Ultracondensed matter by dynamic compression /:
This book clearly explains the processes of making ultracondensed matter using dynamic compression, and provides an overview of research in this field.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2017.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book clearly explains the processes of making ultracondensed matter using dynamic compression, and provides an overview of research in this field. |
Beschreibung: | 1 online resource (ix, 158 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781108230841 1108230849 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn986999698 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 170512s2017 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d YDX |d IDEBK |d EBLCP |d MERUC |d UIU |d OCLCQ |d MERER |d OCLCQ |d CDN |d COO |d CNCGM |d OCLCQ |d LVT |d TKN |d OCLCQ |d OCLCO |d OCL |d OCLCQ |d OCLCO |d TMA |d OCLCL |d OCLCQ |d SFB |d OCLCQ |d SXB | ||
019 | |a 987314576 | ||
020 | |a 9781108230841 |q (electronic bk.) | ||
020 | |a 1108230849 |q (electronic bk.) | ||
020 | |z 9780521519175 | ||
020 | |z 0521519179 | ||
035 | |a (OCoLC)986999698 |z (OCoLC)987314576 | ||
050 | 4 | |a QC173.454 |b .N45 2017eb | |
072 | 7 | |a SCI |x 024000 |2 bisacsh | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 055000 |2 bisacsh | |
082 | 7 | |a 530.4/1 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Nellis, W. J., |e author. |0 http://id.loc.gov/authorities/names/n80052959 | |
245 | 1 | 0 | |a Ultracondensed matter by dynamic compression / |c William Nellis, Harvard University, Massachusetts. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2017. | |
300 | |a 1 online resource (ix, 158 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed May 12, 2017). | |
520 | |a This book clearly explains the processes of making ultracondensed matter using dynamic compression, and provides an overview of research in this field. | ||
505 | 0 | |a Cover -- Half-title -- Title page -- Copyright information -- Table of contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Beyond Shock Compression: Tunable Thermodynamics -- 1.2 Cold, Warm and Hot Matter -- 1.3 Experimental Timescales -- 1.4 Thermal Equilibrium -- 1.5 Recent Accomplishments -- 1.5.1 Metallic Fluid Hydrogen (MFH) -- 1.5.2 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 1.5.3 General Issues in Planetary Science -- 1.5.4 General ''Atomic'' States of Warm Dense Fluids at Extreme Conditions in Exoplanets -- 1.5.5 Strong Transparent insulators and Shock-Induced Opacity -- 1.5.6 Inertial Confinement Fusion (ICF): Deuterium-Tritium Fuel -- 1.5.7 Potential Novel Materials: Metastable Solid Metallic Hydrogen (MSMH) and Others -- 1.6 Bibliography -- 2 Basics of Dynamic Compression -- 2.1 Shock Compression -- 2.1.1 Simple Shock Front on an Atomic Scale -- 2.1.2 Rankine-Hugoniot Equations -- 2.1.3 Shock-Pressure Release -- 2.1.4 Shock-Dissipation Energy -- 2.1.5 Shock-Impedance Matching -- 2.1.6 Error Bars of Shock-Compression Data -- 2.1.7 Limiting Shock Compression and Quasi-Isentropic Compression of an Ideal Gas -- 2.1.8 Adiabaticity, Thermal and Mass Diffusion and Chemical Corrosion -- 2.1.9 Strength and Shock Propagation -- 2.1.10 Thermal Equilibrium -- 2.1.11 Velocity of Sound -- 2.1.12 Decaying Shock Wave -- 2.1.13 Phase Transitions: Graphite-Diamond, CaF2 and Gd3Ga5O12 -- 2.1.14 Phase Crossovers: Liquid N2 and CO -- 2.1.15 Common us (up) of Hugoniots of Liquid Diatomics -- 2.1.16 Computer Simulations of Longitudinal Planar Shock Propagation -- 2.1.17 Radial Edge Effects -- 2.1.18 General Materials Effects -- 2.2 Quasi-Isentropic Multiple-Shock Compression -- 2.2.1 MFH by Quasi-Isentropic Compression -- 2.2.2 Interfacial Instabilities: Rayleigh-Taylor and Richtmyer-Meshkov. | |
505 | 8 | |a 2.2.3 Minimizing Interfacial ICF Instabilities: Multiple-Shock Compression -- 3 Generation of Dynamic Pressures -- 3.1 Two-Stage Light-Gas Gun -- 3.2 Mass Acceleration by Pulsed Power: Z Accelerator -- 3.3 Giant Pulsed Lasers -- 3.4 Quasi-Isentropic Cylindrical and Spherical Compressions -- 3.5 Static Compression: Diamond Anvil Cell -- 3.5.1 Diamond anvil cell (DAC) -- 3.5.2 Static Pressure Calibration -- 4 Brief History of High-Pressure Research: 1643 to 1968 -- 4.1 Evangelista Torricelli: 1643 -- 4.2 Blaise Pascal: Experimental Verification -- 4.3 Ideal-Gas Equation of State: 1660 to 1848 -- 4.4 Theoretical Concept of a Shock Wave: 1848 to 1910 -- 4.5 In the Beginning: Early 1940s -- 4.6 Experimental Development of Supersonic Hydrodynamics: 1940s to 1956 -- 4.7 P.W. Bridgman's Contributions to Dynamic Compression: 1956 to 1961 -- 4.8 Altshuler: The 1960s -- 4.9 A New Beginning -- 5 Rare Gas Fluids -- 5.1 Single-Shock Compression -- 5.2 Quasi-Isentropic Compression in Converging Cylindrical Geometry -- 5.3 Multiple-Shock Compression -- 6 Metallization of Fluid Hydrogen at 140 GPa -- 6.1 A Little History -- 6.2 What to Try? -- 6.3 Dynamic Compression of Liquid Hydrogen -- 6.3.1 Condensed H2 and D2 Samples -- 6.3.2 Tuning Thermodynamics -- 6.3.3 Electrical Conductivities of Dense Fluid H/D from 90 to 180 GPa -- 6.3.4 EOS of Dense Fluid Hydrogen Based on Shock-Compression Experiments -- 6.3.5 Nature of Metallic Fluid Hydrogen -- 6.4 Metallic Fluid H in a Diamond Anvil Cell -- 6.5 Metallic Solid H in a Diamond Anvil Cell -- 6.6 Dynamic Compression of Hydrogen: Z Accelerator -- 7 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 7.1 Chemical Compositions and Properties of Uranus and Neptune -- 7.2 Voyager 2's Uranus and Neptune -- 7.3 Dynamic Compression Experiments on Planetary Fluids. | |
505 | 8 | |a 7.3.1 Experimental Data for H2, He and Ices and Radial Density Distributions of U/N -- 7.3.2 Hydrogen and Water under Static Compression and Heating -- 7.4 Interiors of Uranus and Neptune -- 7.5 Earth's Magnetic Field -- 7.6 Magnetic Fields of Uranus and Neptune -- 7.7 Conclusions -- 8 Shock-Induced Opacity in Transparent Crystals -- 9 Metastable Solid Metallic Hydrogen (MSMH) -- 10 Warm Dense Matter at Shock Pressures up to 20 TPa (200 Mbar) -- 10.1 Analysis of Published Hugoniot Data from 0.3 to 20 TPa -- 10.2 Measured and Calculated Optical Reflectivities of GGG above 0.4 TPa -- 10.3 Universal State of Ultracondensed Matter and WDM: Atomic Fluids with MMC -- 10.4 Warm Dense Matter Analogue of Asymptotic Freedom of High Energy Physics -- References -- Index. | |
650 | 0 | |a Condensed matter. |0 http://id.loc.gov/authorities/subjects/sh85030765 | |
650 | 0 | |a Materials at high pressures. |0 http://id.loc.gov/authorities/subjects/sh85082088 | |
650 | 0 | |a High pressure (Science) |0 http://id.loc.gov/authorities/subjects/sh85060683 | |
650 | 0 | |a High pressure geosciences. |0 http://id.loc.gov/authorities/subjects/sh2012001071 | |
650 | 0 | |a High pressure (Technology) |0 http://id.loc.gov/authorities/subjects/sh85060685 | |
650 | 6 | |a Matière condensée. | |
650 | 6 | |a Matériaux à hautes pressions. | |
650 | 6 | |a Hautes pressions. | |
650 | 7 | |a SCIENCE |x Energy. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x General. |2 bisacsh | |
650 | 7 | |a High pressure (Technology) |2 fast | |
650 | 7 | |a Condensed matter |2 fast | |
650 | 7 | |a High pressure geosciences |2 fast | |
650 | 7 | |a High pressure (Science) |2 fast | |
650 | 7 | |a Materials at high pressures |2 fast | |
655 | 4 | |a Electronic book. | |
758 | |i has work: |a Ultracondensed matter by dynamic compression (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGCwfr7wD6HQ7WhdH8dG73 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Nellis, W.J. |t Ultracondensed matter by dynamic compression. |d Cambridge : Cambridge University Press, 2017 |z 9780521519175 |w (DLC) 2016054367 |w (OCoLC)964379019 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512514 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL5267185 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4857083 | ||
938 | |a EBSCOhost |b EBSC |n 1512514 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38222532 | ||
938 | |a YBP Library Services |b YANK |n 14681726 | ||
938 | |a YBP Library Services |b YANK |n 14554718 | ||
938 | |a YBP Library Services |b YANK |n 14417028 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn986999698 |
---|---|
_version_ | 1816882388902346754 |
adam_text | |
any_adam_object | |
author | Nellis, W. J. |
author_GND | http://id.loc.gov/authorities/names/n80052959 |
author_facet | Nellis, W. J. |
author_role | aut |
author_sort | Nellis, W. J. |
author_variant | w j n wj wjn |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.454 .N45 2017eb |
callnumber-search | QC173.454 .N45 2017eb |
callnumber-sort | QC 3173.454 N45 42017EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover -- Half-title -- Title page -- Copyright information -- Table of contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Beyond Shock Compression: Tunable Thermodynamics -- 1.2 Cold, Warm and Hot Matter -- 1.3 Experimental Timescales -- 1.4 Thermal Equilibrium -- 1.5 Recent Accomplishments -- 1.5.1 Metallic Fluid Hydrogen (MFH) -- 1.5.2 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 1.5.3 General Issues in Planetary Science -- 1.5.4 General ''Atomic'' States of Warm Dense Fluids at Extreme Conditions in Exoplanets -- 1.5.5 Strong Transparent insulators and Shock-Induced Opacity -- 1.5.6 Inertial Confinement Fusion (ICF): Deuterium-Tritium Fuel -- 1.5.7 Potential Novel Materials: Metastable Solid Metallic Hydrogen (MSMH) and Others -- 1.6 Bibliography -- 2 Basics of Dynamic Compression -- 2.1 Shock Compression -- 2.1.1 Simple Shock Front on an Atomic Scale -- 2.1.2 Rankine-Hugoniot Equations -- 2.1.3 Shock-Pressure Release -- 2.1.4 Shock-Dissipation Energy -- 2.1.5 Shock-Impedance Matching -- 2.1.6 Error Bars of Shock-Compression Data -- 2.1.7 Limiting Shock Compression and Quasi-Isentropic Compression of an Ideal Gas -- 2.1.8 Adiabaticity, Thermal and Mass Diffusion and Chemical Corrosion -- 2.1.9 Strength and Shock Propagation -- 2.1.10 Thermal Equilibrium -- 2.1.11 Velocity of Sound -- 2.1.12 Decaying Shock Wave -- 2.1.13 Phase Transitions: Graphite-Diamond, CaF2 and Gd3Ga5O12 -- 2.1.14 Phase Crossovers: Liquid N2 and CO -- 2.1.15 Common us (up) of Hugoniots of Liquid Diatomics -- 2.1.16 Computer Simulations of Longitudinal Planar Shock Propagation -- 2.1.17 Radial Edge Effects -- 2.1.18 General Materials Effects -- 2.2 Quasi-Isentropic Multiple-Shock Compression -- 2.2.1 MFH by Quasi-Isentropic Compression -- 2.2.2 Interfacial Instabilities: Rayleigh-Taylor and Richtmyer-Meshkov. 2.2.3 Minimizing Interfacial ICF Instabilities: Multiple-Shock Compression -- 3 Generation of Dynamic Pressures -- 3.1 Two-Stage Light-Gas Gun -- 3.2 Mass Acceleration by Pulsed Power: Z Accelerator -- 3.3 Giant Pulsed Lasers -- 3.4 Quasi-Isentropic Cylindrical and Spherical Compressions -- 3.5 Static Compression: Diamond Anvil Cell -- 3.5.1 Diamond anvil cell (DAC) -- 3.5.2 Static Pressure Calibration -- 4 Brief History of High-Pressure Research: 1643 to 1968 -- 4.1 Evangelista Torricelli: 1643 -- 4.2 Blaise Pascal: Experimental Verification -- 4.3 Ideal-Gas Equation of State: 1660 to 1848 -- 4.4 Theoretical Concept of a Shock Wave: 1848 to 1910 -- 4.5 In the Beginning: Early 1940s -- 4.6 Experimental Development of Supersonic Hydrodynamics: 1940s to 1956 -- 4.7 P.W. Bridgman's Contributions to Dynamic Compression: 1956 to 1961 -- 4.8 Altshuler: The 1960s -- 4.9 A New Beginning -- 5 Rare Gas Fluids -- 5.1 Single-Shock Compression -- 5.2 Quasi-Isentropic Compression in Converging Cylindrical Geometry -- 5.3 Multiple-Shock Compression -- 6 Metallization of Fluid Hydrogen at 140 GPa -- 6.1 A Little History -- 6.2 What to Try? -- 6.3 Dynamic Compression of Liquid Hydrogen -- 6.3.1 Condensed H2 and D2 Samples -- 6.3.2 Tuning Thermodynamics -- 6.3.3 Electrical Conductivities of Dense Fluid H/D from 90 to 180 GPa -- 6.3.4 EOS of Dense Fluid Hydrogen Based on Shock-Compression Experiments -- 6.3.5 Nature of Metallic Fluid Hydrogen -- 6.4 Metallic Fluid H in a Diamond Anvil Cell -- 6.5 Metallic Solid H in a Diamond Anvil Cell -- 6.6 Dynamic Compression of Hydrogen: Z Accelerator -- 7 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 7.1 Chemical Compositions and Properties of Uranus and Neptune -- 7.2 Voyager 2's Uranus and Neptune -- 7.3 Dynamic Compression Experiments on Planetary Fluids. 7.3.1 Experimental Data for H2, He and Ices and Radial Density Distributions of U/N -- 7.3.2 Hydrogen and Water under Static Compression and Heating -- 7.4 Interiors of Uranus and Neptune -- 7.5 Earth's Magnetic Field -- 7.6 Magnetic Fields of Uranus and Neptune -- 7.7 Conclusions -- 8 Shock-Induced Opacity in Transparent Crystals -- 9 Metastable Solid Metallic Hydrogen (MSMH) -- 10 Warm Dense Matter at Shock Pressures up to 20 TPa (200 Mbar) -- 10.1 Analysis of Published Hugoniot Data from 0.3 to 20 TPa -- 10.2 Measured and Calculated Optical Reflectivities of GGG above 0.4 TPa -- 10.3 Universal State of Ultracondensed Matter and WDM: Atomic Fluids with MMC -- 10.4 Warm Dense Matter Analogue of Asymptotic Freedom of High Energy Physics -- References -- Index. |
ctrlnum | (OCoLC)986999698 |
dewey-full | 530.4/1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/1 |
dewey-search | 530.4/1 |
dewey-sort | 3530.4 11 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08000cam a2200745 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn986999698</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">170512s2017 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDN</subfield><subfield code="d">COO</subfield><subfield code="d">CNCGM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">987314576</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108230841</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108230849</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521519175</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521519179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)986999698</subfield><subfield code="z">(OCoLC)987314576</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC173.454</subfield><subfield code="b">.N45 2017eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">024000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">055000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.4/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nellis, W. J.,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80052959</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultracondensed matter by dynamic compression /</subfield><subfield code="c">William Nellis, Harvard University, Massachusetts.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 158 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed May 12, 2017).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book clearly explains the processes of making ultracondensed matter using dynamic compression, and provides an overview of research in this field.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Half-title -- Title page -- Copyright information -- Table of contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Beyond Shock Compression: Tunable Thermodynamics -- 1.2 Cold, Warm and Hot Matter -- 1.3 Experimental Timescales -- 1.4 Thermal Equilibrium -- 1.5 Recent Accomplishments -- 1.5.1 Metallic Fluid Hydrogen (MFH) -- 1.5.2 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 1.5.3 General Issues in Planetary Science -- 1.5.4 General ''Atomic'' States of Warm Dense Fluids at Extreme Conditions in Exoplanets -- 1.5.5 Strong Transparent insulators and Shock-Induced Opacity -- 1.5.6 Inertial Confinement Fusion (ICF): Deuterium-Tritium Fuel -- 1.5.7 Potential Novel Materials: Metastable Solid Metallic Hydrogen (MSMH) and Others -- 1.6 Bibliography -- 2 Basics of Dynamic Compression -- 2.1 Shock Compression -- 2.1.1 Simple Shock Front on an Atomic Scale -- 2.1.2 Rankine-Hugoniot Equations -- 2.1.3 Shock-Pressure Release -- 2.1.4 Shock-Dissipation Energy -- 2.1.5 Shock-Impedance Matching -- 2.1.6 Error Bars of Shock-Compression Data -- 2.1.7 Limiting Shock Compression and Quasi-Isentropic Compression of an Ideal Gas -- 2.1.8 Adiabaticity, Thermal and Mass Diffusion and Chemical Corrosion -- 2.1.9 Strength and Shock Propagation -- 2.1.10 Thermal Equilibrium -- 2.1.11 Velocity of Sound -- 2.1.12 Decaying Shock Wave -- 2.1.13 Phase Transitions: Graphite-Diamond, CaF2 and Gd3Ga5O12 -- 2.1.14 Phase Crossovers: Liquid N2 and CO -- 2.1.15 Common us (up) of Hugoniots of Liquid Diatomics -- 2.1.16 Computer Simulations of Longitudinal Planar Shock Propagation -- 2.1.17 Radial Edge Effects -- 2.1.18 General Materials Effects -- 2.2 Quasi-Isentropic Multiple-Shock Compression -- 2.2.1 MFH by Quasi-Isentropic Compression -- 2.2.2 Interfacial Instabilities: Rayleigh-Taylor and Richtmyer-Meshkov.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.3 Minimizing Interfacial ICF Instabilities: Multiple-Shock Compression -- 3 Generation of Dynamic Pressures -- 3.1 Two-Stage Light-Gas Gun -- 3.2 Mass Acceleration by Pulsed Power: Z Accelerator -- 3.3 Giant Pulsed Lasers -- 3.4 Quasi-Isentropic Cylindrical and Spherical Compressions -- 3.5 Static Compression: Diamond Anvil Cell -- 3.5.1 Diamond anvil cell (DAC) -- 3.5.2 Static Pressure Calibration -- 4 Brief History of High-Pressure Research: 1643 to 1968 -- 4.1 Evangelista Torricelli: 1643 -- 4.2 Blaise Pascal: Experimental Verification -- 4.3 Ideal-Gas Equation of State: 1660 to 1848 -- 4.4 Theoretical Concept of a Shock Wave: 1848 to 1910 -- 4.5 In the Beginning: Early 1940s -- 4.6 Experimental Development of Supersonic Hydrodynamics: 1940s to 1956 -- 4.7 P.W. Bridgman's Contributions to Dynamic Compression: 1956 to 1961 -- 4.8 Altshuler: The 1960s -- 4.9 A New Beginning -- 5 Rare Gas Fluids -- 5.1 Single-Shock Compression -- 5.2 Quasi-Isentropic Compression in Converging Cylindrical Geometry -- 5.3 Multiple-Shock Compression -- 6 Metallization of Fluid Hydrogen at 140 GPa -- 6.1 A Little History -- 6.2 What to Try? -- 6.3 Dynamic Compression of Liquid Hydrogen -- 6.3.1 Condensed H2 and D2 Samples -- 6.3.2 Tuning Thermodynamics -- 6.3.3 Electrical Conductivities of Dense Fluid H/D from 90 to 180 GPa -- 6.3.4 EOS of Dense Fluid Hydrogen Based on Shock-Compression Experiments -- 6.3.5 Nature of Metallic Fluid Hydrogen -- 6.4 Metallic Fluid H in a Diamond Anvil Cell -- 6.5 Metallic Solid H in a Diamond Anvil Cell -- 6.6 Dynamic Compression of Hydrogen: Z Accelerator -- 7 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 7.1 Chemical Compositions and Properties of Uranus and Neptune -- 7.2 Voyager 2's Uranus and Neptune -- 7.3 Dynamic Compression Experiments on Planetary Fluids.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.3.1 Experimental Data for H2, He and Ices and Radial Density Distributions of U/N -- 7.3.2 Hydrogen and Water under Static Compression and Heating -- 7.4 Interiors of Uranus and Neptune -- 7.5 Earth's Magnetic Field -- 7.6 Magnetic Fields of Uranus and Neptune -- 7.7 Conclusions -- 8 Shock-Induced Opacity in Transparent Crystals -- 9 Metastable Solid Metallic Hydrogen (MSMH) -- 10 Warm Dense Matter at Shock Pressures up to 20 TPa (200 Mbar) -- 10.1 Analysis of Published Hugoniot Data from 0.3 to 20 TPa -- 10.2 Measured and Calculated Optical Reflectivities of GGG above 0.4 TPa -- 10.3 Universal State of Ultracondensed Matter and WDM: Atomic Fluids with MMC -- 10.4 Warm Dense Matter Analogue of Asymptotic Freedom of High Energy Physics -- References -- Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Condensed matter.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85030765</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Materials at high pressures.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082088</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">High pressure (Science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85060683</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">High pressure geosciences.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2012001071</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">High pressure (Technology)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85060685</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matière condensée.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matériaux à hautes pressions.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Hautes pressions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Energy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High pressure (Technology)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Condensed matter</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High pressure geosciences</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High pressure (Science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Materials at high pressures</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Ultracondensed matter by dynamic compression (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGCwfr7wD6HQ7WhdH8dG73</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Nellis, W.J.</subfield><subfield code="t">Ultracondensed matter by dynamic compression.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2017</subfield><subfield code="z">9780521519175</subfield><subfield code="w">(DLC) 2016054367</subfield><subfield code="w">(OCoLC)964379019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512514</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5267185</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4857083</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1512514</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38222532</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14681726</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14554718</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14417028</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-ocn986999698 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:27:49Z |
institution | BVB |
isbn | 9781108230841 1108230849 |
language | English |
oclc_num | 986999698 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 158 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Nellis, W. J., author. http://id.loc.gov/authorities/names/n80052959 Ultracondensed matter by dynamic compression / William Nellis, Harvard University, Massachusetts. Cambridge : Cambridge University Press, 2017. 1 online resource (ix, 158 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Online resource; title from PDF title page (EBSCO, viewed May 12, 2017). This book clearly explains the processes of making ultracondensed matter using dynamic compression, and provides an overview of research in this field. Cover -- Half-title -- Title page -- Copyright information -- Table of contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Beyond Shock Compression: Tunable Thermodynamics -- 1.2 Cold, Warm and Hot Matter -- 1.3 Experimental Timescales -- 1.4 Thermal Equilibrium -- 1.5 Recent Accomplishments -- 1.5.1 Metallic Fluid Hydrogen (MFH) -- 1.5.2 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 1.5.3 General Issues in Planetary Science -- 1.5.4 General ''Atomic'' States of Warm Dense Fluids at Extreme Conditions in Exoplanets -- 1.5.5 Strong Transparent insulators and Shock-Induced Opacity -- 1.5.6 Inertial Confinement Fusion (ICF): Deuterium-Tritium Fuel -- 1.5.7 Potential Novel Materials: Metastable Solid Metallic Hydrogen (MSMH) and Others -- 1.6 Bibliography -- 2 Basics of Dynamic Compression -- 2.1 Shock Compression -- 2.1.1 Simple Shock Front on an Atomic Scale -- 2.1.2 Rankine-Hugoniot Equations -- 2.1.3 Shock-Pressure Release -- 2.1.4 Shock-Dissipation Energy -- 2.1.5 Shock-Impedance Matching -- 2.1.6 Error Bars of Shock-Compression Data -- 2.1.7 Limiting Shock Compression and Quasi-Isentropic Compression of an Ideal Gas -- 2.1.8 Adiabaticity, Thermal and Mass Diffusion and Chemical Corrosion -- 2.1.9 Strength and Shock Propagation -- 2.1.10 Thermal Equilibrium -- 2.1.11 Velocity of Sound -- 2.1.12 Decaying Shock Wave -- 2.1.13 Phase Transitions: Graphite-Diamond, CaF2 and Gd3Ga5O12 -- 2.1.14 Phase Crossovers: Liquid N2 and CO -- 2.1.15 Common us (up) of Hugoniots of Liquid Diatomics -- 2.1.16 Computer Simulations of Longitudinal Planar Shock Propagation -- 2.1.17 Radial Edge Effects -- 2.1.18 General Materials Effects -- 2.2 Quasi-Isentropic Multiple-Shock Compression -- 2.2.1 MFH by Quasi-Isentropic Compression -- 2.2.2 Interfacial Instabilities: Rayleigh-Taylor and Richtmyer-Meshkov. 2.2.3 Minimizing Interfacial ICF Instabilities: Multiple-Shock Compression -- 3 Generation of Dynamic Pressures -- 3.1 Two-Stage Light-Gas Gun -- 3.2 Mass Acceleration by Pulsed Power: Z Accelerator -- 3.3 Giant Pulsed Lasers -- 3.4 Quasi-Isentropic Cylindrical and Spherical Compressions -- 3.5 Static Compression: Diamond Anvil Cell -- 3.5.1 Diamond anvil cell (DAC) -- 3.5.2 Static Pressure Calibration -- 4 Brief History of High-Pressure Research: 1643 to 1968 -- 4.1 Evangelista Torricelli: 1643 -- 4.2 Blaise Pascal: Experimental Verification -- 4.3 Ideal-Gas Equation of State: 1660 to 1848 -- 4.4 Theoretical Concept of a Shock Wave: 1848 to 1910 -- 4.5 In the Beginning: Early 1940s -- 4.6 Experimental Development of Supersonic Hydrodynamics: 1940s to 1956 -- 4.7 P.W. Bridgman's Contributions to Dynamic Compression: 1956 to 1961 -- 4.8 Altshuler: The 1960s -- 4.9 A New Beginning -- 5 Rare Gas Fluids -- 5.1 Single-Shock Compression -- 5.2 Quasi-Isentropic Compression in Converging Cylindrical Geometry -- 5.3 Multiple-Shock Compression -- 6 Metallization of Fluid Hydrogen at 140 GPa -- 6.1 A Little History -- 6.2 What to Try? -- 6.3 Dynamic Compression of Liquid Hydrogen -- 6.3.1 Condensed H2 and D2 Samples -- 6.3.2 Tuning Thermodynamics -- 6.3.3 Electrical Conductivities of Dense Fluid H/D from 90 to 180 GPa -- 6.3.4 EOS of Dense Fluid Hydrogen Based on Shock-Compression Experiments -- 6.3.5 Nature of Metallic Fluid Hydrogen -- 6.4 Metallic Fluid H in a Diamond Anvil Cell -- 6.5 Metallic Solid H in a Diamond Anvil Cell -- 6.6 Dynamic Compression of Hydrogen: Z Accelerator -- 7 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 7.1 Chemical Compositions and Properties of Uranus and Neptune -- 7.2 Voyager 2's Uranus and Neptune -- 7.3 Dynamic Compression Experiments on Planetary Fluids. 7.3.1 Experimental Data for H2, He and Ices and Radial Density Distributions of U/N -- 7.3.2 Hydrogen and Water under Static Compression and Heating -- 7.4 Interiors of Uranus and Neptune -- 7.5 Earth's Magnetic Field -- 7.6 Magnetic Fields of Uranus and Neptune -- 7.7 Conclusions -- 8 Shock-Induced Opacity in Transparent Crystals -- 9 Metastable Solid Metallic Hydrogen (MSMH) -- 10 Warm Dense Matter at Shock Pressures up to 20 TPa (200 Mbar) -- 10.1 Analysis of Published Hugoniot Data from 0.3 to 20 TPa -- 10.2 Measured and Calculated Optical Reflectivities of GGG above 0.4 TPa -- 10.3 Universal State of Ultracondensed Matter and WDM: Atomic Fluids with MMC -- 10.4 Warm Dense Matter Analogue of Asymptotic Freedom of High Energy Physics -- References -- Index. Condensed matter. http://id.loc.gov/authorities/subjects/sh85030765 Materials at high pressures. http://id.loc.gov/authorities/subjects/sh85082088 High pressure (Science) http://id.loc.gov/authorities/subjects/sh85060683 High pressure geosciences. http://id.loc.gov/authorities/subjects/sh2012001071 High pressure (Technology) http://id.loc.gov/authorities/subjects/sh85060685 Matière condensée. Matériaux à hautes pressions. Hautes pressions. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh High pressure (Technology) fast Condensed matter fast High pressure geosciences fast High pressure (Science) fast Materials at high pressures fast Electronic book. has work: Ultracondensed matter by dynamic compression (Text) https://id.oclc.org/worldcat/entity/E39PCGCwfr7wD6HQ7WhdH8dG73 https://id.oclc.org/worldcat/ontology/hasWork Print version: Nellis, W.J. Ultracondensed matter by dynamic compression. Cambridge : Cambridge University Press, 2017 9780521519175 (DLC) 2016054367 (OCoLC)964379019 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512514 Volltext |
spellingShingle | Nellis, W. J. Ultracondensed matter by dynamic compression / Cover -- Half-title -- Title page -- Copyright information -- Table of contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Beyond Shock Compression: Tunable Thermodynamics -- 1.2 Cold, Warm and Hot Matter -- 1.3 Experimental Timescales -- 1.4 Thermal Equilibrium -- 1.5 Recent Accomplishments -- 1.5.1 Metallic Fluid Hydrogen (MFH) -- 1.5.2 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 1.5.3 General Issues in Planetary Science -- 1.5.4 General ''Atomic'' States of Warm Dense Fluids at Extreme Conditions in Exoplanets -- 1.5.5 Strong Transparent insulators and Shock-Induced Opacity -- 1.5.6 Inertial Confinement Fusion (ICF): Deuterium-Tritium Fuel -- 1.5.7 Potential Novel Materials: Metastable Solid Metallic Hydrogen (MSMH) and Others -- 1.6 Bibliography -- 2 Basics of Dynamic Compression -- 2.1 Shock Compression -- 2.1.1 Simple Shock Front on an Atomic Scale -- 2.1.2 Rankine-Hugoniot Equations -- 2.1.3 Shock-Pressure Release -- 2.1.4 Shock-Dissipation Energy -- 2.1.5 Shock-Impedance Matching -- 2.1.6 Error Bars of Shock-Compression Data -- 2.1.7 Limiting Shock Compression and Quasi-Isentropic Compression of an Ideal Gas -- 2.1.8 Adiabaticity, Thermal and Mass Diffusion and Chemical Corrosion -- 2.1.9 Strength and Shock Propagation -- 2.1.10 Thermal Equilibrium -- 2.1.11 Velocity of Sound -- 2.1.12 Decaying Shock Wave -- 2.1.13 Phase Transitions: Graphite-Diamond, CaF2 and Gd3Ga5O12 -- 2.1.14 Phase Crossovers: Liquid N2 and CO -- 2.1.15 Common us (up) of Hugoniots of Liquid Diatomics -- 2.1.16 Computer Simulations of Longitudinal Planar Shock Propagation -- 2.1.17 Radial Edge Effects -- 2.1.18 General Materials Effects -- 2.2 Quasi-Isentropic Multiple-Shock Compression -- 2.2.1 MFH by Quasi-Isentropic Compression -- 2.2.2 Interfacial Instabilities: Rayleigh-Taylor and Richtmyer-Meshkov. 2.2.3 Minimizing Interfacial ICF Instabilities: Multiple-Shock Compression -- 3 Generation of Dynamic Pressures -- 3.1 Two-Stage Light-Gas Gun -- 3.2 Mass Acceleration by Pulsed Power: Z Accelerator -- 3.3 Giant Pulsed Lasers -- 3.4 Quasi-Isentropic Cylindrical and Spherical Compressions -- 3.5 Static Compression: Diamond Anvil Cell -- 3.5.1 Diamond anvil cell (DAC) -- 3.5.2 Static Pressure Calibration -- 4 Brief History of High-Pressure Research: 1643 to 1968 -- 4.1 Evangelista Torricelli: 1643 -- 4.2 Blaise Pascal: Experimental Verification -- 4.3 Ideal-Gas Equation of State: 1660 to 1848 -- 4.4 Theoretical Concept of a Shock Wave: 1848 to 1910 -- 4.5 In the Beginning: Early 1940s -- 4.6 Experimental Development of Supersonic Hydrodynamics: 1940s to 1956 -- 4.7 P.W. Bridgman's Contributions to Dynamic Compression: 1956 to 1961 -- 4.8 Altshuler: The 1960s -- 4.9 A New Beginning -- 5 Rare Gas Fluids -- 5.1 Single-Shock Compression -- 5.2 Quasi-Isentropic Compression in Converging Cylindrical Geometry -- 5.3 Multiple-Shock Compression -- 6 Metallization of Fluid Hydrogen at 140 GPa -- 6.1 A Little History -- 6.2 What to Try? -- 6.3 Dynamic Compression of Liquid Hydrogen -- 6.3.1 Condensed H2 and D2 Samples -- 6.3.2 Tuning Thermodynamics -- 6.3.3 Electrical Conductivities of Dense Fluid H/D from 90 to 180 GPa -- 6.3.4 EOS of Dense Fluid Hydrogen Based on Shock-Compression Experiments -- 6.3.5 Nature of Metallic Fluid Hydrogen -- 6.4 Metallic Fluid H in a Diamond Anvil Cell -- 6.5 Metallic Solid H in a Diamond Anvil Cell -- 6.6 Dynamic Compression of Hydrogen: Z Accelerator -- 7 Unusual Magnetic Fields of Uranus and Neptune: Metallic Fluid H -- 7.1 Chemical Compositions and Properties of Uranus and Neptune -- 7.2 Voyager 2's Uranus and Neptune -- 7.3 Dynamic Compression Experiments on Planetary Fluids. 7.3.1 Experimental Data for H2, He and Ices and Radial Density Distributions of U/N -- 7.3.2 Hydrogen and Water under Static Compression and Heating -- 7.4 Interiors of Uranus and Neptune -- 7.5 Earth's Magnetic Field -- 7.6 Magnetic Fields of Uranus and Neptune -- 7.7 Conclusions -- 8 Shock-Induced Opacity in Transparent Crystals -- 9 Metastable Solid Metallic Hydrogen (MSMH) -- 10 Warm Dense Matter at Shock Pressures up to 20 TPa (200 Mbar) -- 10.1 Analysis of Published Hugoniot Data from 0.3 to 20 TPa -- 10.2 Measured and Calculated Optical Reflectivities of GGG above 0.4 TPa -- 10.3 Universal State of Ultracondensed Matter and WDM: Atomic Fluids with MMC -- 10.4 Warm Dense Matter Analogue of Asymptotic Freedom of High Energy Physics -- References -- Index. Condensed matter. http://id.loc.gov/authorities/subjects/sh85030765 Materials at high pressures. http://id.loc.gov/authorities/subjects/sh85082088 High pressure (Science) http://id.loc.gov/authorities/subjects/sh85060683 High pressure geosciences. http://id.loc.gov/authorities/subjects/sh2012001071 High pressure (Technology) http://id.loc.gov/authorities/subjects/sh85060685 Matière condensée. Matériaux à hautes pressions. Hautes pressions. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh High pressure (Technology) fast Condensed matter fast High pressure geosciences fast High pressure (Science) fast Materials at high pressures fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85030765 http://id.loc.gov/authorities/subjects/sh85082088 http://id.loc.gov/authorities/subjects/sh85060683 http://id.loc.gov/authorities/subjects/sh2012001071 http://id.loc.gov/authorities/subjects/sh85060685 |
title | Ultracondensed matter by dynamic compression / |
title_auth | Ultracondensed matter by dynamic compression / |
title_exact_search | Ultracondensed matter by dynamic compression / |
title_full | Ultracondensed matter by dynamic compression / William Nellis, Harvard University, Massachusetts. |
title_fullStr | Ultracondensed matter by dynamic compression / William Nellis, Harvard University, Massachusetts. |
title_full_unstemmed | Ultracondensed matter by dynamic compression / William Nellis, Harvard University, Massachusetts. |
title_short | Ultracondensed matter by dynamic compression / |
title_sort | ultracondensed matter by dynamic compression |
topic | Condensed matter. http://id.loc.gov/authorities/subjects/sh85030765 Materials at high pressures. http://id.loc.gov/authorities/subjects/sh85082088 High pressure (Science) http://id.loc.gov/authorities/subjects/sh85060683 High pressure geosciences. http://id.loc.gov/authorities/subjects/sh2012001071 High pressure (Technology) http://id.loc.gov/authorities/subjects/sh85060685 Matière condensée. Matériaux à hautes pressions. Hautes pressions. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh High pressure (Technology) fast Condensed matter fast High pressure geosciences fast High pressure (Science) fast Materials at high pressures fast |
topic_facet | Condensed matter. Materials at high pressures. High pressure (Science) High pressure geosciences. High pressure (Technology) Matière condensée. Matériaux à hautes pressions. Hautes pressions. SCIENCE Energy. SCIENCE Mechanics General. SCIENCE Physics General. Condensed matter High pressure geosciences Materials at high pressures Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512514 |
work_keys_str_mv | AT nelliswj ultracondensedmatterbydynamiccompression |