Reasoning with data :: an introduction to traditional and Bayesian statistics using R /
Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both class...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
The Guilford Press,
[2017]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, supplemental reading lists, and links to online videos, interactive materials, and other resources.-- |
Beschreibung: | 1 online resource (x, 325 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781462530298 146253029X |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn985106063 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 170502t20172017nyu ob 001 0 eng d | ||
010 | |z 2017004984 | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDX |d IDEBK |d CSAIL |d GWM |d OCLCO |d NRC |d OCLCQ |d OCLCO |d BUF |d OSU |d OCLCO |d AU@ |d OCLCO |d WYU |d OCLCQ |d OCLCA |d LVT |d OCLCA |d UKAHL |d OCLCO |d OCL |d OCLCQ |d INARC |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 1392329567 | ||
020 | |a 9781462530298 |q (electronic bk.) | ||
020 | |a 146253029X |q (electronic bk.) | ||
020 | |z 9781462530267 |q (paperback ; |q alk. paper) | ||
020 | |z 1462530265 |q (paperback ; |q alk. paper) | ||
020 | |z 9781462530274 |q (hardcover ; |q alk. paper) | ||
020 | |z 1462530273 |q (hardcover ; |q alk. paper) | ||
035 | |a (OCoLC)985106063 |z (OCoLC)1392329567 | ||
050 | 4 | |a QA279.5 |b .S745 2017eb | |
072 | 7 | |a MAT |x 003000 |2 bisacsh | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.50285/53 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Stanton, Jeffrey M., |d 1961- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJth7dhHfKt3fhmB7GQjG3 |0 http://id.loc.gov/authorities/names/n2006013082 | |
245 | 1 | 0 | |a Reasoning with data : |b an introduction to traditional and Bayesian statistics using R / |c Jeffrey M. Stanton. |
264 | 1 | |a New York : |b The Guilford Press, |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (x, 325 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, supplemental reading lists, and links to online videos, interactive materials, and other resources.-- |c Provided by Publisher. | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Statistical vocabulary -- Reasoning with probability -- Probabilities in the long run -- Introducing the logic of inference using confidence intervals -- Bayesian and traditional hypothesis testing -- Comparing groups and analyzing experiments -- Associations between variables -- Linear multiple regression -- Interactions in ANOVA and regression -- Logistic regression -- Analyzing change over time -- Dealing with too many variables -- All together now. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Bayesian statistical decision theory |v Problems, exercises, etc. | |
650 | 0 | |a Bayesian statistical decision theory |x Data processing. | |
650 | 0 | |a Mathematical statistics |v Problems, exercises, etc. | |
650 | 0 | |a Mathematical statistics |x Data processing. |0 http://id.loc.gov/authorities/subjects/sh85082137 | |
650 | 0 | |a R (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh2002004407 | |
650 | 0 | |a Statistics. |0 http://id.loc.gov/authorities/subjects/sh85127580 | |
650 | 2 | |a Statistics as Topic | |
650 | 2 | |a Bayes Theorem | |
650 | 6 | |a Théorie de la décision bayésienne |v Problèmes et exercices. | |
650 | 6 | |a Théorie de la décision bayésienne |x Informatique. | |
650 | 6 | |a Statistique mathématique |x Informatique. | |
650 | 6 | |a R (Langage de programmation) | |
650 | 6 | |a Statistiques. | |
650 | 6 | |a Théorème de Bayes. | |
650 | 6 | |a Statistique. | |
650 | 7 | |a statistics. |2 aat | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Statistics |2 fast | |
650 | 7 | |a Bayesian statistical decision theory |2 fast | |
650 | 7 | |a Bayesian statistical decision theory |x Data processing |2 fast | |
650 | 7 | |a Mathematical statistics |2 fast | |
650 | 7 | |a Mathematical statistics |x Data processing |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
655 | 7 | |a Problems and exercises |2 fast | |
758 | |i has work: |a Reasoning with data (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGdfM7VmJ8mDRrB3hjKY4C |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Stanton, Jeffrey M., 1961- |t Reasoning with data. |d New York : The Guilford Press, [2017] |z 9781462530267 |w (DLC) 2017004984 |w (OCoLC)960845674 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512441 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34865540 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH32199632 | ||
938 | |a EBSCOhost |b EBSC |n 1512441 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38095162 | ||
938 | |a YBP Library Services |b YANK |n 14272323 | ||
938 | |a YBP Library Services |b YANK |n 14524772 | ||
938 | |a Internet Archive |b INAR |n reasoningwithdat0000stan | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn985106063 |
---|---|
_version_ | 1816882387582189568 |
adam_text | |
any_adam_object | |
author | Stanton, Jeffrey M., 1961- |
author_GND | http://id.loc.gov/authorities/names/n2006013082 |
author_facet | Stanton, Jeffrey M., 1961- |
author_role | aut |
author_sort | Stanton, Jeffrey M., 1961- |
author_variant | j m s jm jms |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA279 |
callnumber-raw | QA279.5 .S745 2017eb |
callnumber-search | QA279.5 .S745 2017eb |
callnumber-sort | QA 3279.5 S745 42017EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Statistical vocabulary -- Reasoning with probability -- Probabilities in the long run -- Introducing the logic of inference using confidence intervals -- Bayesian and traditional hypothesis testing -- Comparing groups and analyzing experiments -- Associations between variables -- Linear multiple regression -- Interactions in ANOVA and regression -- Logistic regression -- Analyzing change over time -- Dealing with too many variables -- All together now. |
ctrlnum | (OCoLC)985106063 |
dewey-full | 519.50285/53 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.50285/53 |
dewey-search | 519.50285/53 |
dewey-sort | 3519.50285 253 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05496cam a2200853 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn985106063</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">170502t20172017nyu ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2017004984</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CSAIL</subfield><subfield code="d">GWM</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NRC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">BUF</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCA</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1392329567</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781462530298</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">146253029X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781462530267</subfield><subfield code="q">(paperback ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1462530265</subfield><subfield code="q">(paperback ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781462530274</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1462530273</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)985106063</subfield><subfield code="z">(OCoLC)1392329567</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA279.5</subfield><subfield code="b">.S745 2017eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.50285/53</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stanton, Jeffrey M.,</subfield><subfield code="d">1961-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJth7dhHfKt3fhmB7GQjG3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2006013082</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reasoning with data :</subfield><subfield code="b">an introduction to traditional and Bayesian statistics using R /</subfield><subfield code="c">Jeffrey M. Stanton.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">The Guilford Press,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 325 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, supplemental reading lists, and links to online videos, interactive materials, and other resources.--</subfield><subfield code="c">Provided by Publisher.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Statistical vocabulary -- Reasoning with probability -- Probabilities in the long run -- Introducing the logic of inference using confidence intervals -- Bayesian and traditional hypothesis testing -- Comparing groups and analyzing experiments -- Associations between variables -- Linear multiple regression -- Interactions in ANOVA and regression -- Logistic regression -- Analyzing change over time -- Dealing with too many variables -- All together now.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="v">Problems, exercises, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical statistics</subfield><subfield code="v">Problems, exercises, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical statistics</subfield><subfield code="x">Data processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082137</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004407</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Statistics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85127580</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Statistics as Topic</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Bayes Theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la décision bayésienne</subfield><subfield code="v">Problèmes et exercices.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la décision bayésienne</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Statistique mathématique</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Statistiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorème de Bayes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Statistique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">statistics.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical statistics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical statistics</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Problems and exercises</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Reasoning with data (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGdfM7VmJ8mDRrB3hjKY4C</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Stanton, Jeffrey M., 1961-</subfield><subfield code="t">Reasoning with data.</subfield><subfield code="d">New York : The Guilford Press, [2017]</subfield><subfield code="z">9781462530267</subfield><subfield code="w">(DLC) 2017004984</subfield><subfield code="w">(OCoLC)960845674</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512441</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34865540</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH32199632</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1512441</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38095162</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14272323</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14524772</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">reasoningwithdat0000stan</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Problems and exercises fast |
genre_facet | Problems and exercises |
id | ZDB-4-EBA-ocn985106063 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:48Z |
institution | BVB |
isbn | 9781462530298 146253029X |
language | English |
oclc_num | 985106063 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 325 pages) |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | The Guilford Press, |
record_format | marc |
spelling | Stanton, Jeffrey M., 1961- author. https://id.oclc.org/worldcat/entity/E39PBJth7dhHfKt3fhmB7GQjG3 http://id.loc.gov/authorities/names/n2006013082 Reasoning with data : an introduction to traditional and Bayesian statistics using R / Jeffrey M. Stanton. New York : The Guilford Press, [2017] ©2017 1 online resource (x, 325 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, supplemental reading lists, and links to online videos, interactive materials, and other resources.-- Provided by Publisher. Includes bibliographical references and index. Statistical vocabulary -- Reasoning with probability -- Probabilities in the long run -- Introducing the logic of inference using confidence intervals -- Bayesian and traditional hypothesis testing -- Comparing groups and analyzing experiments -- Associations between variables -- Linear multiple regression -- Interactions in ANOVA and regression -- Logistic regression -- Analyzing change over time -- Dealing with too many variables -- All together now. Print version record. Bayesian statistical decision theory Problems, exercises, etc. Bayesian statistical decision theory Data processing. Mathematical statistics Problems, exercises, etc. Mathematical statistics Data processing. http://id.loc.gov/authorities/subjects/sh85082137 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Statistics. http://id.loc.gov/authorities/subjects/sh85127580 Statistics as Topic Bayes Theorem Théorie de la décision bayésienne Problèmes et exercices. Théorie de la décision bayésienne Informatique. Statistique mathématique Informatique. R (Langage de programmation) Statistiques. Théorème de Bayes. Statistique. statistics. aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Statistics fast Bayesian statistical decision theory fast Bayesian statistical decision theory Data processing fast Mathematical statistics fast Mathematical statistics Data processing fast R (Computer program language) fast Problems and exercises fast has work: Reasoning with data (Text) https://id.oclc.org/worldcat/entity/E39PCGdfM7VmJ8mDRrB3hjKY4C https://id.oclc.org/worldcat/ontology/hasWork Print version: Stanton, Jeffrey M., 1961- Reasoning with data. New York : The Guilford Press, [2017] 9781462530267 (DLC) 2017004984 (OCoLC)960845674 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512441 Volltext |
spellingShingle | Stanton, Jeffrey M., 1961- Reasoning with data : an introduction to traditional and Bayesian statistics using R / Statistical vocabulary -- Reasoning with probability -- Probabilities in the long run -- Introducing the logic of inference using confidence intervals -- Bayesian and traditional hypothesis testing -- Comparing groups and analyzing experiments -- Associations between variables -- Linear multiple regression -- Interactions in ANOVA and regression -- Logistic regression -- Analyzing change over time -- Dealing with too many variables -- All together now. Bayesian statistical decision theory Problems, exercises, etc. Bayesian statistical decision theory Data processing. Mathematical statistics Problems, exercises, etc. Mathematical statistics Data processing. http://id.loc.gov/authorities/subjects/sh85082137 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Statistics. http://id.loc.gov/authorities/subjects/sh85127580 Statistics as Topic Bayes Theorem Théorie de la décision bayésienne Problèmes et exercices. Théorie de la décision bayésienne Informatique. Statistique mathématique Informatique. R (Langage de programmation) Statistiques. Théorème de Bayes. Statistique. statistics. aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Statistics fast Bayesian statistical decision theory fast Bayesian statistical decision theory Data processing fast Mathematical statistics fast Mathematical statistics Data processing fast R (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082137 http://id.loc.gov/authorities/subjects/sh2002004407 http://id.loc.gov/authorities/subjects/sh85127580 |
title | Reasoning with data : an introduction to traditional and Bayesian statistics using R / |
title_auth | Reasoning with data : an introduction to traditional and Bayesian statistics using R / |
title_exact_search | Reasoning with data : an introduction to traditional and Bayesian statistics using R / |
title_full | Reasoning with data : an introduction to traditional and Bayesian statistics using R / Jeffrey M. Stanton. |
title_fullStr | Reasoning with data : an introduction to traditional and Bayesian statistics using R / Jeffrey M. Stanton. |
title_full_unstemmed | Reasoning with data : an introduction to traditional and Bayesian statistics using R / Jeffrey M. Stanton. |
title_short | Reasoning with data : |
title_sort | reasoning with data an introduction to traditional and bayesian statistics using r |
title_sub | an introduction to traditional and Bayesian statistics using R / |
topic | Bayesian statistical decision theory Problems, exercises, etc. Bayesian statistical decision theory Data processing. Mathematical statistics Problems, exercises, etc. Mathematical statistics Data processing. http://id.loc.gov/authorities/subjects/sh85082137 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Statistics. http://id.loc.gov/authorities/subjects/sh85127580 Statistics as Topic Bayes Theorem Théorie de la décision bayésienne Problèmes et exercices. Théorie de la décision bayésienne Informatique. Statistique mathématique Informatique. R (Langage de programmation) Statistiques. Théorème de Bayes. Statistique. statistics. aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Statistics fast Bayesian statistical decision theory fast Bayesian statistical decision theory Data processing fast Mathematical statistics fast Mathematical statistics Data processing fast R (Computer program language) fast |
topic_facet | Bayesian statistical decision theory Problems, exercises, etc. Bayesian statistical decision theory Data processing. Mathematical statistics Problems, exercises, etc. Mathematical statistics Data processing. R (Computer program language) Statistics. Statistics as Topic Bayes Theorem Théorie de la décision bayésienne Problèmes et exercices. Théorie de la décision bayésienne Informatique. Statistique mathématique Informatique. R (Langage de programmation) Statistiques. Théorème de Bayes. Statistique. statistics. MATHEMATICS Applied. MATHEMATICS Probability & Statistics General. Statistics Bayesian statistical decision theory Bayesian statistical decision theory Data processing Mathematical statistics Mathematical statistics Data processing Problems and exercises |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512441 |
work_keys_str_mv | AT stantonjeffreym reasoningwithdataanintroductiontotraditionalandbayesianstatisticsusingr |