Theory and modeling of rotating fluids :: convection, inertial waves, and precession /
A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research. Sufficient mathematical and nu...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2017.
|
Schriftenreihe: | Cambridge monographs on mechanics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research. Sufficient mathematical and numerical detail is provided in a variety of geometries such that the analysis and results can be readily reproduced, and many numerical tables are included to enable readers to compare or benchmark their own calculations. Traditionally, there are two disjointed topics in rotating fluids: convective fluid motion driven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession-driven flow, described by Greenspan (1968). Now, for the first time in book form, a unified theory is presented for three topics - thermal convection, inertial waves and precession-driven flow - to demonstrate that these seemingly complicated, and previously disconnected, problems become mathematically simple in the framework of an asymptotic approach that incorporates the essential characteristics of rotating fluids. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139024853 113902485X 9781108296472 1108296475 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn990033383 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 170614s2017 enk ob 001 0 eng d | ||
040 | |a YDX |b eng |e rda |e pn |c YDX |d LGG |d N$T |d YDX |d UIU |d NOC |d OCLCF |d OTZ |d CNCGM |d IDEBK |d MERER |d OCLCQ |d U3W |d NRC |d OCLCQ |d TKN |d OCLCQ |d K6U |d OCLCO |d UKAHL |d SFB |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCL |d TMA |d OCLCQ | ||
019 | |a 1168457061 | ||
020 | |a 9781139024853 |q (electronic bk.) | ||
020 | |a 113902485X |q (electronic bk.) | ||
020 | |a 9781108296472 |q (electronic bk.) | ||
020 | |a 1108296475 |q (electronic bk.) | ||
020 | |z 9780521850094 |q (hardback ; |q alk. paper) | ||
020 | |z 0521850096 |q (hardback ; |q alk. paper) | ||
035 | |a (OCoLC)990033383 |z (OCoLC)1168457061 | ||
050 | 4 | |a QA913 | |
072 | 7 | |a TEC |x 014000 |2 bisacsh | |
082 | 7 | |a 532/.0595 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Zhang, Keke, |e author. |0 http://id.loc.gov/authorities/names/n2002162779 | |
245 | 1 | 0 | |a Theory and modeling of rotating fluids : |b convection, inertial waves, and precession / |c Keke Zhang, University of Exeter, Xinhao Liao, Chinese Academy of Sciences. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2017. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge monographs on mechanics | |
504 | |a Includes bibliographical references and index. | ||
520 | |a A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research. Sufficient mathematical and numerical detail is provided in a variety of geometries such that the analysis and results can be readily reproduced, and many numerical tables are included to enable readers to compare or benchmark their own calculations. Traditionally, there are two disjointed topics in rotating fluids: convective fluid motion driven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession-driven flow, described by Greenspan (1968). Now, for the first time in book form, a unified theory is presented for three topics - thermal convection, inertial waves and precession-driven flow - to demonstrate that these seemingly complicated, and previously disconnected, problems become mathematically simple in the framework of an asymptotic approach that incorporates the essential characteristics of rotating fluids. | ||
505 | 8 | |a 12.7 A Byproduct: The Viscous Decay Factor -- 13 Fluid Motion in Longitudinally Librating Spheres -- 13.1 Formulation -- 13.2 Asymptotic Solutions -- 13.2.1 Why Resonance Cannot Occur -- 13.2.2 Asymptotic Analysis -- 13.2.3 Three Fundamental Modes Excited -- 13.3 Linear Numerical Solution -- 13.4 Nonlinear Direct Numerical Simulation -- 14 Fluid Motion in Precessing Oblate Spheroids -- 14.1 Formulation -- 14.2 Inviscid Solution -- 14.3 Exact Nonlinear Solution -- 14.4 Viscous Solution -- 14.5 Properties of Nonlinear Precessing Flow -- 14.6 A Byproduct: The Viscous Decay Factor -- 15 Fluid Motion in Latitudinally Librating Spheroids -- 15.1 Formulation -- 15.2 Analytical Solution: Non-resonant Librating Flow -- 15.3 Analytical Solution: Resonant Librating Flow -- 15.4 Nonlinear Direct Numerical Simulation -- 15.5 Comparison: Analytical vs. Numerical -- Part 4 Convection in Uniformly Rotating Systems -- 16 Introduction -- 16.1 Rotating Convection vs. Precession/Libration -- 16.2 Key Parameters for Rotating Convection -- 16.3 Rotational Constraint on Convection -- 16.4 Types of Rotating Convection -- 16.4.1 Viscous Convection Mode -- 16.4.2 Inertial Convection Mode -- 16.4.3 Transitional Convection Mode -- 16.5 Convection in Various Rotating Geometries -- 16.5.1 Rotating Annular Channels -- 16.5.2 Rotating Circular Cylinders -- 16.5.3 Rotating Spheres or Spherical Shells -- 17 Convection in Rotating Narrow-gap Annuli -- 17.1 Formulation -- 17.2 A Finite-difference Method for Nonlinear Convection -- 17.3 Stationary Viscous Convection -- 17.3.1 Governing Equations -- 17.3.2 Asymptotic Solution for Î#x93;(Ta)1/6 1/6 = O(1) -- 17.3.4 Numerical Solution Using a Galerkin-tau Method -- 17.3.5 Comparison: Analytical vs. Numerical -- 17.3.6 Nonlinear Properties of Stationary Convection. | |
505 | 8 | |a 17.4 Oscillatory Viscous Convection -- 17.4.1 Governing Equations -- 17.4.2 Symmetry between Two Different Oscillatory Solutions -- 17.4.3 Asymptotic Solutions Satisfying the Boundary Condition -- 17.4.4 Comparison: Analytical vs. Numerical -- 17.4.5 Comparison with an Unbounded Rotating Layer -- 17.4.6 Nonlinear Properties with Î#x93; = O(Ta-1/6) -- 17.4.7 Nonlinear Properties with Î#x93; >> O(Ta-1/6) -- 17.5 Viscous Convection with Curvature Effects -- 17.5.1 Onset of Viscous Convection -- 17.5.2 Nonlinear Properties of Viscous Convection -- 17.6 Inertial Convection: Non-axisymmetric Solutions -- 17.6.1 Asymptotic Expansion -- 17.6.2 Non-dissipative Thermal Inertial Wave -- 17.6.3 Asymptotic Solution with Stress-free Condition -- 17.6.4 Asymptotic Solution with No-slip Condition -- 17.6.5 Numerical Solution Using a Galerkin Spectral Method -- 17.6.6 Comparison: Analytical vs. Numerical -- 17.6.7 Nonlinear Properties of Inertial Convection -- 17.7 Inertial Convection: Axisymmetric Torsional Oscillation -- 18 Convection in Rotating Cylinders -- 18.1 Formulation -- 18.2 Convection with Stress-free Condition -- 18.2.1 Asymptotic Solution for Inertial Convection -- 18.2.2 Asymptotic Solution for Viscous Convection -- 18.2.3 Numerical Solution Using a Chebyshev-tau Method -- 18.2.4 Comparison: Analytical vs. Numerical -- 18.3 Convection with No-slip Condition -- 18.3.1 Asymptotic Solution for Inertial Convection -- 18.3.2 Asymptotic Solution for Viscous Convection -- 18.3.3 Numerical Solution Using a Galerkin-type Method -- 18.3.4 Comparison: Analytical vs. Numerical -- 18.3.5 Effect of Thermal Boundary Condition -- 18.3.6 Axisymmetric Inertial Convection -- 18.4 Transition to Weakly Turbulent Convection -- 18.4.1 A Finite Element Method for Nonlinear Convection -- 18.4.2 Inertial Convection: From Single Inertial Mode to Weak Turbulence. | |
505 | 8 | |a 18.4.3 Viscous Convection: From Sidewall-localized Mode to Weak Turbulence -- 19 Convection in Rotating Spheres or Spherical Shells -- 19.1 Formulation -- 19.2 Numerical Solution using Toroidal/Poloidal Decomposition -- 19.2.1 Governing Equations under Toroidal/Poloidal Decomposition -- 19.2.2 Numerical Analysis for Stress-free or No-slip Condition -- 19.2.3 Several Numerical Solutions for 0 < Ek << 1 -- 19.2.4 Nonlinear Effects: Differential Rotation -- 19.3 Local Asymptotic Solution: A Small-gap Annular Model -- 19.3.1 The Local and Quasi-geostrophic Approximation -- 19.3.2 Asymptotic Relation for 0 < Ek << 1 -- 19.3.3 Comparison: Asymptotic vs. Numerical -- 19.4 Global Asymptotic Solution with Stress-free Condition -- 19.4.1 Hypotheses for Asymptotic Analysis -- 19.4.2 Asymptotic Analysis for Inertial Convection -- 19.4.3 Several Analytical Solutions for Inertial Convection -- 19.4.4 Differential Rotation Cannot be Sustained by Inertial Convection -- 19.4.5 Asymptotic Analysis for Viscous Convection -- 19.4.6 Typical Asymptotic Solutions for Viscous Convection -- 19.4.7 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.5 Global Asymptotic Solution with No-slip Condition -- 19.5.1 Hypotheses for Asymptotic Analysis -- 19.5.2 Asymptotic Analysis for Inertial Convection -- 19.5.3 Several Analytical Solutions for Inertial Convection -- 19.5.4 Asymptotic Analysis for Viscous Convection -- 19.5.5 Several Asymptotic Solutions for Viscous Convection -- 19.5.6 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.6 Transition to Weakly Turbulent Convection -- 19.6.1 A Finite-Element Method for Rotating Spheres -- 19.6.2 Transition to Weak Turbulence in Rotating Spheres -- 19.6.3 A Finite Difference Method for Rotating Spherical Shells -- 19.6.4 Multiple Stable Nonlinear Equilibria in Slowly Rotating Thin Spherical Shells. | |
650 | 0 | |a Rotating masses of fluid. |0 http://id.loc.gov/authorities/subjects/sh85115489 | |
650 | 0 | |a Fluid mechanics. |0 http://id.loc.gov/authorities/subjects/sh85049383 | |
650 | 0 | |a Fluid dynamics. |0 http://id.loc.gov/authorities/subjects/sh85049376 | |
650 | 2 | |a Hydrodynamics |0 https://id.nlm.nih.gov/mesh/D057446 | |
650 | 6 | |a Masses de fluide rotatives. | |
650 | 6 | |a Mécanique des fluides. | |
650 | 6 | |a Dynamique des fluides. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Hydraulics. |2 bisacsh | |
650 | 7 | |a Dinámica de fluidos |2 embne | |
650 | 7 | |a Fluid dynamics |2 fast | |
650 | 7 | |a Fluid mechanics |2 fast | |
650 | 7 | |a Rotating masses of fluid |2 fast | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Liao, Xinhao. |0 http://id.loc.gov/authorities/names/n2017023669 | |
758 | |i has work: |a Theory and modeling of rotating fluids (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGrMm4h4MpQf3dh6MVGVfq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9780521850094 |z 0521850096 |w (DLC) 2017004135 |w (OCoLC)984511655 |
830 | 0 | |a Cambridge monographs on mechanics. |0 http://id.loc.gov/authorities/names/n94094260 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512522 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34205205 | ||
938 | |a EBSCOhost |b EBSC |n 1512522 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38375127 | ||
938 | |a YBP Library Services |b YANK |n 14561448 | ||
938 | |a YBP Library Services |b YANK |n 14580437 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn990033383 |
---|---|
_version_ | 1816882392069046272 |
adam_text | |
any_adam_object | |
author | Zhang, Keke |
author2 | Liao, Xinhao |
author2_role | |
author2_variant | x l xl |
author_GND | http://id.loc.gov/authorities/names/n2002162779 http://id.loc.gov/authorities/names/n2017023669 |
author_facet | Zhang, Keke Liao, Xinhao |
author_role | aut |
author_sort | Zhang, Keke |
author_variant | k z kz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA913 |
callnumber-raw | QA913 |
callnumber-search | QA913 |
callnumber-sort | QA 3913 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 12.7 A Byproduct: The Viscous Decay Factor -- 13 Fluid Motion in Longitudinally Librating Spheres -- 13.1 Formulation -- 13.2 Asymptotic Solutions -- 13.2.1 Why Resonance Cannot Occur -- 13.2.2 Asymptotic Analysis -- 13.2.3 Three Fundamental Modes Excited -- 13.3 Linear Numerical Solution -- 13.4 Nonlinear Direct Numerical Simulation -- 14 Fluid Motion in Precessing Oblate Spheroids -- 14.1 Formulation -- 14.2 Inviscid Solution -- 14.3 Exact Nonlinear Solution -- 14.4 Viscous Solution -- 14.5 Properties of Nonlinear Precessing Flow -- 14.6 A Byproduct: The Viscous Decay Factor -- 15 Fluid Motion in Latitudinally Librating Spheroids -- 15.1 Formulation -- 15.2 Analytical Solution: Non-resonant Librating Flow -- 15.3 Analytical Solution: Resonant Librating Flow -- 15.4 Nonlinear Direct Numerical Simulation -- 15.5 Comparison: Analytical vs. Numerical -- Part 4 Convection in Uniformly Rotating Systems -- 16 Introduction -- 16.1 Rotating Convection vs. Precession/Libration -- 16.2 Key Parameters for Rotating Convection -- 16.3 Rotational Constraint on Convection -- 16.4 Types of Rotating Convection -- 16.4.1 Viscous Convection Mode -- 16.4.2 Inertial Convection Mode -- 16.4.3 Transitional Convection Mode -- 16.5 Convection in Various Rotating Geometries -- 16.5.1 Rotating Annular Channels -- 16.5.2 Rotating Circular Cylinders -- 16.5.3 Rotating Spheres or Spherical Shells -- 17 Convection in Rotating Narrow-gap Annuli -- 17.1 Formulation -- 17.2 A Finite-difference Method for Nonlinear Convection -- 17.3 Stationary Viscous Convection -- 17.3.1 Governing Equations -- 17.3.2 Asymptotic Solution for Î#x93;(Ta)1/6 1/6 = O(1) -- 17.3.4 Numerical Solution Using a Galerkin-tau Method -- 17.3.5 Comparison: Analytical vs. Numerical -- 17.3.6 Nonlinear Properties of Stationary Convection. 17.4 Oscillatory Viscous Convection -- 17.4.1 Governing Equations -- 17.4.2 Symmetry between Two Different Oscillatory Solutions -- 17.4.3 Asymptotic Solutions Satisfying the Boundary Condition -- 17.4.4 Comparison: Analytical vs. Numerical -- 17.4.5 Comparison with an Unbounded Rotating Layer -- 17.4.6 Nonlinear Properties with Î#x93; = O(Ta-1/6) -- 17.4.7 Nonlinear Properties with Î#x93; >> O(Ta-1/6) -- 17.5 Viscous Convection with Curvature Effects -- 17.5.1 Onset of Viscous Convection -- 17.5.2 Nonlinear Properties of Viscous Convection -- 17.6 Inertial Convection: Non-axisymmetric Solutions -- 17.6.1 Asymptotic Expansion -- 17.6.2 Non-dissipative Thermal Inertial Wave -- 17.6.3 Asymptotic Solution with Stress-free Condition -- 17.6.4 Asymptotic Solution with No-slip Condition -- 17.6.5 Numerical Solution Using a Galerkin Spectral Method -- 17.6.6 Comparison: Analytical vs. Numerical -- 17.6.7 Nonlinear Properties of Inertial Convection -- 17.7 Inertial Convection: Axisymmetric Torsional Oscillation -- 18 Convection in Rotating Cylinders -- 18.1 Formulation -- 18.2 Convection with Stress-free Condition -- 18.2.1 Asymptotic Solution for Inertial Convection -- 18.2.2 Asymptotic Solution for Viscous Convection -- 18.2.3 Numerical Solution Using a Chebyshev-tau Method -- 18.2.4 Comparison: Analytical vs. Numerical -- 18.3 Convection with No-slip Condition -- 18.3.1 Asymptotic Solution for Inertial Convection -- 18.3.2 Asymptotic Solution for Viscous Convection -- 18.3.3 Numerical Solution Using a Galerkin-type Method -- 18.3.4 Comparison: Analytical vs. Numerical -- 18.3.5 Effect of Thermal Boundary Condition -- 18.3.6 Axisymmetric Inertial Convection -- 18.4 Transition to Weakly Turbulent Convection -- 18.4.1 A Finite Element Method for Nonlinear Convection -- 18.4.2 Inertial Convection: From Single Inertial Mode to Weak Turbulence. 18.4.3 Viscous Convection: From Sidewall-localized Mode to Weak Turbulence -- 19 Convection in Rotating Spheres or Spherical Shells -- 19.1 Formulation -- 19.2 Numerical Solution using Toroidal/Poloidal Decomposition -- 19.2.1 Governing Equations under Toroidal/Poloidal Decomposition -- 19.2.2 Numerical Analysis for Stress-free or No-slip Condition -- 19.2.3 Several Numerical Solutions for 0 < Ek << 1 -- 19.2.4 Nonlinear Effects: Differential Rotation -- 19.3 Local Asymptotic Solution: A Small-gap Annular Model -- 19.3.1 The Local and Quasi-geostrophic Approximation -- 19.3.2 Asymptotic Relation for 0 < Ek << 1 -- 19.3.3 Comparison: Asymptotic vs. Numerical -- 19.4 Global Asymptotic Solution with Stress-free Condition -- 19.4.1 Hypotheses for Asymptotic Analysis -- 19.4.2 Asymptotic Analysis for Inertial Convection -- 19.4.3 Several Analytical Solutions for Inertial Convection -- 19.4.4 Differential Rotation Cannot be Sustained by Inertial Convection -- 19.4.5 Asymptotic Analysis for Viscous Convection -- 19.4.6 Typical Asymptotic Solutions for Viscous Convection -- 19.4.7 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.5 Global Asymptotic Solution with No-slip Condition -- 19.5.1 Hypotheses for Asymptotic Analysis -- 19.5.2 Asymptotic Analysis for Inertial Convection -- 19.5.3 Several Analytical Solutions for Inertial Convection -- 19.5.4 Asymptotic Analysis for Viscous Convection -- 19.5.5 Several Asymptotic Solutions for Viscous Convection -- 19.5.6 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.6 Transition to Weakly Turbulent Convection -- 19.6.1 A Finite-Element Method for Rotating Spheres -- 19.6.2 Transition to Weak Turbulence in Rotating Spheres -- 19.6.3 A Finite Difference Method for Rotating Spherical Shells -- 19.6.4 Multiple Stable Nonlinear Equilibria in Slowly Rotating Thin Spherical Shells. |
ctrlnum | (OCoLC)990033383 |
dewey-full | 532/.0595 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0595 |
dewey-search | 532/.0595 |
dewey-sort | 3532 3595 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09869cam a2200709 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn990033383</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">170614s2017 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">LGG</subfield><subfield code="d">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">UIU</subfield><subfield code="d">NOC</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OTZ</subfield><subfield code="d">CNCGM</subfield><subfield code="d">IDEBK</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">NRC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1168457061</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139024853</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">113902485X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108296472</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108296475</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521850094</subfield><subfield code="q">(hardback ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521850096</subfield><subfield code="q">(hardback ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)990033383</subfield><subfield code="z">(OCoLC)1168457061</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA913</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">532/.0595</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Keke,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002162779</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory and modeling of rotating fluids :</subfield><subfield code="b">convection, inertial waves, and precession /</subfield><subfield code="c">Keke Zhang, University of Exeter, Xinhao Liao, Chinese Academy of Sciences.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on mechanics</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research. Sufficient mathematical and numerical detail is provided in a variety of geometries such that the analysis and results can be readily reproduced, and many numerical tables are included to enable readers to compare or benchmark their own calculations. Traditionally, there are two disjointed topics in rotating fluids: convective fluid motion driven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession-driven flow, described by Greenspan (1968). Now, for the first time in book form, a unified theory is presented for three topics - thermal convection, inertial waves and precession-driven flow - to demonstrate that these seemingly complicated, and previously disconnected, problems become mathematically simple in the framework of an asymptotic approach that incorporates the essential characteristics of rotating fluids.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.7 A Byproduct: The Viscous Decay Factor -- 13 Fluid Motion in Longitudinally Librating Spheres -- 13.1 Formulation -- 13.2 Asymptotic Solutions -- 13.2.1 Why Resonance Cannot Occur -- 13.2.2 Asymptotic Analysis -- 13.2.3 Three Fundamental Modes Excited -- 13.3 Linear Numerical Solution -- 13.4 Nonlinear Direct Numerical Simulation -- 14 Fluid Motion in Precessing Oblate Spheroids -- 14.1 Formulation -- 14.2 Inviscid Solution -- 14.3 Exact Nonlinear Solution -- 14.4 Viscous Solution -- 14.5 Properties of Nonlinear Precessing Flow -- 14.6 A Byproduct: The Viscous Decay Factor -- 15 Fluid Motion in Latitudinally Librating Spheroids -- 15.1 Formulation -- 15.2 Analytical Solution: Non-resonant Librating Flow -- 15.3 Analytical Solution: Resonant Librating Flow -- 15.4 Nonlinear Direct Numerical Simulation -- 15.5 Comparison: Analytical vs. Numerical -- Part 4 Convection in Uniformly Rotating Systems -- 16 Introduction -- 16.1 Rotating Convection vs. Precession/Libration -- 16.2 Key Parameters for Rotating Convection -- 16.3 Rotational Constraint on Convection -- 16.4 Types of Rotating Convection -- 16.4.1 Viscous Convection Mode -- 16.4.2 Inertial Convection Mode -- 16.4.3 Transitional Convection Mode -- 16.5 Convection in Various Rotating Geometries -- 16.5.1 Rotating Annular Channels -- 16.5.2 Rotating Circular Cylinders -- 16.5.3 Rotating Spheres or Spherical Shells -- 17 Convection in Rotating Narrow-gap Annuli -- 17.1 Formulation -- 17.2 A Finite-difference Method for Nonlinear Convection -- 17.3 Stationary Viscous Convection -- 17.3.1 Governing Equations -- 17.3.2 Asymptotic Solution for Î#x93;(Ta)1/6 1/6 = O(1) -- 17.3.4 Numerical Solution Using a Galerkin-tau Method -- 17.3.5 Comparison: Analytical vs. Numerical -- 17.3.6 Nonlinear Properties of Stationary Convection.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">17.4 Oscillatory Viscous Convection -- 17.4.1 Governing Equations -- 17.4.2 Symmetry between Two Different Oscillatory Solutions -- 17.4.3 Asymptotic Solutions Satisfying the Boundary Condition -- 17.4.4 Comparison: Analytical vs. Numerical -- 17.4.5 Comparison with an Unbounded Rotating Layer -- 17.4.6 Nonlinear Properties with Î#x93; = O(Ta-1/6) -- 17.4.7 Nonlinear Properties with Î#x93; >> O(Ta-1/6) -- 17.5 Viscous Convection with Curvature Effects -- 17.5.1 Onset of Viscous Convection -- 17.5.2 Nonlinear Properties of Viscous Convection -- 17.6 Inertial Convection: Non-axisymmetric Solutions -- 17.6.1 Asymptotic Expansion -- 17.6.2 Non-dissipative Thermal Inertial Wave -- 17.6.3 Asymptotic Solution with Stress-free Condition -- 17.6.4 Asymptotic Solution with No-slip Condition -- 17.6.5 Numerical Solution Using a Galerkin Spectral Method -- 17.6.6 Comparison: Analytical vs. Numerical -- 17.6.7 Nonlinear Properties of Inertial Convection -- 17.7 Inertial Convection: Axisymmetric Torsional Oscillation -- 18 Convection in Rotating Cylinders -- 18.1 Formulation -- 18.2 Convection with Stress-free Condition -- 18.2.1 Asymptotic Solution for Inertial Convection -- 18.2.2 Asymptotic Solution for Viscous Convection -- 18.2.3 Numerical Solution Using a Chebyshev-tau Method -- 18.2.4 Comparison: Analytical vs. Numerical -- 18.3 Convection with No-slip Condition -- 18.3.1 Asymptotic Solution for Inertial Convection -- 18.3.2 Asymptotic Solution for Viscous Convection -- 18.3.3 Numerical Solution Using a Galerkin-type Method -- 18.3.4 Comparison: Analytical vs. Numerical -- 18.3.5 Effect of Thermal Boundary Condition -- 18.3.6 Axisymmetric Inertial Convection -- 18.4 Transition to Weakly Turbulent Convection -- 18.4.1 A Finite Element Method for Nonlinear Convection -- 18.4.2 Inertial Convection: From Single Inertial Mode to Weak Turbulence.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">18.4.3 Viscous Convection: From Sidewall-localized Mode to Weak Turbulence -- 19 Convection in Rotating Spheres or Spherical Shells -- 19.1 Formulation -- 19.2 Numerical Solution using Toroidal/Poloidal Decomposition -- 19.2.1 Governing Equations under Toroidal/Poloidal Decomposition -- 19.2.2 Numerical Analysis for Stress-free or No-slip Condition -- 19.2.3 Several Numerical Solutions for 0 < Ek << 1 -- 19.2.4 Nonlinear Effects: Differential Rotation -- 19.3 Local Asymptotic Solution: A Small-gap Annular Model -- 19.3.1 The Local and Quasi-geostrophic Approximation -- 19.3.2 Asymptotic Relation for 0 < Ek << 1 -- 19.3.3 Comparison: Asymptotic vs. Numerical -- 19.4 Global Asymptotic Solution with Stress-free Condition -- 19.4.1 Hypotheses for Asymptotic Analysis -- 19.4.2 Asymptotic Analysis for Inertial Convection -- 19.4.3 Several Analytical Solutions for Inertial Convection -- 19.4.4 Differential Rotation Cannot be Sustained by Inertial Convection -- 19.4.5 Asymptotic Analysis for Viscous Convection -- 19.4.6 Typical Asymptotic Solutions for Viscous Convection -- 19.4.7 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.5 Global Asymptotic Solution with No-slip Condition -- 19.5.1 Hypotheses for Asymptotic Analysis -- 19.5.2 Asymptotic Analysis for Inertial Convection -- 19.5.3 Several Analytical Solutions for Inertial Convection -- 19.5.4 Asymptotic Analysis for Viscous Convection -- 19.5.5 Several Asymptotic Solutions for Viscous Convection -- 19.5.6 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.6 Transition to Weakly Turbulent Convection -- 19.6.1 A Finite-Element Method for Rotating Spheres -- 19.6.2 Transition to Weak Turbulence in Rotating Spheres -- 19.6.3 A Finite Difference Method for Rotating Spherical Shells -- 19.6.4 Multiple Stable Nonlinear Equilibria in Slowly Rotating Thin Spherical Shells.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Rotating masses of fluid.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85115489</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fluid mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85049383</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fluid dynamics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85049376</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Hydrodynamics</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D057446</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Masses de fluide rotatives.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique des fluides.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique des fluides.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Hydraulics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dinámica de fluidos</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fluid dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fluid mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rotating masses of fluid</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Xinhao.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2017023669</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Theory and modeling of rotating fluids (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGrMm4h4MpQf3dh6MVGVfq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9780521850094</subfield><subfield code="z">0521850096</subfield><subfield code="w">(DLC) 2017004135</subfield><subfield code="w">(OCoLC)984511655</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge monographs on mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94094260</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512522</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34205205</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1512522</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38375127</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14561448</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14580437</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn990033383 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:53Z |
institution | BVB |
isbn | 9781139024853 113902485X 9781108296472 1108296475 |
language | English |
oclc_num | 990033383 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge monographs on mechanics. |
series2 | Cambridge monographs on mechanics |
spelling | Zhang, Keke, author. http://id.loc.gov/authorities/names/n2002162779 Theory and modeling of rotating fluids : convection, inertial waves, and precession / Keke Zhang, University of Exeter, Xinhao Liao, Chinese Academy of Sciences. Cambridge : Cambridge University Press, 2017. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge monographs on mechanics Includes bibliographical references and index. A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research. Sufficient mathematical and numerical detail is provided in a variety of geometries such that the analysis and results can be readily reproduced, and many numerical tables are included to enable readers to compare or benchmark their own calculations. Traditionally, there are two disjointed topics in rotating fluids: convective fluid motion driven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession-driven flow, described by Greenspan (1968). Now, for the first time in book form, a unified theory is presented for three topics - thermal convection, inertial waves and precession-driven flow - to demonstrate that these seemingly complicated, and previously disconnected, problems become mathematically simple in the framework of an asymptotic approach that incorporates the essential characteristics of rotating fluids. 12.7 A Byproduct: The Viscous Decay Factor -- 13 Fluid Motion in Longitudinally Librating Spheres -- 13.1 Formulation -- 13.2 Asymptotic Solutions -- 13.2.1 Why Resonance Cannot Occur -- 13.2.2 Asymptotic Analysis -- 13.2.3 Three Fundamental Modes Excited -- 13.3 Linear Numerical Solution -- 13.4 Nonlinear Direct Numerical Simulation -- 14 Fluid Motion in Precessing Oblate Spheroids -- 14.1 Formulation -- 14.2 Inviscid Solution -- 14.3 Exact Nonlinear Solution -- 14.4 Viscous Solution -- 14.5 Properties of Nonlinear Precessing Flow -- 14.6 A Byproduct: The Viscous Decay Factor -- 15 Fluid Motion in Latitudinally Librating Spheroids -- 15.1 Formulation -- 15.2 Analytical Solution: Non-resonant Librating Flow -- 15.3 Analytical Solution: Resonant Librating Flow -- 15.4 Nonlinear Direct Numerical Simulation -- 15.5 Comparison: Analytical vs. Numerical -- Part 4 Convection in Uniformly Rotating Systems -- 16 Introduction -- 16.1 Rotating Convection vs. Precession/Libration -- 16.2 Key Parameters for Rotating Convection -- 16.3 Rotational Constraint on Convection -- 16.4 Types of Rotating Convection -- 16.4.1 Viscous Convection Mode -- 16.4.2 Inertial Convection Mode -- 16.4.3 Transitional Convection Mode -- 16.5 Convection in Various Rotating Geometries -- 16.5.1 Rotating Annular Channels -- 16.5.2 Rotating Circular Cylinders -- 16.5.3 Rotating Spheres or Spherical Shells -- 17 Convection in Rotating Narrow-gap Annuli -- 17.1 Formulation -- 17.2 A Finite-difference Method for Nonlinear Convection -- 17.3 Stationary Viscous Convection -- 17.3.1 Governing Equations -- 17.3.2 Asymptotic Solution for Î#x93;(Ta)1/6 1/6 = O(1) -- 17.3.4 Numerical Solution Using a Galerkin-tau Method -- 17.3.5 Comparison: Analytical vs. Numerical -- 17.3.6 Nonlinear Properties of Stationary Convection. 17.4 Oscillatory Viscous Convection -- 17.4.1 Governing Equations -- 17.4.2 Symmetry between Two Different Oscillatory Solutions -- 17.4.3 Asymptotic Solutions Satisfying the Boundary Condition -- 17.4.4 Comparison: Analytical vs. Numerical -- 17.4.5 Comparison with an Unbounded Rotating Layer -- 17.4.6 Nonlinear Properties with Î#x93; = O(Ta-1/6) -- 17.4.7 Nonlinear Properties with Î#x93; >> O(Ta-1/6) -- 17.5 Viscous Convection with Curvature Effects -- 17.5.1 Onset of Viscous Convection -- 17.5.2 Nonlinear Properties of Viscous Convection -- 17.6 Inertial Convection: Non-axisymmetric Solutions -- 17.6.1 Asymptotic Expansion -- 17.6.2 Non-dissipative Thermal Inertial Wave -- 17.6.3 Asymptotic Solution with Stress-free Condition -- 17.6.4 Asymptotic Solution with No-slip Condition -- 17.6.5 Numerical Solution Using a Galerkin Spectral Method -- 17.6.6 Comparison: Analytical vs. Numerical -- 17.6.7 Nonlinear Properties of Inertial Convection -- 17.7 Inertial Convection: Axisymmetric Torsional Oscillation -- 18 Convection in Rotating Cylinders -- 18.1 Formulation -- 18.2 Convection with Stress-free Condition -- 18.2.1 Asymptotic Solution for Inertial Convection -- 18.2.2 Asymptotic Solution for Viscous Convection -- 18.2.3 Numerical Solution Using a Chebyshev-tau Method -- 18.2.4 Comparison: Analytical vs. Numerical -- 18.3 Convection with No-slip Condition -- 18.3.1 Asymptotic Solution for Inertial Convection -- 18.3.2 Asymptotic Solution for Viscous Convection -- 18.3.3 Numerical Solution Using a Galerkin-type Method -- 18.3.4 Comparison: Analytical vs. Numerical -- 18.3.5 Effect of Thermal Boundary Condition -- 18.3.6 Axisymmetric Inertial Convection -- 18.4 Transition to Weakly Turbulent Convection -- 18.4.1 A Finite Element Method for Nonlinear Convection -- 18.4.2 Inertial Convection: From Single Inertial Mode to Weak Turbulence. 18.4.3 Viscous Convection: From Sidewall-localized Mode to Weak Turbulence -- 19 Convection in Rotating Spheres or Spherical Shells -- 19.1 Formulation -- 19.2 Numerical Solution using Toroidal/Poloidal Decomposition -- 19.2.1 Governing Equations under Toroidal/Poloidal Decomposition -- 19.2.2 Numerical Analysis for Stress-free or No-slip Condition -- 19.2.3 Several Numerical Solutions for 0 < Ek << 1 -- 19.2.4 Nonlinear Effects: Differential Rotation -- 19.3 Local Asymptotic Solution: A Small-gap Annular Model -- 19.3.1 The Local and Quasi-geostrophic Approximation -- 19.3.2 Asymptotic Relation for 0 < Ek << 1 -- 19.3.3 Comparison: Asymptotic vs. Numerical -- 19.4 Global Asymptotic Solution with Stress-free Condition -- 19.4.1 Hypotheses for Asymptotic Analysis -- 19.4.2 Asymptotic Analysis for Inertial Convection -- 19.4.3 Several Analytical Solutions for Inertial Convection -- 19.4.4 Differential Rotation Cannot be Sustained by Inertial Convection -- 19.4.5 Asymptotic Analysis for Viscous Convection -- 19.4.6 Typical Asymptotic Solutions for Viscous Convection -- 19.4.7 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.5 Global Asymptotic Solution with No-slip Condition -- 19.5.1 Hypotheses for Asymptotic Analysis -- 19.5.2 Asymptotic Analysis for Inertial Convection -- 19.5.3 Several Analytical Solutions for Inertial Convection -- 19.5.4 Asymptotic Analysis for Viscous Convection -- 19.5.5 Several Asymptotic Solutions for Viscous Convection -- 19.5.6 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.6 Transition to Weakly Turbulent Convection -- 19.6.1 A Finite-Element Method for Rotating Spheres -- 19.6.2 Transition to Weak Turbulence in Rotating Spheres -- 19.6.3 A Finite Difference Method for Rotating Spherical Shells -- 19.6.4 Multiple Stable Nonlinear Equilibria in Slowly Rotating Thin Spherical Shells. Rotating masses of fluid. http://id.loc.gov/authorities/subjects/sh85115489 Fluid mechanics. http://id.loc.gov/authorities/subjects/sh85049383 Fluid dynamics. http://id.loc.gov/authorities/subjects/sh85049376 Hydrodynamics https://id.nlm.nih.gov/mesh/D057446 Masses de fluide rotatives. Mécanique des fluides. Dynamique des fluides. TECHNOLOGY & ENGINEERING Hydraulics. bisacsh Dinámica de fluidos embne Fluid dynamics fast Fluid mechanics fast Rotating masses of fluid fast Electronic books. Liao, Xinhao. http://id.loc.gov/authorities/names/n2017023669 has work: Theory and modeling of rotating fluids (Text) https://id.oclc.org/worldcat/entity/E39PCGrMm4h4MpQf3dh6MVGVfq https://id.oclc.org/worldcat/ontology/hasWork Print version: 9780521850094 0521850096 (DLC) 2017004135 (OCoLC)984511655 Cambridge monographs on mechanics. http://id.loc.gov/authorities/names/n94094260 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512522 Volltext |
spellingShingle | Zhang, Keke Theory and modeling of rotating fluids : convection, inertial waves, and precession / Cambridge monographs on mechanics. 12.7 A Byproduct: The Viscous Decay Factor -- 13 Fluid Motion in Longitudinally Librating Spheres -- 13.1 Formulation -- 13.2 Asymptotic Solutions -- 13.2.1 Why Resonance Cannot Occur -- 13.2.2 Asymptotic Analysis -- 13.2.3 Three Fundamental Modes Excited -- 13.3 Linear Numerical Solution -- 13.4 Nonlinear Direct Numerical Simulation -- 14 Fluid Motion in Precessing Oblate Spheroids -- 14.1 Formulation -- 14.2 Inviscid Solution -- 14.3 Exact Nonlinear Solution -- 14.4 Viscous Solution -- 14.5 Properties of Nonlinear Precessing Flow -- 14.6 A Byproduct: The Viscous Decay Factor -- 15 Fluid Motion in Latitudinally Librating Spheroids -- 15.1 Formulation -- 15.2 Analytical Solution: Non-resonant Librating Flow -- 15.3 Analytical Solution: Resonant Librating Flow -- 15.4 Nonlinear Direct Numerical Simulation -- 15.5 Comparison: Analytical vs. Numerical -- Part 4 Convection in Uniformly Rotating Systems -- 16 Introduction -- 16.1 Rotating Convection vs. Precession/Libration -- 16.2 Key Parameters for Rotating Convection -- 16.3 Rotational Constraint on Convection -- 16.4 Types of Rotating Convection -- 16.4.1 Viscous Convection Mode -- 16.4.2 Inertial Convection Mode -- 16.4.3 Transitional Convection Mode -- 16.5 Convection in Various Rotating Geometries -- 16.5.1 Rotating Annular Channels -- 16.5.2 Rotating Circular Cylinders -- 16.5.3 Rotating Spheres or Spherical Shells -- 17 Convection in Rotating Narrow-gap Annuli -- 17.1 Formulation -- 17.2 A Finite-difference Method for Nonlinear Convection -- 17.3 Stationary Viscous Convection -- 17.3.1 Governing Equations -- 17.3.2 Asymptotic Solution for Î#x93;(Ta)1/6 1/6 = O(1) -- 17.3.4 Numerical Solution Using a Galerkin-tau Method -- 17.3.5 Comparison: Analytical vs. Numerical -- 17.3.6 Nonlinear Properties of Stationary Convection. 17.4 Oscillatory Viscous Convection -- 17.4.1 Governing Equations -- 17.4.2 Symmetry between Two Different Oscillatory Solutions -- 17.4.3 Asymptotic Solutions Satisfying the Boundary Condition -- 17.4.4 Comparison: Analytical vs. Numerical -- 17.4.5 Comparison with an Unbounded Rotating Layer -- 17.4.6 Nonlinear Properties with Î#x93; = O(Ta-1/6) -- 17.4.7 Nonlinear Properties with Î#x93; >> O(Ta-1/6) -- 17.5 Viscous Convection with Curvature Effects -- 17.5.1 Onset of Viscous Convection -- 17.5.2 Nonlinear Properties of Viscous Convection -- 17.6 Inertial Convection: Non-axisymmetric Solutions -- 17.6.1 Asymptotic Expansion -- 17.6.2 Non-dissipative Thermal Inertial Wave -- 17.6.3 Asymptotic Solution with Stress-free Condition -- 17.6.4 Asymptotic Solution with No-slip Condition -- 17.6.5 Numerical Solution Using a Galerkin Spectral Method -- 17.6.6 Comparison: Analytical vs. Numerical -- 17.6.7 Nonlinear Properties of Inertial Convection -- 17.7 Inertial Convection: Axisymmetric Torsional Oscillation -- 18 Convection in Rotating Cylinders -- 18.1 Formulation -- 18.2 Convection with Stress-free Condition -- 18.2.1 Asymptotic Solution for Inertial Convection -- 18.2.2 Asymptotic Solution for Viscous Convection -- 18.2.3 Numerical Solution Using a Chebyshev-tau Method -- 18.2.4 Comparison: Analytical vs. Numerical -- 18.3 Convection with No-slip Condition -- 18.3.1 Asymptotic Solution for Inertial Convection -- 18.3.2 Asymptotic Solution for Viscous Convection -- 18.3.3 Numerical Solution Using a Galerkin-type Method -- 18.3.4 Comparison: Analytical vs. Numerical -- 18.3.5 Effect of Thermal Boundary Condition -- 18.3.6 Axisymmetric Inertial Convection -- 18.4 Transition to Weakly Turbulent Convection -- 18.4.1 A Finite Element Method for Nonlinear Convection -- 18.4.2 Inertial Convection: From Single Inertial Mode to Weak Turbulence. 18.4.3 Viscous Convection: From Sidewall-localized Mode to Weak Turbulence -- 19 Convection in Rotating Spheres or Spherical Shells -- 19.1 Formulation -- 19.2 Numerical Solution using Toroidal/Poloidal Decomposition -- 19.2.1 Governing Equations under Toroidal/Poloidal Decomposition -- 19.2.2 Numerical Analysis for Stress-free or No-slip Condition -- 19.2.3 Several Numerical Solutions for 0 < Ek << 1 -- 19.2.4 Nonlinear Effects: Differential Rotation -- 19.3 Local Asymptotic Solution: A Small-gap Annular Model -- 19.3.1 The Local and Quasi-geostrophic Approximation -- 19.3.2 Asymptotic Relation for 0 < Ek << 1 -- 19.3.3 Comparison: Asymptotic vs. Numerical -- 19.4 Global Asymptotic Solution with Stress-free Condition -- 19.4.1 Hypotheses for Asymptotic Analysis -- 19.4.2 Asymptotic Analysis for Inertial Convection -- 19.4.3 Several Analytical Solutions for Inertial Convection -- 19.4.4 Differential Rotation Cannot be Sustained by Inertial Convection -- 19.4.5 Asymptotic Analysis for Viscous Convection -- 19.4.6 Typical Asymptotic Solutions for Viscous Convection -- 19.4.7 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.5 Global Asymptotic Solution with No-slip Condition -- 19.5.1 Hypotheses for Asymptotic Analysis -- 19.5.2 Asymptotic Analysis for Inertial Convection -- 19.5.3 Several Analytical Solutions for Inertial Convection -- 19.5.4 Asymptotic Analysis for Viscous Convection -- 19.5.5 Several Asymptotic Solutions for Viscous Convection -- 19.5.6 Nonlinear Effects: Differential Rotation in Viscous Convection -- 19.6 Transition to Weakly Turbulent Convection -- 19.6.1 A Finite-Element Method for Rotating Spheres -- 19.6.2 Transition to Weak Turbulence in Rotating Spheres -- 19.6.3 A Finite Difference Method for Rotating Spherical Shells -- 19.6.4 Multiple Stable Nonlinear Equilibria in Slowly Rotating Thin Spherical Shells. Rotating masses of fluid. http://id.loc.gov/authorities/subjects/sh85115489 Fluid mechanics. http://id.loc.gov/authorities/subjects/sh85049383 Fluid dynamics. http://id.loc.gov/authorities/subjects/sh85049376 Hydrodynamics https://id.nlm.nih.gov/mesh/D057446 Masses de fluide rotatives. Mécanique des fluides. Dynamique des fluides. TECHNOLOGY & ENGINEERING Hydraulics. bisacsh Dinámica de fluidos embne Fluid dynamics fast Fluid mechanics fast Rotating masses of fluid fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85115489 http://id.loc.gov/authorities/subjects/sh85049383 http://id.loc.gov/authorities/subjects/sh85049376 https://id.nlm.nih.gov/mesh/D057446 |
title | Theory and modeling of rotating fluids : convection, inertial waves, and precession / |
title_auth | Theory and modeling of rotating fluids : convection, inertial waves, and precession / |
title_exact_search | Theory and modeling of rotating fluids : convection, inertial waves, and precession / |
title_full | Theory and modeling of rotating fluids : convection, inertial waves, and precession / Keke Zhang, University of Exeter, Xinhao Liao, Chinese Academy of Sciences. |
title_fullStr | Theory and modeling of rotating fluids : convection, inertial waves, and precession / Keke Zhang, University of Exeter, Xinhao Liao, Chinese Academy of Sciences. |
title_full_unstemmed | Theory and modeling of rotating fluids : convection, inertial waves, and precession / Keke Zhang, University of Exeter, Xinhao Liao, Chinese Academy of Sciences. |
title_short | Theory and modeling of rotating fluids : |
title_sort | theory and modeling of rotating fluids convection inertial waves and precession |
title_sub | convection, inertial waves, and precession / |
topic | Rotating masses of fluid. http://id.loc.gov/authorities/subjects/sh85115489 Fluid mechanics. http://id.loc.gov/authorities/subjects/sh85049383 Fluid dynamics. http://id.loc.gov/authorities/subjects/sh85049376 Hydrodynamics https://id.nlm.nih.gov/mesh/D057446 Masses de fluide rotatives. Mécanique des fluides. Dynamique des fluides. TECHNOLOGY & ENGINEERING Hydraulics. bisacsh Dinámica de fluidos embne Fluid dynamics fast Fluid mechanics fast Rotating masses of fluid fast |
topic_facet | Rotating masses of fluid. Fluid mechanics. Fluid dynamics. Hydrodynamics Masses de fluide rotatives. Mécanique des fluides. Dynamique des fluides. TECHNOLOGY & ENGINEERING Hydraulics. Dinámica de fluidos Fluid dynamics Fluid mechanics Rotating masses of fluid Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512522 |
work_keys_str_mv | AT zhangkeke theoryandmodelingofrotatingfluidsconvectioninertialwavesandprecession AT liaoxinhao theoryandmodelingofrotatingfluidsconvectioninertialwavesandprecession |