Complex and hypercomplex analytic signals :: theory and applications /
Based on the bestselling Artech House classic title, Hilbert Transforms Signal Processing, this comprehensive new resource introduces complex and hypercomplex analytic signals and their applications. Professionals find in-depth explanations of the theory of multidimensional complex and hypercomplex...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Norwood, MA :
Artech House,
[2017]
|
Schriftenreihe: | Artech House signal processing library.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Based on the bestselling Artech House classic title, Hilbert Transforms Signal Processing, this comprehensive new resource introduces complex and hypercomplex analytic signals and their applications. Professionals find in-depth explanations of the theory of multidimensional complex and hypercomplex signals illustrated with numerous examples and followed by practical applications. The survey of chosen hypercomplex algebras and the orthants of the n-dimensional Cartesian space and single-orthant operators are explored. This book also covers topics including, the polar representation of analytic signals, quasi-analytic signals, the space-frequency of n-D complex and hypercomplex signals as well as the causality of signals. |
Beschreibung: | 7.2 Polar Representation of Complex Numbers. |
Beschreibung: | 1 online resource : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781630814380 1630814385 9781630811334 1630811335 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn986441993 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 170506s2017 maua ob 001 0 eng d | ||
010 | |a 2017288105 | ||
040 | |a EBLCP |b eng |e rda |e pn |c EBLCP |d YDX |d N$T |d MYG |d STF |d AGLDB |d ESU |d OCLCQ |d DEBSZ |d D6H |d OCLCQ |d VTS |d CUV |d OCLCQ |d UKAHL |d OCLCQ |d AJS |d VT2 |d IEEEE |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d UEJ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ | ||
015 | |a GBB702172 |2 bnb | ||
019 | |a 968273868 |a 985319152 |a 985344569 |a 985375786 |a 985491898 |a 986177790 |a 987037794 |a 1011019685 |a 1202540744 |a 1228601543 |a 1264974045 | ||
020 | |a 9781630814380 |q (electronic bk.) | ||
020 | |a 1630814385 |q (electronic bk.) | ||
020 | |a 9781630811334 | ||
020 | |a 1630811335 | ||
020 | |z 9781630811327 | ||
020 | |z 1630811327 | ||
035 | |a (OCoLC)986441993 |z (OCoLC)968273868 |z (OCoLC)985319152 |z (OCoLC)985344569 |z (OCoLC)985375786 |z (OCoLC)985491898 |z (OCoLC)986177790 |z (OCoLC)987037794 |z (OCoLC)1011019685 |z (OCoLC)1202540744 |z (OCoLC)1228601543 |z (OCoLC)1264974045 | ||
050 | 4 | |a TK5102.9 | |
072 | 7 | |a TEC |x 009070 |2 bisacsh | |
082 | 7 | |a 621.3822 | |
049 | |a MAIN | ||
100 | 1 | |a Hahn, Stefan L., |e author. | |
245 | 1 | 0 | |a Complex and hypercomplex analytic signals : |b theory and applications / |c Stefan L. Hahn, Kajetana M. Snopek. |
264 | 1 | |a Norwood, MA : |b Artech House, |c [2017] | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Artech House signal processing Library | |
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Complex and Hypercomplex Analytic Signals: Theory and Applications; Preface; Contents; 1 Introduction and Historical Background; 1.1 Introduction; 1.1.1 The Signal Domain Method; 1.1.2 The Frequency Domain Method; 1.2 A Historical Survey; References; 2 Survey of Chosen Hypercomplex Algebras; 2.1 Cayley-Dickson Algebras; 2.1.1 The Cayley-Dickson Construction; 2.1.2 The Cayley-Dickson algebra of quaternions; 2.1.3 The Cayley-Dickson Algebra of Octonions; 2.2 Selected Clifford Algebras; 2.2.1 The Clifford Algebra of Biquaternions; 2.2.2 The Clifford Algebra of Bioctonions. | |
505 | 8 | |a 2.3 Comparison of Algebras2.4 Applications of Hypercomplex Algebras in Signal Processing; 2.5 Summary; References; 3 Orthants of the n-Dimensional Cartesian Space and Single-Orthant Operators; 3.1 The Notion of an Orthant; 3.2 Single-Orthant Operators; 3.3 Decomposition of Real Functions into Even and Odd Terms; References; 4 Fourier Transformation in Analysis of n-Dimensional Signals; 4.1 Complex n-D Fourier Transformation; 4.1.1 Spectrum of a 1-D Real Signal in Terms of its Even and Odd Components; 4.1.2 Spectrum of a 2-D Real Signal in Terms of its Even and Odd Components. | |
505 | 8 | |a 4.1.3 Spectrum of a 3-D Real Signal in Terms of its Even and Odd Components4.2 Cayley-Dickson Fourier Transformation; 4.2.1 General Formulas; 4.2.2 Quaternion Fourier Spectrum in Terms of its Even and Odd Components; 4.2.3 Octonion Fourier Spectrum in Terms of its Even and Odd Components; 4.3 Relations Between Complex and Hypercomplex Fourier Transforms; 4.3.1 Relation Between QFT and 2D FT; 4.3.2 Relation Between OFT and 3D FT; 4.4 Survey of Applications of Complex and Hypercomplex Fourier Transformations; 4.4.1 Applications in the Domain of Analytic Signals; 4.5 Summary; References. | |
505 | 8 | |a 5 Complex and Hypercomplex Analytic Signals5.1 1-D Analytic Signals as Boundary Distributions of 1-D Analytic Functions; 5.2 The nD Analytic Signal; 5.2.1 The 2-D Complex Analytic Signals; 5.2.2 3-D Complex Analytic Signals; 5.3 Hypercomplex n-D Analytic Signals; 5.3.1 2-D Quaternion Signals; 5.3.2 3-D Hypercomplex Analytic Signals; 5.4 Monogenic 2-D Signals; 5.5 A Short Survey of the Notions of Analytic Signals with Single Orthant Spectra; 5.6 Survey of Application of nD Analytic Signals; 5.6.1 Applications Presented in Other Chapters of this Book. | |
505 | 8 | |a 5.6.2 Applications Described in Hahn's Book on Hilbert Transforms [7]5.6.3 Selected Applications; References; 6 Ranking of Analytic Signals; 6.1 Definition of a Suborthant; 6.1.1 Subquadrants in 2-D; 6.1.2 Suboctants in 3-D; 6.2 Ranking of Complex Analytic Signals; 6.2.1 Ranking of 2-D Complex Analytic Signals; 6.2.2 Ranking of 3-D Complex Analytic Signals; 6.3 Sanking of Hypercomplex Analytic Signals; 6.3.1 Ranking of 2-D Cayley-Dickson Analytic Signals; 6.3.2 Ranking of 3-D Cayley-Dickson Analytic Signals; 6.4 Summary; References; 7 Polar Representation of Analytic Signals; 7.1 Introduction. | |
500 | |a 7.2 Polar Representation of Complex Numbers. | ||
520 | |a Based on the bestselling Artech House classic title, Hilbert Transforms Signal Processing, this comprehensive new resource introduces complex and hypercomplex analytic signals and their applications. Professionals find in-depth explanations of the theory of multidimensional complex and hypercomplex signals illustrated with numerous examples and followed by practical applications. The survey of chosen hypercomplex algebras and the orthants of the n-dimensional Cartesian space and single-orthant operators are explored. This book also covers topics including, the polar representation of analytic signals, quasi-analytic signals, the space-frequency of n-D complex and hypercomplex signals as well as the causality of signals. | ||
650 | 0 | |a Signal processing. |0 http://id.loc.gov/authorities/subjects/sh85122397 | |
650 | 0 | |a Functions of complex variables. |0 http://id.loc.gov/authorities/subjects/sh85052356 | |
650 | 6 | |a Traitement du signal. | |
650 | 6 | |a Fonctions d'une variable complexe. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Mechanical. |2 bisacsh | |
650 | 7 | |a Functions of complex variables |2 fast | |
650 | 7 | |a Signal processing |2 fast | |
700 | 1 | |a Snopek, Kajetana M., |e author. | |
776 | 0 | 8 | |i Print version: |a Hahn, Stefan L. |t Complex and hypercomplex analytic signals. |d Boston : Artech House, [2017] |z 9781630811327 |w (DLC) 2017288105 |w (OCoLC)968791243 |
830 | 0 | |a Artech House signal processing library. |0 http://id.loc.gov/authorities/names/n97026952 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1511852 |3 Volltext |
938 | |a IEEE |b IEEE |n 9100928 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH32702665 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4845594 | ||
938 | |a EBSCOhost |b EBSC |n 1511852 | ||
938 | |a YBP Library Services |b YANK |n 14263791 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn986441993 |
---|---|
_version_ | 1816882388348698624 |
adam_text | |
any_adam_object | |
author | Hahn, Stefan L. Snopek, Kajetana M. |
author_facet | Hahn, Stefan L. Snopek, Kajetana M. |
author_role | aut aut |
author_sort | Hahn, Stefan L. |
author_variant | s l h sl slh k m s km kms |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK5102 |
callnumber-raw | TK5102.9 |
callnumber-search | TK5102.9 |
callnumber-sort | TK 45102.9 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | Complex and Hypercomplex Analytic Signals: Theory and Applications; Preface; Contents; 1 Introduction and Historical Background; 1.1 Introduction; 1.1.1 The Signal Domain Method; 1.1.2 The Frequency Domain Method; 1.2 A Historical Survey; References; 2 Survey of Chosen Hypercomplex Algebras; 2.1 Cayley-Dickson Algebras; 2.1.1 The Cayley-Dickson Construction; 2.1.2 The Cayley-Dickson algebra of quaternions; 2.1.3 The Cayley-Dickson Algebra of Octonions; 2.2 Selected Clifford Algebras; 2.2.1 The Clifford Algebra of Biquaternions; 2.2.2 The Clifford Algebra of Bioctonions. 2.3 Comparison of Algebras2.4 Applications of Hypercomplex Algebras in Signal Processing; 2.5 Summary; References; 3 Orthants of the n-Dimensional Cartesian Space and Single-Orthant Operators; 3.1 The Notion of an Orthant; 3.2 Single-Orthant Operators; 3.3 Decomposition of Real Functions into Even and Odd Terms; References; 4 Fourier Transformation in Analysis of n-Dimensional Signals; 4.1 Complex n-D Fourier Transformation; 4.1.1 Spectrum of a 1-D Real Signal in Terms of its Even and Odd Components; 4.1.2 Spectrum of a 2-D Real Signal in Terms of its Even and Odd Components. 4.1.3 Spectrum of a 3-D Real Signal in Terms of its Even and Odd Components4.2 Cayley-Dickson Fourier Transformation; 4.2.1 General Formulas; 4.2.2 Quaternion Fourier Spectrum in Terms of its Even and Odd Components; 4.2.3 Octonion Fourier Spectrum in Terms of its Even and Odd Components; 4.3 Relations Between Complex and Hypercomplex Fourier Transforms; 4.3.1 Relation Between QFT and 2D FT; 4.3.2 Relation Between OFT and 3D FT; 4.4 Survey of Applications of Complex and Hypercomplex Fourier Transformations; 4.4.1 Applications in the Domain of Analytic Signals; 4.5 Summary; References. 5 Complex and Hypercomplex Analytic Signals5.1 1-D Analytic Signals as Boundary Distributions of 1-D Analytic Functions; 5.2 The nD Analytic Signal; 5.2.1 The 2-D Complex Analytic Signals; 5.2.2 3-D Complex Analytic Signals; 5.3 Hypercomplex n-D Analytic Signals; 5.3.1 2-D Quaternion Signals; 5.3.2 3-D Hypercomplex Analytic Signals; 5.4 Monogenic 2-D Signals; 5.5 A Short Survey of the Notions of Analytic Signals with Single Orthant Spectra; 5.6 Survey of Application of nD Analytic Signals; 5.6.1 Applications Presented in Other Chapters of this Book. 5.6.2 Applications Described in Hahn's Book on Hilbert Transforms [7]5.6.3 Selected Applications; References; 6 Ranking of Analytic Signals; 6.1 Definition of a Suborthant; 6.1.1 Subquadrants in 2-D; 6.1.2 Suboctants in 3-D; 6.2 Ranking of Complex Analytic Signals; 6.2.1 Ranking of 2-D Complex Analytic Signals; 6.2.2 Ranking of 3-D Complex Analytic Signals; 6.3 Sanking of Hypercomplex Analytic Signals; 6.3.1 Ranking of 2-D Cayley-Dickson Analytic Signals; 6.3.2 Ranking of 3-D Cayley-Dickson Analytic Signals; 6.4 Summary; References; 7 Polar Representation of Analytic Signals; 7.1 Introduction. |
ctrlnum | (OCoLC)986441993 |
dewey-full | 621.3822 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3822 |
dewey-search | 621.3822 |
dewey-sort | 3621.3822 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06653cam a2200685 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn986441993</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">170506s2017 maua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2017288105</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">MYG</subfield><subfield code="d">STF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ESU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CUV</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">VT2</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB702172</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">968273868</subfield><subfield code="a">985319152</subfield><subfield code="a">985344569</subfield><subfield code="a">985375786</subfield><subfield code="a">985491898</subfield><subfield code="a">986177790</subfield><subfield code="a">987037794</subfield><subfield code="a">1011019685</subfield><subfield code="a">1202540744</subfield><subfield code="a">1228601543</subfield><subfield code="a">1264974045</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781630814380</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1630814385</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781630811334</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1630811335</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781630811327</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1630811327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)986441993</subfield><subfield code="z">(OCoLC)968273868</subfield><subfield code="z">(OCoLC)985319152</subfield><subfield code="z">(OCoLC)985344569</subfield><subfield code="z">(OCoLC)985375786</subfield><subfield code="z">(OCoLC)985491898</subfield><subfield code="z">(OCoLC)986177790</subfield><subfield code="z">(OCoLC)987037794</subfield><subfield code="z">(OCoLC)1011019685</subfield><subfield code="z">(OCoLC)1202540744</subfield><subfield code="z">(OCoLC)1228601543</subfield><subfield code="z">(OCoLC)1264974045</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK5102.9</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009070</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.3822</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hahn, Stefan L.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex and hypercomplex analytic signals :</subfield><subfield code="b">theory and applications /</subfield><subfield code="c">Stefan L. Hahn, Kajetana M. Snopek.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Norwood, MA :</subfield><subfield code="b">Artech House,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Artech House signal processing Library</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Complex and Hypercomplex Analytic Signals: Theory and Applications; Preface; Contents; 1 Introduction and Historical Background; 1.1 Introduction; 1.1.1 The Signal Domain Method; 1.1.2 The Frequency Domain Method; 1.2 A Historical Survey; References; 2 Survey of Chosen Hypercomplex Algebras; 2.1 Cayley-Dickson Algebras; 2.1.1 The Cayley-Dickson Construction; 2.1.2 The Cayley-Dickson algebra of quaternions; 2.1.3 The Cayley-Dickson Algebra of Octonions; 2.2 Selected Clifford Algebras; 2.2.1 The Clifford Algebra of Biquaternions; 2.2.2 The Clifford Algebra of Bioctonions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Comparison of Algebras2.4 Applications of Hypercomplex Algebras in Signal Processing; 2.5 Summary; References; 3 Orthants of the n-Dimensional Cartesian Space and Single-Orthant Operators; 3.1 The Notion of an Orthant; 3.2 Single-Orthant Operators; 3.3 Decomposition of Real Functions into Even and Odd Terms; References; 4 Fourier Transformation in Analysis of n-Dimensional Signals; 4.1 Complex n-D Fourier Transformation; 4.1.1 Spectrum of a 1-D Real Signal in Terms of its Even and Odd Components; 4.1.2 Spectrum of a 2-D Real Signal in Terms of its Even and Odd Components.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1.3 Spectrum of a 3-D Real Signal in Terms of its Even and Odd Components4.2 Cayley-Dickson Fourier Transformation; 4.2.1 General Formulas; 4.2.2 Quaternion Fourier Spectrum in Terms of its Even and Odd Components; 4.2.3 Octonion Fourier Spectrum in Terms of its Even and Odd Components; 4.3 Relations Between Complex and Hypercomplex Fourier Transforms; 4.3.1 Relation Between QFT and 2D FT; 4.3.2 Relation Between OFT and 3D FT; 4.4 Survey of Applications of Complex and Hypercomplex Fourier Transformations; 4.4.1 Applications in the Domain of Analytic Signals; 4.5 Summary; References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 Complex and Hypercomplex Analytic Signals5.1 1-D Analytic Signals as Boundary Distributions of 1-D Analytic Functions; 5.2 The nD Analytic Signal; 5.2.1 The 2-D Complex Analytic Signals; 5.2.2 3-D Complex Analytic Signals; 5.3 Hypercomplex n-D Analytic Signals; 5.3.1 2-D Quaternion Signals; 5.3.2 3-D Hypercomplex Analytic Signals; 5.4 Monogenic 2-D Signals; 5.5 A Short Survey of the Notions of Analytic Signals with Single Orthant Spectra; 5.6 Survey of Application of nD Analytic Signals; 5.6.1 Applications Presented in Other Chapters of this Book.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.6.2 Applications Described in Hahn's Book on Hilbert Transforms [7]5.6.3 Selected Applications; References; 6 Ranking of Analytic Signals; 6.1 Definition of a Suborthant; 6.1.1 Subquadrants in 2-D; 6.1.2 Suboctants in 3-D; 6.2 Ranking of Complex Analytic Signals; 6.2.1 Ranking of 2-D Complex Analytic Signals; 6.2.2 Ranking of 3-D Complex Analytic Signals; 6.3 Sanking of Hypercomplex Analytic Signals; 6.3.1 Ranking of 2-D Cayley-Dickson Analytic Signals; 6.3.2 Ranking of 3-D Cayley-Dickson Analytic Signals; 6.4 Summary; References; 7 Polar Representation of Analytic Signals; 7.1 Introduction.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.2 Polar Representation of Complex Numbers.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Based on the bestselling Artech House classic title, Hilbert Transforms Signal Processing, this comprehensive new resource introduces complex and hypercomplex analytic signals and their applications. Professionals find in-depth explanations of the theory of multidimensional complex and hypercomplex signals illustrated with numerous examples and followed by practical applications. The survey of chosen hypercomplex algebras and the orthants of the n-dimensional Cartesian space and single-orthant operators are explored. This book also covers topics including, the polar representation of analytic signals, quasi-analytic signals, the space-frequency of n-D complex and hypercomplex signals as well as the causality of signals.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Signal processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85122397</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions of complex variables.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052356</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Traitement du signal.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions d'une variable complexe.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Mechanical.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions of complex variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Signal processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Snopek, Kajetana M.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Hahn, Stefan L.</subfield><subfield code="t">Complex and hypercomplex analytic signals.</subfield><subfield code="d">Boston : Artech House, [2017]</subfield><subfield code="z">9781630811327</subfield><subfield code="w">(DLC) 2017288105</subfield><subfield code="w">(OCoLC)968791243</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Artech House signal processing library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97026952</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1511852</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">IEEE</subfield><subfield code="b">IEEE</subfield><subfield code="n">9100928</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH32702665</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4845594</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1511852</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14263791</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn986441993 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:27:49Z |
institution | BVB |
isbn | 9781630814380 1630814385 9781630811334 1630811335 |
language | English |
lccn | 2017288105 |
oclc_num | 986441993 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Artech House, |
record_format | marc |
series | Artech House signal processing library. |
series2 | Artech House signal processing Library |
spelling | Hahn, Stefan L., author. Complex and hypercomplex analytic signals : theory and applications / Stefan L. Hahn, Kajetana M. Snopek. Norwood, MA : Artech House, [2017] 1 online resource : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Artech House signal processing Library Print version record. Includes bibliographical references and index. Complex and Hypercomplex Analytic Signals: Theory and Applications; Preface; Contents; 1 Introduction and Historical Background; 1.1 Introduction; 1.1.1 The Signal Domain Method; 1.1.2 The Frequency Domain Method; 1.2 A Historical Survey; References; 2 Survey of Chosen Hypercomplex Algebras; 2.1 Cayley-Dickson Algebras; 2.1.1 The Cayley-Dickson Construction; 2.1.2 The Cayley-Dickson algebra of quaternions; 2.1.3 The Cayley-Dickson Algebra of Octonions; 2.2 Selected Clifford Algebras; 2.2.1 The Clifford Algebra of Biquaternions; 2.2.2 The Clifford Algebra of Bioctonions. 2.3 Comparison of Algebras2.4 Applications of Hypercomplex Algebras in Signal Processing; 2.5 Summary; References; 3 Orthants of the n-Dimensional Cartesian Space and Single-Orthant Operators; 3.1 The Notion of an Orthant; 3.2 Single-Orthant Operators; 3.3 Decomposition of Real Functions into Even and Odd Terms; References; 4 Fourier Transformation in Analysis of n-Dimensional Signals; 4.1 Complex n-D Fourier Transformation; 4.1.1 Spectrum of a 1-D Real Signal in Terms of its Even and Odd Components; 4.1.2 Spectrum of a 2-D Real Signal in Terms of its Even and Odd Components. 4.1.3 Spectrum of a 3-D Real Signal in Terms of its Even and Odd Components4.2 Cayley-Dickson Fourier Transformation; 4.2.1 General Formulas; 4.2.2 Quaternion Fourier Spectrum in Terms of its Even and Odd Components; 4.2.3 Octonion Fourier Spectrum in Terms of its Even and Odd Components; 4.3 Relations Between Complex and Hypercomplex Fourier Transforms; 4.3.1 Relation Between QFT and 2D FT; 4.3.2 Relation Between OFT and 3D FT; 4.4 Survey of Applications of Complex and Hypercomplex Fourier Transformations; 4.4.1 Applications in the Domain of Analytic Signals; 4.5 Summary; References. 5 Complex and Hypercomplex Analytic Signals5.1 1-D Analytic Signals as Boundary Distributions of 1-D Analytic Functions; 5.2 The nD Analytic Signal; 5.2.1 The 2-D Complex Analytic Signals; 5.2.2 3-D Complex Analytic Signals; 5.3 Hypercomplex n-D Analytic Signals; 5.3.1 2-D Quaternion Signals; 5.3.2 3-D Hypercomplex Analytic Signals; 5.4 Monogenic 2-D Signals; 5.5 A Short Survey of the Notions of Analytic Signals with Single Orthant Spectra; 5.6 Survey of Application of nD Analytic Signals; 5.6.1 Applications Presented in Other Chapters of this Book. 5.6.2 Applications Described in Hahn's Book on Hilbert Transforms [7]5.6.3 Selected Applications; References; 6 Ranking of Analytic Signals; 6.1 Definition of a Suborthant; 6.1.1 Subquadrants in 2-D; 6.1.2 Suboctants in 3-D; 6.2 Ranking of Complex Analytic Signals; 6.2.1 Ranking of 2-D Complex Analytic Signals; 6.2.2 Ranking of 3-D Complex Analytic Signals; 6.3 Sanking of Hypercomplex Analytic Signals; 6.3.1 Ranking of 2-D Cayley-Dickson Analytic Signals; 6.3.2 Ranking of 3-D Cayley-Dickson Analytic Signals; 6.4 Summary; References; 7 Polar Representation of Analytic Signals; 7.1 Introduction. 7.2 Polar Representation of Complex Numbers. Based on the bestselling Artech House classic title, Hilbert Transforms Signal Processing, this comprehensive new resource introduces complex and hypercomplex analytic signals and their applications. Professionals find in-depth explanations of the theory of multidimensional complex and hypercomplex signals illustrated with numerous examples and followed by practical applications. The survey of chosen hypercomplex algebras and the orthants of the n-dimensional Cartesian space and single-orthant operators are explored. This book also covers topics including, the polar representation of analytic signals, quasi-analytic signals, the space-frequency of n-D complex and hypercomplex signals as well as the causality of signals. Signal processing. http://id.loc.gov/authorities/subjects/sh85122397 Functions of complex variables. http://id.loc.gov/authorities/subjects/sh85052356 Traitement du signal. Fonctions d'une variable complexe. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Functions of complex variables fast Signal processing fast Snopek, Kajetana M., author. Print version: Hahn, Stefan L. Complex and hypercomplex analytic signals. Boston : Artech House, [2017] 9781630811327 (DLC) 2017288105 (OCoLC)968791243 Artech House signal processing library. http://id.loc.gov/authorities/names/n97026952 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1511852 Volltext |
spellingShingle | Hahn, Stefan L. Snopek, Kajetana M. Complex and hypercomplex analytic signals : theory and applications / Artech House signal processing library. Complex and Hypercomplex Analytic Signals: Theory and Applications; Preface; Contents; 1 Introduction and Historical Background; 1.1 Introduction; 1.1.1 The Signal Domain Method; 1.1.2 The Frequency Domain Method; 1.2 A Historical Survey; References; 2 Survey of Chosen Hypercomplex Algebras; 2.1 Cayley-Dickson Algebras; 2.1.1 The Cayley-Dickson Construction; 2.1.2 The Cayley-Dickson algebra of quaternions; 2.1.3 The Cayley-Dickson Algebra of Octonions; 2.2 Selected Clifford Algebras; 2.2.1 The Clifford Algebra of Biquaternions; 2.2.2 The Clifford Algebra of Bioctonions. 2.3 Comparison of Algebras2.4 Applications of Hypercomplex Algebras in Signal Processing; 2.5 Summary; References; 3 Orthants of the n-Dimensional Cartesian Space and Single-Orthant Operators; 3.1 The Notion of an Orthant; 3.2 Single-Orthant Operators; 3.3 Decomposition of Real Functions into Even and Odd Terms; References; 4 Fourier Transformation in Analysis of n-Dimensional Signals; 4.1 Complex n-D Fourier Transformation; 4.1.1 Spectrum of a 1-D Real Signal in Terms of its Even and Odd Components; 4.1.2 Spectrum of a 2-D Real Signal in Terms of its Even and Odd Components. 4.1.3 Spectrum of a 3-D Real Signal in Terms of its Even and Odd Components4.2 Cayley-Dickson Fourier Transformation; 4.2.1 General Formulas; 4.2.2 Quaternion Fourier Spectrum in Terms of its Even and Odd Components; 4.2.3 Octonion Fourier Spectrum in Terms of its Even and Odd Components; 4.3 Relations Between Complex and Hypercomplex Fourier Transforms; 4.3.1 Relation Between QFT and 2D FT; 4.3.2 Relation Between OFT and 3D FT; 4.4 Survey of Applications of Complex and Hypercomplex Fourier Transformations; 4.4.1 Applications in the Domain of Analytic Signals; 4.5 Summary; References. 5 Complex and Hypercomplex Analytic Signals5.1 1-D Analytic Signals as Boundary Distributions of 1-D Analytic Functions; 5.2 The nD Analytic Signal; 5.2.1 The 2-D Complex Analytic Signals; 5.2.2 3-D Complex Analytic Signals; 5.3 Hypercomplex n-D Analytic Signals; 5.3.1 2-D Quaternion Signals; 5.3.2 3-D Hypercomplex Analytic Signals; 5.4 Monogenic 2-D Signals; 5.5 A Short Survey of the Notions of Analytic Signals with Single Orthant Spectra; 5.6 Survey of Application of nD Analytic Signals; 5.6.1 Applications Presented in Other Chapters of this Book. 5.6.2 Applications Described in Hahn's Book on Hilbert Transforms [7]5.6.3 Selected Applications; References; 6 Ranking of Analytic Signals; 6.1 Definition of a Suborthant; 6.1.1 Subquadrants in 2-D; 6.1.2 Suboctants in 3-D; 6.2 Ranking of Complex Analytic Signals; 6.2.1 Ranking of 2-D Complex Analytic Signals; 6.2.2 Ranking of 3-D Complex Analytic Signals; 6.3 Sanking of Hypercomplex Analytic Signals; 6.3.1 Ranking of 2-D Cayley-Dickson Analytic Signals; 6.3.2 Ranking of 3-D Cayley-Dickson Analytic Signals; 6.4 Summary; References; 7 Polar Representation of Analytic Signals; 7.1 Introduction. Signal processing. http://id.loc.gov/authorities/subjects/sh85122397 Functions of complex variables. http://id.loc.gov/authorities/subjects/sh85052356 Traitement du signal. Fonctions d'une variable complexe. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Functions of complex variables fast Signal processing fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85122397 http://id.loc.gov/authorities/subjects/sh85052356 |
title | Complex and hypercomplex analytic signals : theory and applications / |
title_auth | Complex and hypercomplex analytic signals : theory and applications / |
title_exact_search | Complex and hypercomplex analytic signals : theory and applications / |
title_full | Complex and hypercomplex analytic signals : theory and applications / Stefan L. Hahn, Kajetana M. Snopek. |
title_fullStr | Complex and hypercomplex analytic signals : theory and applications / Stefan L. Hahn, Kajetana M. Snopek. |
title_full_unstemmed | Complex and hypercomplex analytic signals : theory and applications / Stefan L. Hahn, Kajetana M. Snopek. |
title_short | Complex and hypercomplex analytic signals : |
title_sort | complex and hypercomplex analytic signals theory and applications |
title_sub | theory and applications / |
topic | Signal processing. http://id.loc.gov/authorities/subjects/sh85122397 Functions of complex variables. http://id.loc.gov/authorities/subjects/sh85052356 Traitement du signal. Fonctions d'une variable complexe. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Functions of complex variables fast Signal processing fast |
topic_facet | Signal processing. Functions of complex variables. Traitement du signal. Fonctions d'une variable complexe. TECHNOLOGY & ENGINEERING Mechanical. Functions of complex variables Signal processing |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1511852 |
work_keys_str_mv | AT hahnstefanl complexandhypercomplexanalyticsignalstheoryandapplications AT snopekkajetanam complexandhypercomplexanalyticsignalstheoryandapplications |