 5.5.2 Determination of Organic Compounds -- 5.6 Use of Redox Reactions -- References -- Chapter 6: Hydrophilic interaction liquid chromatography -- 6.1 Introduction -- 6.2 Principles of HILIC -- 6.2.1 Thermodynamics of Adsorption -- 6.2.2 Adsorption Kinetics -- 6.3 Stationary and mobile phases commonly employed in HILIC -- 6.3.1 Stationary Phases -- 6.3.1.1 Silica gel -- 6.3.1.2 Chemically bonded phases -- 6.3.1.3 Ion exchange and zwitterionic stationary phase -- 6.3.1.4 Hydrophilic macromolecules bonded phases.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3.1.5 Surface-confined ionic liquids stationary phases -- 6.3.2 Mobile Phases -- 6.4 Applications -- References -- Chapter 7: Hydrophobic interaction chromatography* -- 7.1 Introduction -- 7.2 Hydrophobic Interactions and Retention Mechanisms in HIC -- 7.2.1 Hydrophobic Interactions -- 7.2.2 Retention Mechanisms in HIC -- 7.3 Parameters That Affect HIC -- 7.3.1 Stationary Phase -- 7.3.1.1 Base matrix -- 7.3.1.2 Ligands -- 7.3.2 Mobile Phase -- 7.3.2.1 Type and concentration of salt -- 7.3.2.2 pH -- 7.3.2.3 Additives -- 7.3.2.4 Temperature -- 7.3.3 Biomolecules Hydrophobicity -- 7.4 Purification Strategies -- 7.5 Experimental Considerations -- 7.6 Recent Selected Applications -- 7.7 Conclusions -- References -- Chapter 8: Liquid-solid chromatography -- 8.1 Introduction -- 8.2 Retention and Separation -- 8.2.1 The Retention Process ("Mechanism") -- 8.2.2 Solute and Solvent Localization -- 8.2.3 Selectivity -- 8.3 Method Development -- 8.3.1 Thin-Layer Chromatography -- 8.3.2 Selection of the Mobile Phase -- 8.3.3 Example of Method Development -- 8.4 Problems in the Use of Normal-Phase Chromatography -- References -- Further Reading -- Chapter 9: Ion chromatography -- 9.1 Introduction -- 9.1.1 Definitions -- 9.1.2 History -- 9.2 Basic Principles and Separation Modes -- 9.2.1 Ion-Exchange Chromatography -- 9.2.2 Ion-Exclusion Chromatography -- 9.2.3 Chelation Ion Chromatography -- 9.2.4 Zwitterionic Ion Chromatography -- 9.2.5 Eluents for IC -- 9.2.5.1 Typical eluents for anion exchange -- 9.2.5.2 Typical eluents for cation exchange -- 9.3 Instrumentation -- 9.3.1 IC Columns -- 9.3.1.1 Anion-exchange columns -- 9.3.1.2 Cation-exchange columns -- 9.3.2 Eluent Generators -- 9.3.3 Detection in IC -- 9.3.3.1 Conductimetric detection -- Nonsuppressed conductivity -- Suppressed conductivity -- 9.3.3.2 Electrochemical detection -- Charge detector.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Amperometry -- 9.3.3.3 Spectroscopic detection -- Photometric detection -- Postcolumn reaction detection -- 9.3.3.4 Mass spectrometry -- 9.4 Applications -- 9.4.1 Industrial Applications -- 9.4.2 Environmental Applications -- References -- Further Reading -- Chapter 10: Size-exclusion chromatography -- 10.1 Introduction -- 10.2 Historical Background -- 10.3 Retention in SEC -- 10.3.1 A Size-Exclusion Process -- 10.3.2 An Entropy-Controlled Process -- 10.3.3 An Equilibrium Process -- 10.4 Band Broadening in SEC -- 10.4.1 Extra-column effects -- 10.5 Resolution in SEC -- 10.6 SEC Enters the Modern Era: The Determination of Absolute Molar Mass -- 10.6.1 Universal Calibration and Online Viscometry -- 10.6.2 SLS Detection -- 10.7 Multidetector Separations, Physicochemical Characterization, 2D Techniques -- 10.8 Conclusions -- Acknowledgment and Disclaimer -- References -- Chapter 11: Interaction polymer chromatography -- 11.1 Introduction -- 11.2 Fundamentals of ipc -- 11.2.1 Retention Mechanisms -- 11.2.2 Thermodynamics of Polymer Chromatography -- 11.2.3 Modes of Polymer Chromatography -- 11.2.4 Modeling of the Chromatographic Process -- 11.3 Individual IPC Techniques -- 11.3.1 Equipment and Chromatographic Media -- 11.3.2 Nomenclature -- 11.3.3 Isocratic Techniques -- 11.3.3.1 Liquid chromatography at critical conditions -- 11.3.3.2 Barrier techniques -- 11.3.4 Gradient Techniques -- 11.3.4.1 Liquid adsorption chromatography -- 11.3.4.2 Gradient elution at CPA -- 11.3.4.3 Liquid precipitation chromatography -- 11.3.4.4 Temperature gradient interaction chromatography -- 11.4 Conclusion -- References -- Chapter 12: Affinity chromatography -- 12.1 Introduction -- 12.2 Basic Components of Affinity Chromatography -- 12.3 Bioaffinity Chromatography -- 12.4 Immunoaffinity Chromatography -- 12.5 Dye-Ligand and Biomimetic Affinity Chromatography.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Liquid chromatography.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85077354</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Chromatography, Liquid</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D002853</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Chromatographie en phase liquide.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">liquid chromatography.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Chemistry / Analytic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Liquid chromatography</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fanali, Salvatore,</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJkHhWDYbfwxmcMmGyj9jC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2013180614</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haddad, Paul R.,</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJdCqTr6Mggdq6bJp46dwC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90630980</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poole, Colin F.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riekkola, Marja-Liisa,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Liquid chromatography Volume 1 Fundamentals and instrumentation (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGfFqjRRW47KhX4YDxqB8C</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">0128053933</subfield><subfield code="z">9780128053935</subfield><subfield code="w">(OCoLC)964303423</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780128053935</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1158800</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1158800</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14658557</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn991854368 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:54Z |
institution | BVB |
isbn | 9780128093450 0128093455 |
language | English |
oclc_num | 991854368 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource. |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Elsevier, |
record_format | marc |
spelling | Liquid chromatography. Volume 1, Fundamentals and instrumentation / edited by Salvatore Fanali, Paul R. Haddad, Colin F. Poole, Marja-Liisa Riekkola. Fundamentals and instrumentation Second edition. Amsterdam, Netherlands : Elsevier, [2017] 1 online resource. text txt rdacontent computer c rdamedia online resource cr rdacarrier Vendor-supplied metadata. Includes index. Front Cover -- Liquid Chromatography: Fundamentals and Instrumentation -- Copyright -- Contents -- Contributors -- Chapter 1: Milestones in the development of liquid chromatography -- 1.1 Introduction -- 1.1.1 Developments Before 1960 -- 1.1.2 HPLC at the Beginning -- 1.2 HPLC Theory and Practice -- 1.2.1 New HPLC Modes and Techniques -- 1.2.2 Selection of Conditions for the Control of Selectivity -- 1.3 Columns -- 1.3.1 Particles and Column Packing -- 1.3.2 Stationary Phases and Selectivity -- 1.4 Equipment -- 1.5 Detectors -- Apologies and Acknowledgments -- References -- Further Reading -- Chapter 2: Kinetic theories of liquid chromatography -- 2.1 Introduction -- 2.2 Macroscopic Kinetic Theories -- 2.2.1 Lumped Kinetic Model -- 2.2.1.1 van Deemter plate height equation -- 2.2.2 General Rate Model -- 2.2.2.1 General rate model for monolith columns -- 2.2.2.2 General rate model for core-shell particles -- 2.2.2.3 Moment analysis -- 2.2.3 Lumped Pore Diffusion Model -- 2.2.4 Equivalence of the Macroscopic Kinetic Models -- 2.2.5 Kinetic Theory of Nonlinear Chromatography -- 2.3 Microscopic Kinetic Theories -- 2.3.1 Stochastic Model -- 2.3.1.1 Stochastic-dispersive model -- First passage time -- 2.3.2 Giddings Plate Height Equation -- 2.3.3 Monte Carlo Simulations of Nonlinear Chromatography -- 2.4 Comparison of the Microscopic and the Macroscopic Kinetic Models -- References -- Further Reading -- Chapter 3: Column technology in liquid chromatography -- 3.1 Introduction -- 3.2 Column Design and Hardware -- 3.2.1 Column History in Brief -- 3.2.2 Column Hardware -- 3.2.3 Column Miniaturization -- 3.3 Column Packing Materials and Stationary Phases -- 3.3.1 Terminology -- 3.3.2 Classification of LC Columns -- 3.3.3 Packing Materials [21] -- 3.3.3.1 Particle shape, size, and size distribution -- 3.3.3.2 Pore structure parameters. 3.3.3.3 Surface functionalization of silica-the key to gaining selectivity -- 3.3.3.4 Surface functionalization of silica-the way to bonded silica columns -- 3.3.4 Major Synthesis Routes -- 3.3.4.1 Physicochemical characterization of bonded silica -- 3.3.4.2 Column packing procedures for analytical columns -- 3.3.4.3 Examples for selective bonded silica columns -- 3.3.4.4 The potential of multimodal or multifunctional bonded columns -- 3.4 Column Systems and Operations -- 3.4.1 Choice of Average Particle Size and Column Internal Diameter -- 3.4.2 Equilibration Time -- 3.4.3 Choice of Optimum-Flow Conditions -- 3.4.4 Column Back Pressure -- 3.4.5 Choice of Column Temperature -- 3.4.6 Column Capacity and Loadability -- 3.5 Chromatographic Column Testing and Evaluation -- 3.5.1 Chromatographic Testing -- 3.5.1.1 Hydrophobicity -- 3.5.1.2 Silanophilic activity -- 3.5.1.3 Polar selectivity -- 3.5.1.4 Shape selectivity -- 3.5.1.5 Metal content -- 3.6 Column Maintenance and Troubleshooting -- 3.6.1 Silica-Based Columns -- 3.6.1.1 General guidelines -- 3.6.2 pH Stability -- 3.6.3 Mechanical Stability -- 3.6.4 Mobile Phases (Eluents) -- 3.6.4.1 Proper storage of HPLC columns -- 3.6.4.2 Regeneration of a column -- 3.6.5 Regeneration of RP Packings -- 3.6.6 Polymer-Based Columns -- 3.6.6.1 General guidelines -- 3.6.7 Hydrophobic Unmodified Polystyrene-Divinylbenzene (Ps-Dvb) -- 3.6.8 Polymer-Based Ion-Exchangers -- 3.6.9 Regeneration of Polymer Materials -- 3.7 Today's Column Market-an Evaluation, Comparison, and Critical Appraisal -- 3.7.1 Development During 2000-16 -- 3.7.2 A Column Comparison -- 3.8 Conclusion: Where Do We Go Next? Science vs. Market -- References -- Chapter 4: Reversed-phase liquid chromatography -- 4.1 Introduction -- 4.2 General Features -- 4.2.1 Solvent Strength -- 4.2.2 Exothermodynamic Relationships. 4.2.3 Thermodynamic Considerations -- 4.3 System Considerations -- 4.3.1 Interphase Model -- 4.3.2 Molecular Dynamics Simulations -- 4.4 Linear Free Energy Relationships -- 4.4.1 Solvation Parameter Model -- 4.4.1.1 Analysis of system constants -- 4.4.1.2 Pore dewetting -- 4.4.1.3 Steric resistance and shape selectivity -- 4.4.1.4 Electrostatic interactions -- 4.4.1.5 Gradient elution -- 4.4.2 Hydrophobic-Subtraction Model -- 4.5 Conclusions -- References -- Chapter 5: Secondary chemical equilibria in reversed-phase liquid chromatography -- 5.1 Introduction -- 5.2 Acid-Base Equilibria -- 5.2.1 Changes in Retention With pH -- 5.2.2 Buffers and Measurement of pH -- 5.3 Ion Interaction Chromatography -- 5.3.1 Retention Mechanism -- 5.3.2 Common Reagents and Operational Modes -- 5.3.3 Separation of Inorganic Anions -- 5.3.4 The Silanol Effect and Its Suppression With Amine Compounds -- 5.3.5 Use of Perfluorinated Carboxylate Anions and Chaotropic Ions as Additives -- 5.3.6 Use of ILs as Additives -- 5.3.7 Measurement of the Enhancement of Column Performance Using Additives -- 5.4 Micellar Liquid Chromatography -- 5.4.1 An Additional Secondary Equilibrium in the Mobile Phase -- 5.4.2 Hybrid Micellar Liquid Chromatography -- 5.4.3 Microemulsion Liquid Chromatography -- 5.5 Metal Complexation -- 5.5.1 Determination of Metal Ions -- 5.5.2 Determination of Organic Compounds -- 5.6 Use of Redox Reactions -- References -- Chapter 6: Hydrophilic interaction liquid chromatography -- 6.1 Introduction -- 6.2 Principles of HILIC -- 6.2.1 Thermodynamics of Adsorption -- 6.2.2 Adsorption Kinetics -- 6.3 Stationary and mobile phases commonly employed in HILIC -- 6.3.1 Stationary Phases -- 6.3.1.1 Silica gel -- 6.3.1.2 Chemically bonded phases -- 6.3.1.3 Ion exchange and zwitterionic stationary phase -- 6.3.1.4 Hydrophilic macromolecules bonded phases. 6.3.1.5 Surface-confined ionic liquids stationary phases -- 6.3.2 Mobile Phases -- 6.4 Applications -- References -- Chapter 7: Hydrophobic interaction chromatography* -- 7.1 Introduction -- 7.2 Hydrophobic Interactions and Retention Mechanisms in HIC -- 7.2.1 Hydrophobic Interactions -- 7.2.2 Retention Mechanisms in HIC -- 7.3 Parameters That Affect HIC -- 7.3.1 Stationary Phase -- 7.3.1.1 Base matrix -- 7.3.1.2 Ligands -- 7.3.2 Mobile Phase -- 7.3.2.1 Type and concentration of salt -- 7.3.2.2 pH -- 7.3.2.3 Additives -- 7.3.2.4 Temperature -- 7.3.3 Biomolecules Hydrophobicity -- 7.4 Purification Strategies -- 7.5 Experimental Considerations -- 7.6 Recent Selected Applications -- 7.7 Conclusions -- References -- Chapter 8: Liquid-solid chromatography -- 8.1 Introduction -- 8.2 Retention and Separation -- 8.2.1 The Retention Process ("Mechanism") -- 8.2.2 Solute and Solvent Localization -- 8.2.3 Selectivity -- 8.3 Method Development -- 8.3.1 Thin-Layer Chromatography -- 8.3.2 Selection of the Mobile Phase -- 8.3.3 Example of Method Development -- 8.4 Problems in the Use of Normal-Phase Chromatography -- References -- Further Reading -- Chapter 9: Ion chromatography -- 9.1 Introduction -- 9.1.1 Definitions -- 9.1.2 History -- 9.2 Basic Principles and Separation Modes -- 9.2.1 Ion-Exchange Chromatography -- 9.2.2 Ion-Exclusion Chromatography -- 9.2.3 Chelation Ion Chromatography -- 9.2.4 Zwitterionic Ion Chromatography -- 9.2.5 Eluents for IC -- 9.2.5.1 Typical eluents for anion exchange -- 9.2.5.2 Typical eluents for cation exchange -- 9.3 Instrumentation -- 9.3.1 IC Columns -- 9.3.1.1 Anion-exchange columns -- 9.3.1.2 Cation-exchange columns -- 9.3.2 Eluent Generators -- 9.3.3 Detection in IC -- 9.3.3.1 Conductimetric detection -- Nonsuppressed conductivity -- Suppressed conductivity -- 9.3.3.2 Electrochemical detection -- Charge detector. Amperometry -- 9.3.3.3 Spectroscopic detection -- Photometric detection -- Postcolumn reaction detection -- 9.3.3.4 Mass spectrometry -- 9.4 Applications -- 9.4.1 Industrial Applications -- 9.4.2 Environmental Applications -- References -- Further Reading -- Chapter 10: Size-exclusion chromatography -- 10.1 Introduction -- 10.2 Historical Background -- 10.3 Retention in SEC -- 10.3.1 A Size-Exclusion Process -- 10.3.2 An Entropy-Controlled Process -- 10.3.3 An Equilibrium Process -- 10.4 Band Broadening in SEC -- 10.4.1 Extra-column effects -- 10.5 Resolution in SEC -- 10.6 SEC Enters the Modern Era: The Determination of Absolute Molar Mass -- 10.6.1 Universal Calibration and Online Viscometry -- 10.6.2 SLS Detection -- 10.7 Multidetector Separations, Physicochemical Characterization, 2D Techniques -- 10.8 Conclusions -- Acknowledgment and Disclaimer -- References -- Chapter 11: Interaction polymer chromatography -- 11.1 Introduction -- 11.2 Fundamentals of ipc -- 11.2.1 Retention Mechanisms -- 11.2.2 Thermodynamics of Polymer Chromatography -- 11.2.3 Modes of Polymer Chromatography -- 11.2.4 Modeling of the Chromatographic Process -- 11.3 Individual IPC Techniques -- 11.3.1 Equipment and Chromatographic Media -- 11.3.2 Nomenclature -- 11.3.3 Isocratic Techniques -- 11.3.3.1 Liquid chromatography at critical conditions -- 11.3.3.2 Barrier techniques -- 11.3.4 Gradient Techniques -- 11.3.4.1 Liquid adsorption chromatography -- 11.3.4.2 Gradient elution at CPA -- 11.3.4.3 Liquid precipitation chromatography -- 11.3.4.4 Temperature gradient interaction chromatography -- 11.4 Conclusion -- References -- Chapter 12: Affinity chromatography -- 12.1 Introduction -- 12.2 Basic Components of Affinity Chromatography -- 12.3 Bioaffinity Chromatography -- 12.4 Immunoaffinity Chromatography -- 12.5 Dye-Ligand and Biomimetic Affinity Chromatography. Liquid chromatography. http://id.loc.gov/authorities/subjects/sh85077354 Chromatography, Liquid https://id.nlm.nih.gov/mesh/D002853 Chromatographie en phase liquide. liquid chromatography. aat SCIENCE / Chemistry / Analytic bisacsh Liquid chromatography fast Fanali, Salvatore, editor. https://id.oclc.org/worldcat/entity/E39PBJkHhWDYbfwxmcMmGyj9jC http://id.loc.gov/authorities/names/n2013180614 Haddad, Paul R., editor. https://id.oclc.org/worldcat/entity/E39PBJdCqTr6Mggdq6bJp46dwC http://id.loc.gov/authorities/names/n90630980 Poole, Colin F., editor. Riekkola, Marja-Liisa, editor. has work: Liquid chromatography Volume 1 Fundamentals and instrumentation (Text) https://id.oclc.org/worldcat/entity/E39PCGfFqjRRW47KhX4YDxqB8C https://id.oclc.org/worldcat/ontology/hasWork Print version: 0128053933 9780128053935 (OCoLC)964303423 FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780128053935 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1158800 Volltext |
spellingShingle | Liquid chromatography. Front Cover -- Liquid Chromatography: Fundamentals and Instrumentation -- Copyright -- Contents -- Contributors -- Chapter 1: Milestones in the development of liquid chromatography -- 1.1 Introduction -- 1.1.1 Developments Before 1960 -- 1.1.2 HPLC at the Beginning -- 1.2 HPLC Theory and Practice -- 1.2.1 New HPLC Modes and Techniques -- 1.2.2 Selection of Conditions for the Control of Selectivity -- 1.3 Columns -- 1.3.1 Particles and Column Packing -- 1.3.2 Stationary Phases and Selectivity -- 1.4 Equipment -- 1.5 Detectors -- Apologies and Acknowledgments -- References -- Further Reading -- Chapter 2: Kinetic theories of liquid chromatography -- 2.1 Introduction -- 2.2 Macroscopic Kinetic Theories -- 2.2.1 Lumped Kinetic Model -- 2.2.1.1 van Deemter plate height equation -- 2.2.2 General Rate Model -- 2.2.2.1 General rate model for monolith columns -- 2.2.2.2 General rate model for core-shell particles -- 2.2.2.3 Moment analysis -- 2.2.3 Lumped Pore Diffusion Model -- 2.2.4 Equivalence of the Macroscopic Kinetic Models -- 2.2.5 Kinetic Theory of Nonlinear Chromatography -- 2.3 Microscopic Kinetic Theories -- 2.3.1 Stochastic Model -- 2.3.1.1 Stochastic-dispersive model -- First passage time -- 2.3.2 Giddings Plate Height Equation -- 2.3.3 Monte Carlo Simulations of Nonlinear Chromatography -- 2.4 Comparison of the Microscopic and the Macroscopic Kinetic Models -- References -- Further Reading -- Chapter 3: Column technology in liquid chromatography -- 3.1 Introduction -- 3.2 Column Design and Hardware -- 3.2.1 Column History in Brief -- 3.2.2 Column Hardware -- 3.2.3 Column Miniaturization -- 3.3 Column Packing Materials and Stationary Phases -- 3.3.1 Terminology -- 3.3.2 Classification of LC Columns -- 3.3.3 Packing Materials [21] -- 3.3.3.1 Particle shape, size, and size distribution -- 3.3.3.2 Pore structure parameters. 3.3.3.3 Surface functionalization of silica-the key to gaining selectivity -- 3.3.3.4 Surface functionalization of silica-the way to bonded silica columns -- 3.3.4 Major Synthesis Routes -- 3.3.4.1 Physicochemical characterization of bonded silica -- 3.3.4.2 Column packing procedures for analytical columns -- 3.3.4.3 Examples for selective bonded silica columns -- 3.3.4.4 The potential of multimodal or multifunctional bonded columns -- 3.4 Column Systems and Operations -- 3.4.1 Choice of Average Particle Size and Column Internal Diameter -- 3.4.2 Equilibration Time -- 3.4.3 Choice of Optimum-Flow Conditions -- 3.4.4 Column Back Pressure -- 3.4.5 Choice of Column Temperature -- 3.4.6 Column Capacity and Loadability -- 3.5 Chromatographic Column Testing and Evaluation -- 3.5.1 Chromatographic Testing -- 3.5.1.1 Hydrophobicity -- 3.5.1.2 Silanophilic activity -- 3.5.1.3 Polar selectivity -- 3.5.1.4 Shape selectivity -- 3.5.1.5 Metal content -- 3.6 Column Maintenance and Troubleshooting -- 3.6.1 Silica-Based Columns -- 3.6.1.1 General guidelines -- 3.6.2 pH Stability -- 3.6.3 Mechanical Stability -- 3.6.4 Mobile Phases (Eluents) -- 3.6.4.1 Proper storage of HPLC columns -- 3.6.4.2 Regeneration of a column -- 3.6.5 Regeneration of RP Packings -- 3.6.6 Polymer-Based Columns -- 3.6.6.1 General guidelines -- 3.6.7 Hydrophobic Unmodified Polystyrene-Divinylbenzene (Ps-Dvb) -- 3.6.8 Polymer-Based Ion-Exchangers -- 3.6.9 Regeneration of Polymer Materials -- 3.7 Today's Column Market-an Evaluation, Comparison, and Critical Appraisal -- 3.7.1 Development During 2000-16 -- 3.7.2 A Column Comparison -- 3.8 Conclusion: Where Do We Go Next? Science vs. Market -- References -- Chapter 4: Reversed-phase liquid chromatography -- 4.1 Introduction -- 4.2 General Features -- 4.2.1 Solvent Strength -- 4.2.2 Exothermodynamic Relationships. 4.2.3 Thermodynamic Considerations -- 4.3 System Considerations -- 4.3.1 Interphase Model -- 4.3.2 Molecular Dynamics Simulations -- 4.4 Linear Free Energy Relationships -- 4.4.1 Solvation Parameter Model -- 4.4.1.1 Analysis of system constants -- 4.4.1.2 Pore dewetting -- 4.4.1.3 Steric resistance and shape selectivity -- 4.4.1.4 Electrostatic interactions -- 4.4.1.5 Gradient elution -- 4.4.2 Hydrophobic-Subtraction Model -- 4.5 Conclusions -- References -- Chapter 5: Secondary chemical equilibria in reversed-phase liquid chromatography -- 5.1 Introduction -- 5.2 Acid-Base Equilibria -- 5.2.1 Changes in Retention With pH -- 5.2.2 Buffers and Measurement of pH -- 5.3 Ion Interaction Chromatography -- 5.3.1 Retention Mechanism -- 5.3.2 Common Reagents and Operational Modes -- 5.3.3 Separation of Inorganic Anions -- 5.3.4 The Silanol Effect and Its Suppression With Amine Compounds -- 5.3.5 Use of Perfluorinated Carboxylate Anions and Chaotropic Ions as Additives -- 5.3.6 Use of ILs as Additives -- 5.3.7 Measurement of the Enhancement of Column Performance Using Additives -- 5.4 Micellar Liquid Chromatography -- 5.4.1 An Additional Secondary Equilibrium in the Mobile Phase -- 5.4.2 Hybrid Micellar Liquid Chromatography -- 5.4.3 Microemulsion Liquid Chromatography -- 5.5 Metal Complexation -- 5.5.1 Determination of Metal Ions -- 5.5.2 Determination of Organic Compounds -- 5.6 Use of Redox Reactions -- References -- Chapter 6: Hydrophilic interaction liquid chromatography -- 6.1 Introduction -- 6.2 Principles of HILIC -- 6.2.1 Thermodynamics of Adsorption -- 6.2.2 Adsorption Kinetics -- 6.3 Stationary and mobile phases commonly employed in HILIC -- 6.3.1 Stationary Phases -- 6.3.1.1 Silica gel -- 6.3.1.2 Chemically bonded phases -- 6.3.1.3 Ion exchange and zwitterionic stationary phase -- 6.3.1.4 Hydrophilic macromolecules bonded phases. 6.3.1.5 Surface-confined ionic liquids stationary phases -- 6.3.2 Mobile Phases -- 6.4 Applications -- References -- Chapter 7: Hydrophobic interaction chromatography* -- 7.1 Introduction -- 7.2 Hydrophobic Interactions and Retention Mechanisms in HIC -- 7.2.1 Hydrophobic Interactions -- 7.2.2 Retention Mechanisms in HIC -- 7.3 Parameters That Affect HIC -- 7.3.1 Stationary Phase -- 7.3.1.1 Base matrix -- 7.3.1.2 Ligands -- 7.3.2 Mobile Phase -- 7.3.2.1 Type and concentration of salt -- 7.3.2.2 pH -- 7.3.2.3 Additives -- 7.3.2.4 Temperature -- 7.3.3 Biomolecules Hydrophobicity -- 7.4 Purification Strategies -- 7.5 Experimental Considerations -- 7.6 Recent Selected Applications -- 7.7 Conclusions -- References -- Chapter 8: Liquid-solid chromatography -- 8.1 Introduction -- 8.2 Retention and Separation -- 8.2.1 The Retention Process ("Mechanism") -- 8.2.2 Solute and Solvent Localization -- 8.2.3 Selectivity -- 8.3 Method Development -- 8.3.1 Thin-Layer Chromatography -- 8.3.2 Selection of the Mobile Phase -- 8.3.3 Example of Method Development -- 8.4 Problems in the Use of Normal-Phase Chromatography -- References -- Further Reading -- Chapter 9: Ion chromatography -- 9.1 Introduction -- 9.1.1 Definitions -- 9.1.2 History -- 9.2 Basic Principles and Separation Modes -- 9.2.1 Ion-Exchange Chromatography -- 9.2.2 Ion-Exclusion Chromatography -- 9.2.3 Chelation Ion Chromatography -- 9.2.4 Zwitterionic Ion Chromatography -- 9.2.5 Eluents for IC -- 9.2.5.1 Typical eluents for anion exchange -- 9.2.5.2 Typical eluents for cation exchange -- 9.3 Instrumentation -- 9.3.1 IC Columns -- 9.3.1.1 Anion-exchange columns -- 9.3.1.2 Cation-exchange columns -- 9.3.2 Eluent Generators -- 9.3.3 Detection in IC -- 9.3.3.1 Conductimetric detection -- Nonsuppressed conductivity -- Suppressed conductivity -- 9.3.3.2 Electrochemical detection -- Charge detector. Amperometry -- 9.3.3.3 Spectroscopic detection -- Photometric detection -- Postcolumn reaction detection -- 9.3.3.4 Mass spectrometry -- 9.4 Applications -- 9.4.1 Industrial Applications -- 9.4.2 Environmental Applications -- References -- Further Reading -- Chapter 10: Size-exclusion chromatography -- 10.1 Introduction -- 10.2 Historical Background -- 10.3 Retention in SEC -- 10.3.1 A Size-Exclusion Process -- 10.3.2 An Entropy-Controlled Process -- 10.3.3 An Equilibrium Process -- 10.4 Band Broadening in SEC -- 10.4.1 Extra-column effects -- 10.5 Resolution in SEC -- 10.6 SEC Enters the Modern Era: The Determination of Absolute Molar Mass -- 10.6.1 Universal Calibration and Online Viscometry -- 10.6.2 SLS Detection -- 10.7 Multidetector Separations, Physicochemical Characterization, 2D Techniques -- 10.8 Conclusions -- Acknowledgment and Disclaimer -- References -- Chapter 11: Interaction polymer chromatography -- 11.1 Introduction -- 11.2 Fundamentals of ipc -- 11.2.1 Retention Mechanisms -- 11.2.2 Thermodynamics of Polymer Chromatography -- 11.2.3 Modes of Polymer Chromatography -- 11.2.4 Modeling of the Chromatographic Process -- 11.3 Individual IPC Techniques -- 11.3.1 Equipment and Chromatographic Media -- 11.3.2 Nomenclature -- 11.3.3 Isocratic Techniques -- 11.3.3.1 Liquid chromatography at critical conditions -- 11.3.3.2 Barrier techniques -- 11.3.4 Gradient Techniques -- 11.3.4.1 Liquid adsorption chromatography -- 11.3.4.2 Gradient elution at CPA -- 11.3.4.3 Liquid precipitation chromatography -- 11.3.4.4 Temperature gradient interaction chromatography -- 11.4 Conclusion -- References -- Chapter 12: Affinity chromatography -- 12.1 Introduction -- 12.2 Basic Components of Affinity Chromatography -- 12.3 Bioaffinity Chromatography -- 12.4 Immunoaffinity Chromatography -- 12.5 Dye-Ligand and Biomimetic Affinity Chromatography. Liquid chromatography. http://id.loc.gov/authorities/subjects/sh85077354 Chromatography, Liquid https://id.nlm.nih.gov/mesh/D002853 Chromatographie en phase liquide. liquid chromatography. aat SCIENCE / Chemistry / Analytic bisacsh Liquid chromatography fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85077354 https://id.nlm.nih.gov/mesh/D002853 |
title | Liquid chromatography. |
title_alt | Fundamentals and instrumentation |
title_auth | Liquid chromatography. |
title_exact_search | Liquid chromatography. |
title_full | Liquid chromatography. Volume 1, Fundamentals and instrumentation / edited by Salvatore Fanali, Paul R. Haddad, Colin F. Poole, Marja-Liisa Riekkola. |
title_fullStr | Liquid chromatography. Volume 1, Fundamentals and instrumentation / edited by Salvatore Fanali, Paul R. Haddad, Colin F. Poole, Marja-Liisa Riekkola. |
title_full_unstemmed | Liquid chromatography. Volume 1, Fundamentals and instrumentation / edited by Salvatore Fanali, Paul R. Haddad, Colin F. Poole, Marja-Liisa Riekkola. |
title_short | Liquid chromatography. |
title_sort | liquid chromatography fundamentals and instrumentation |
topic | Liquid chromatography. http://id.loc.gov/authorities/subjects/sh85077354 Chromatography, Liquid https://id.nlm.nih.gov/mesh/D002853 Chromatographie en phase liquide. liquid chromatography. aat SCIENCE / Chemistry / Analytic bisacsh Liquid chromatography fast |
topic_facet | Liquid chromatography. Chromatography, Liquid Chromatographie en phase liquide. liquid chromatography. SCIENCE / Chemistry / Analytic Liquid chromatography |
url | https://www.sciencedirect.com/science/book/9780128053935 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1158800 |
work_keys_str_mv | AT fanalisalvatore liquidchromatographyvolume1 AT haddadpaulr liquidchromatographyvolume1 AT poolecolinf liquidchromatographyvolume1 AT riekkolamarjaliisa liquidchromatographyvolume1 AT fanalisalvatore fundamentalsandinstrumentation AT haddadpaulr fundamentalsandinstrumentation AT poolecolinf fundamentalsandinstrumentation AT riekkolamarjaliisa fundamentalsandinstrumentation |