Oscillations and Resonances.:
This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of charac...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin/Boston, UNITED STATES :
De Gruyter,
2017.
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications ;
v. 23/1. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena in the natural sciences. These include the outset of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering applications, and quantum systems. Apart from being of independent interest, such approximate solutions serve as a foolproof basis for testing numerical algorithms. This first volume presents asymptotic methods in oscillation and resonance problems described by ordinary differential equations, whereby the second volume will be devoted to applications of asymptotic methods in waves and boundary value problems. Contents Asymptotic expansions and series Asymptotic methods for solving nonlinear equations Nonlinear oscillator in potential well Autoresonances in nonlinear systems Asymptotics for loss of stability Systems of coupled oscillators. |
Beschreibung: | 1 online resource (357) : illustrations |
ISBN: | 3110335689 9783110335682 9783110382723 3110382725 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn985846032 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 170505s2017 maua o 000 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d YDX |d N$T |d OCLCF |d MERUC |d OCLCQ |d CUY |d COO |d DEGRU |d DEBBG |d OCLCQ |d IGB |d AUW |d BTN |d MHW |d INTCL |d SNK |d G3B |d S8I |d S8J |d STF |d D6H |d AGLDB |d U3W |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 984625916 |a 985944318 |a 986140486 |a 986403210 |a 992512966 | ||
020 | |a 3110335689 |q (ebk) | ||
020 | |a 9783110335682 | ||
020 | |a 9783110382723 | ||
020 | |a 3110382725 | ||
020 | |z 9783110335545 | ||
020 | |z 3110335549 | ||
024 | 7 | |a 10.1515/9783110335682 |2 doi | |
035 | |a (OCoLC)985846032 |z (OCoLC)984625916 |z (OCoLC)985944318 |z (OCoLC)986140486 |z (OCoLC)986403210 |z (OCoLC)992512966 | ||
037 | |a 1006342 |b MIL | ||
050 | 4 | |a QA321.5 |b .G54 2017 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.4 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Glebov, Sergey G. | |
245 | 1 | 0 | |a Oscillations and Resonances. |
260 | |a Berlin/Boston, UNITED STATES : |b De Gruyter, |c 2017. | ||
300 | |a 1 online resource (357) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a De Gruyter Series in Nonlinear Analysis and applications ; |v Volume 23/1 | |
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |t Frontmatter -- |t Preface -- |t Contents -- |t Introduction -- |t 1 Asymptotic expansions and series -- |t 2 Asymptotic methods for solving nonlinear equations -- |t 3 Perturbation of nonlinear oscillations -- |t 4 Nonlinear oscillator in potential well -- |t 5 Autoresonances in nonlinear systems -- |t 6 Asymptotics for loss of stability -- |t 7 Systems of coupled oscillators -- |t Bibliography -- |t Index. |
520 | |a This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena in the natural sciences. These include the outset of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering applications, and quantum systems. Apart from being of independent interest, such approximate solutions serve as a foolproof basis for testing numerical algorithms. This first volume presents asymptotic methods in oscillation and resonance problems described by ordinary differential equations, whereby the second volume will be devoted to applications of asymptotic methods in waves and boundary value problems. Contents Asymptotic expansions and series Asymptotic methods for solving nonlinear equations Nonlinear oscillator in potential well Autoresonances in nonlinear systems Asymptotics for loss of stability Systems of coupled oscillators. | ||
546 | |a In English. | ||
650 | 0 | |a Nonlinear functional analysis. |0 http://id.loc.gov/authorities/subjects/sh85092325 | |
650 | 6 | |a Analyse fonctionnelle non linéaire. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Nonlinear functional analysis |2 fast | |
776 | 0 | 8 | |i Print version: |z 9783110335545 |z 3110335549 |w (OCoLC)931647957 |
830 | 0 | |a De Gruyter series in nonlinear analysis and applications ; |v v. 23/1. |0 http://id.loc.gov/authorities/names/n92047842 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504913 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504913 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28649857 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35109103 | ||
938 | |a De Gruyter |b DEGR |n 9783110335682 | ||
938 | |a EBSCOhost |b EBSC |n 1504913 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis31763275 | ||
938 | |a YBP Library Services |b YANK |n 10868205 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn985846032 |
---|---|
_version_ | 1826942150654296064 |
adam_text | |
any_adam_object | |
author | Glebov, Sergey G. |
author_facet | Glebov, Sergey G. |
author_role | |
author_sort | Glebov, Sergey G. |
author_variant | s g g sg sgg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA321 |
callnumber-raw | QA321.5 .G54 2017 |
callnumber-search | QA321.5 .G54 2017 |
callnumber-sort | QA 3321.5 G54 42017 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface -- Contents -- Introduction -- 1 Asymptotic expansions and series -- 2 Asymptotic methods for solving nonlinear equations -- 3 Perturbation of nonlinear oscillations -- 4 Nonlinear oscillator in potential well -- 5 Autoresonances in nonlinear systems -- 6 Asymptotics for loss of stability -- 7 Systems of coupled oscillators -- Bibliography -- Index. |
ctrlnum | (OCoLC)985846032 |
dewey-full | 515.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.4 |
dewey-search | 515.4 |
dewey-sort | 3515.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04231cam a2200625Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn985846032</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">170505s2017 maua o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUY</subfield><subfield code="d">COO</subfield><subfield code="d">DEGRU</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IGB</subfield><subfield code="d">AUW</subfield><subfield code="d">BTN</subfield><subfield code="d">MHW</subfield><subfield code="d">INTCL</subfield><subfield code="d">SNK</subfield><subfield code="d">G3B</subfield><subfield code="d">S8I</subfield><subfield code="d">S8J</subfield><subfield code="d">STF</subfield><subfield code="d">D6H</subfield><subfield code="d">AGLDB</subfield><subfield code="d">U3W</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">984625916</subfield><subfield code="a">985944318</subfield><subfield code="a">986140486</subfield><subfield code="a">986403210</subfield><subfield code="a">992512966</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110335689</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110335682</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110382723</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110382725</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110335545</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110335549</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110335682</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)985846032</subfield><subfield code="z">(OCoLC)984625916</subfield><subfield code="z">(OCoLC)985944318</subfield><subfield code="z">(OCoLC)986140486</subfield><subfield code="z">(OCoLC)986403210</subfield><subfield code="z">(OCoLC)992512966</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">1006342</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA321.5</subfield><subfield code="b">.G54 2017</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Glebov, Sergey G.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Oscillations and Resonances.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin/Boston, UNITED STATES :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (357) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Series in Nonlinear Analysis and applications ;</subfield><subfield code="v">Volume 23/1</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Introduction --</subfield><subfield code="t">1 Asymptotic expansions and series --</subfield><subfield code="t">2 Asymptotic methods for solving nonlinear equations --</subfield><subfield code="t">3 Perturbation of nonlinear oscillations --</subfield><subfield code="t">4 Nonlinear oscillator in potential well --</subfield><subfield code="t">5 Autoresonances in nonlinear systems --</subfield><subfield code="t">6 Asymptotics for loss of stability --</subfield><subfield code="t">7 Systems of coupled oscillators --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena in the natural sciences. These include the outset of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering applications, and quantum systems. Apart from being of independent interest, such approximate solutions serve as a foolproof basis for testing numerical algorithms. This first volume presents asymptotic methods in oscillation and resonance problems described by ordinary differential equations, whereby the second volume will be devoted to applications of asymptotic methods in waves and boundary value problems. Contents Asymptotic expansions and series Asymptotic methods for solving nonlinear equations Nonlinear oscillator in potential well Autoresonances in nonlinear systems Asymptotics for loss of stability Systems of coupled oscillators.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonlinear functional analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092325</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse fonctionnelle non linéaire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear functional analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9783110335545</subfield><subfield code="z">3110335549</subfield><subfield code="w">(OCoLC)931647957</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in nonlinear analysis and applications ;</subfield><subfield code="v">v. 23/1.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92047842</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504913</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504913</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28649857</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35109103</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110335682</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1504913</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis31763275</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10868205</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn985846032 |
illustrated | Illustrated |
indexdate | 2025-03-18T14:23:26Z |
institution | BVB |
isbn | 3110335689 9783110335682 9783110382723 3110382725 |
language | English |
oclc_num | 985846032 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (357) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter series in nonlinear analysis and applications ; |
series2 | De Gruyter Series in Nonlinear Analysis and applications ; |
spelling | Glebov, Sergey G. Oscillations and Resonances. Berlin/Boston, UNITED STATES : De Gruyter, 2017. 1 online resource (357) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda De Gruyter Series in Nonlinear Analysis and applications ; Volume 23/1 Print version record. Frontmatter -- Preface -- Contents -- Introduction -- 1 Asymptotic expansions and series -- 2 Asymptotic methods for solving nonlinear equations -- 3 Perturbation of nonlinear oscillations -- 4 Nonlinear oscillator in potential well -- 5 Autoresonances in nonlinear systems -- 6 Asymptotics for loss of stability -- 7 Systems of coupled oscillators -- Bibliography -- Index. This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena in the natural sciences. These include the outset of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering applications, and quantum systems. Apart from being of independent interest, such approximate solutions serve as a foolproof basis for testing numerical algorithms. This first volume presents asymptotic methods in oscillation and resonance problems described by ordinary differential equations, whereby the second volume will be devoted to applications of asymptotic methods in waves and boundary value problems. Contents Asymptotic expansions and series Asymptotic methods for solving nonlinear equations Nonlinear oscillator in potential well Autoresonances in nonlinear systems Asymptotics for loss of stability Systems of coupled oscillators. In English. Nonlinear functional analysis. http://id.loc.gov/authorities/subjects/sh85092325 Analyse fonctionnelle non linéaire. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Nonlinear functional analysis fast Print version: 9783110335545 3110335549 (OCoLC)931647957 De Gruyter series in nonlinear analysis and applications ; v. 23/1. http://id.loc.gov/authorities/names/n92047842 |
spellingShingle | Glebov, Sergey G. Oscillations and Resonances. De Gruyter series in nonlinear analysis and applications ; Frontmatter -- Preface -- Contents -- Introduction -- 1 Asymptotic expansions and series -- 2 Asymptotic methods for solving nonlinear equations -- 3 Perturbation of nonlinear oscillations -- 4 Nonlinear oscillator in potential well -- 5 Autoresonances in nonlinear systems -- 6 Asymptotics for loss of stability -- 7 Systems of coupled oscillators -- Bibliography -- Index. Nonlinear functional analysis. http://id.loc.gov/authorities/subjects/sh85092325 Analyse fonctionnelle non linéaire. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Nonlinear functional analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85092325 |
title | Oscillations and Resonances. |
title_alt | Frontmatter -- Preface -- Contents -- Introduction -- 1 Asymptotic expansions and series -- 2 Asymptotic methods for solving nonlinear equations -- 3 Perturbation of nonlinear oscillations -- 4 Nonlinear oscillator in potential well -- 5 Autoresonances in nonlinear systems -- 6 Asymptotics for loss of stability -- 7 Systems of coupled oscillators -- Bibliography -- Index. |
title_auth | Oscillations and Resonances. |
title_exact_search | Oscillations and Resonances. |
title_full | Oscillations and Resonances. |
title_fullStr | Oscillations and Resonances. |
title_full_unstemmed | Oscillations and Resonances. |
title_short | Oscillations and Resonances. |
title_sort | oscillations and resonances |
topic | Nonlinear functional analysis. http://id.loc.gov/authorities/subjects/sh85092325 Analyse fonctionnelle non linéaire. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Nonlinear functional analysis fast |
topic_facet | Nonlinear functional analysis. Analyse fonctionnelle non linéaire. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Nonlinear functional analysis |
work_keys_str_mv | AT glebovsergeyg oscillationsandresonances |