Advances in energy research.: Volume 26 /
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Science Publishers, Inc.,
[2017]
|
Schriftenreihe: | Advances in energy research
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781536113259 1536113255 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn985105647 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 170502s2017 nyua ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d EBLCP |d N$T |d YDX |d OCLCF |d AGLDB |d IGB |d CN8ML |d SNK |d INTCL |d MHW |d BTN |d AUW |d OCLCQ |d VTS |d OCLCQ |d D6H |d G3B |d S8I |d S8J |d S9I |d STF |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 989043723 | ||
020 | |a 9781536113259 |q (electronic bk.) | ||
020 | |a 1536113255 |q (electronic bk.) | ||
020 | |z 9781536111033 | ||
020 | |z 1536111031 | ||
035 | |a (OCoLC)985105647 |z (OCoLC)989043723 | ||
050 | 4 | |a TJ163.13 | |
072 | 7 | |a TEC |x 009070 |2 bisacsh | |
082 | 7 | |a 621.042 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Advances in energy research. |n Volume 26 / |c Morena J. Acosta, editor. |
264 | 1 | |a New York : |b Nova Science Publishers, Inc., |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in energy research | |
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed May 31, 2017). | |
505 | 0 | |a Preface; Chapter 1; Heat Transfer in Micro-Ducts; Abstract; Nomenclature; Greek Symbols; Subscripts; 1. Introduction; 2. Background and Review of Previous Studies; 2.1. Classification of the Flow Regimes; 2.2. First and Second Model Slip Flow Models; 2.3. Survey of Previous Studies; 3. Theoretical Formulation; 3.1. Basic Governing Equations; 3.2. Numerical Method and Validation; 4. Results and Discussion; 4.1. Hydrodynamic Field; 4.2. Thermal Field; 4.2.1. Continuum Case (Kn = 0); 4.2.2. Slip Velocity Effects (Kn`"); Conclusion; Acknowledgment; References; Chapter 2. | |
505 | 8 | |a Optical and Energetic Performance of Volume Holographic Optical Elements for Solar Energy ApplicationsAbstract; 1. Introduction; 2. Holographic Recording; 2.1. Wavefront Recording and Reconstruction in Holography; 2.2. Hologram Types; 2.3. Recording Materials; 3. Literature Review; 4. Geometrical Model for Holographic Lenses; 4.1. Paraxial Approximation; 4.2. Ray Tracing; 5. Energetic Model for Volume Holograms; 5.1. Bragg Condition for Volume Phase Holograms; 5.2. Coupled Wave Theory; 6. Simulated Behavior of a Holographic Cylindrical Lens; 6.1. Local Analysis; 6.2. Global Analysis. | |
505 | 8 | |a 7. Experimental Analysis of a Cylindrical Holographic Lens7.1. Recording Setup; 7.2. Experimental Measurements; 8. Lens-Photovoltaic Cell Coupling; 8.1. Concentration Coefficients; 8.2. Simulations of the Holographic Lenses-Cell Coupling Behavior; 8.3. Experimental Measurements; 9. Simulation of a Conceptual Prototype under Real Conditions; Conclusion; References; Chapter 3; The Impact of Alloyed Capping Layers on the Performance of InAs/GaAs Quantum Dot Solar Cells; Abstract; 1. Introduction; 2. Experimental Details; 3. Impact of thin GaAsSb Capping Layers. | |
505 | 8 | |a 3.1. Introduction to Thin GaAsSb Capping Layers3.2. Compositional and Structural Analysis; 3.3. Band Structure Simulation; 3.4. Photocurrent Analysis; 3.5. Solar Cell Performance; 4. Impact of thin GaAs(Sb)N Capping Layers; 4.1. Introduction to Thin GaAs(Sb)N Capping Layers; 4.2. Growth and Optimization of GaAs(Sb)N-Capped InAs/GaAs Quantum Dots; 4.3. Structural Analysis and Photoluminescence; 4.4. Solar Cell Performance: Effect of the N Incorporation on Carrier Collection; 4.5. Carrier Escape Times: Theoretical Modelling; 4.6. Alternative Approaches for the Quaternary Capping Layers. | |
505 | 8 | |a 5. Analysis of Relative Contributions to the Total Photocurrent: Impact of the Capping Layer NatureConclusion; Acknowledgments; References; Chapter 4; Soap-Based Thermal Insulation: An Environmentally Friendly Alternative to Petroleum Counterparts; Abstract; 1. Introduction; 2. Literature Review; 3. Aim; 4. Research Methodology and Process; Aerating the Soap; 5. Thermal Testing of the Samples; 6. Improving the Soap Samples Further; 6.1. Insulation Degradation; 6.2. Waterproofing the Soap; 6.3. Fire Retardant Soap Casing; 6.4. Making the Soap Vermin Proof; 7. In-Situ Testing. | |
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a Power resources |x Research. |0 http://id.loc.gov/authorities/subjects/sh85105997 | |
650 | 6 | |a Ressources énergétiques |x Recherche. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Mechanical. |2 bisacsh | |
650 | 7 | |a Power resources |x Research |2 fast | |
700 | 1 | |a Acosta, Morena J., |e editor. | |
758 | |i has work: |a Advances in energy research Volume 26 (Text) |1 https://id.oclc.org/worldcat/entity/E39PD3hXhrg4th8HyPjKQWCk9P |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Advances in energy research. Volume 26. |d ©2017 |z 1536111031 |z 9781536111033 |w (OCoLC)975021850 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512184 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL4849069 | ||
938 | |a EBSCOhost |b EBSC |n 1512184 | ||
938 | |a YBP Library Services |b YANK |n 13817400 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn985105647 |
---|---|
_version_ | 1816882387485720576 |
adam_text | |
any_adam_object | |
author2 | Acosta, Morena J. |
author2_role | edt |
author2_variant | m j a mj mja |
author_facet | Acosta, Morena J. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TJ163 |
callnumber-raw | TJ163.13 |
callnumber-search | TJ163.13 |
callnumber-sort | TJ 3163.13 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
collection | ZDB-4-EBA |
contents | Preface; Chapter 1; Heat Transfer in Micro-Ducts; Abstract; Nomenclature; Greek Symbols; Subscripts; 1. Introduction; 2. Background and Review of Previous Studies; 2.1. Classification of the Flow Regimes; 2.2. First and Second Model Slip Flow Models; 2.3. Survey of Previous Studies; 3. Theoretical Formulation; 3.1. Basic Governing Equations; 3.2. Numerical Method and Validation; 4. Results and Discussion; 4.1. Hydrodynamic Field; 4.2. Thermal Field; 4.2.1. Continuum Case (Kn = 0); 4.2.2. Slip Velocity Effects (Kn`"); Conclusion; Acknowledgment; References; Chapter 2. Optical and Energetic Performance of Volume Holographic Optical Elements for Solar Energy ApplicationsAbstract; 1. Introduction; 2. Holographic Recording; 2.1. Wavefront Recording and Reconstruction in Holography; 2.2. Hologram Types; 2.3. Recording Materials; 3. Literature Review; 4. Geometrical Model for Holographic Lenses; 4.1. Paraxial Approximation; 4.2. Ray Tracing; 5. Energetic Model for Volume Holograms; 5.1. Bragg Condition for Volume Phase Holograms; 5.2. Coupled Wave Theory; 6. Simulated Behavior of a Holographic Cylindrical Lens; 6.1. Local Analysis; 6.2. Global Analysis. 7. Experimental Analysis of a Cylindrical Holographic Lens7.1. Recording Setup; 7.2. Experimental Measurements; 8. Lens-Photovoltaic Cell Coupling; 8.1. Concentration Coefficients; 8.2. Simulations of the Holographic Lenses-Cell Coupling Behavior; 8.3. Experimental Measurements; 9. Simulation of a Conceptual Prototype under Real Conditions; Conclusion; References; Chapter 3; The Impact of Alloyed Capping Layers on the Performance of InAs/GaAs Quantum Dot Solar Cells; Abstract; 1. Introduction; 2. Experimental Details; 3. Impact of thin GaAsSb Capping Layers. 3.1. Introduction to Thin GaAsSb Capping Layers3.2. Compositional and Structural Analysis; 3.3. Band Structure Simulation; 3.4. Photocurrent Analysis; 3.5. Solar Cell Performance; 4. Impact of thin GaAs(Sb)N Capping Layers; 4.1. Introduction to Thin GaAs(Sb)N Capping Layers; 4.2. Growth and Optimization of GaAs(Sb)N-Capped InAs/GaAs Quantum Dots; 4.3. Structural Analysis and Photoluminescence; 4.4. Solar Cell Performance: Effect of the N Incorporation on Carrier Collection; 4.5. Carrier Escape Times: Theoretical Modelling; 4.6. Alternative Approaches for the Quaternary Capping Layers. 5. Analysis of Relative Contributions to the Total Photocurrent: Impact of the Capping Layer NatureConclusion; Acknowledgments; References; Chapter 4; Soap-Based Thermal Insulation: An Environmentally Friendly Alternative to Petroleum Counterparts; Abstract; 1. Introduction; 2. Literature Review; 3. Aim; 4. Research Methodology and Process; Aerating the Soap; 5. Thermal Testing of the Samples; 6. Improving the Soap Samples Further; 6.1. Insulation Degradation; 6.2. Waterproofing the Soap; 6.3. Fire Retardant Soap Casing; 6.4. Making the Soap Vermin Proof; 7. In-Situ Testing. |
ctrlnum | (OCoLC)985105647 |
dewey-full | 621.042 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.042 |
dewey-search | 621.042 |
dewey-sort | 3621.042 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Energietechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05166cam a2200553 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn985105647</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">170502s2017 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">IGB</subfield><subfield code="d">CN8ML</subfield><subfield code="d">SNK</subfield><subfield code="d">INTCL</subfield><subfield code="d">MHW</subfield><subfield code="d">BTN</subfield><subfield code="d">AUW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">D6H</subfield><subfield code="d">G3B</subfield><subfield code="d">S8I</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">989043723</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781536113259</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1536113255</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781536111033</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1536111031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)985105647</subfield><subfield code="z">(OCoLC)989043723</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TJ163.13</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009070</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.042</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Advances in energy research.</subfield><subfield code="n">Volume 26 /</subfield><subfield code="c">Morena J. Acosta, editor.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Nova Science Publishers, Inc.,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in energy research</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed May 31, 2017).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Chapter 1; Heat Transfer in Micro-Ducts; Abstract; Nomenclature; Greek Symbols; Subscripts; 1. Introduction; 2. Background and Review of Previous Studies; 2.1. Classification of the Flow Regimes; 2.2. First and Second Model Slip Flow Models; 2.3. Survey of Previous Studies; 3. Theoretical Formulation; 3.1. Basic Governing Equations; 3.2. Numerical Method and Validation; 4. Results and Discussion; 4.1. Hydrodynamic Field; 4.2. Thermal Field; 4.2.1. Continuum Case (Kn = 0); 4.2.2. Slip Velocity Effects (Kn`"); Conclusion; Acknowledgment; References; Chapter 2.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Optical and Energetic Performance of Volume Holographic Optical Elements for Solar Energy ApplicationsAbstract; 1. Introduction; 2. Holographic Recording; 2.1. Wavefront Recording and Reconstruction in Holography; 2.2. Hologram Types; 2.3. Recording Materials; 3. Literature Review; 4. Geometrical Model for Holographic Lenses; 4.1. Paraxial Approximation; 4.2. Ray Tracing; 5. Energetic Model for Volume Holograms; 5.1. Bragg Condition for Volume Phase Holograms; 5.2. Coupled Wave Theory; 6. Simulated Behavior of a Holographic Cylindrical Lens; 6.1. Local Analysis; 6.2. Global Analysis.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Experimental Analysis of a Cylindrical Holographic Lens7.1. Recording Setup; 7.2. Experimental Measurements; 8. Lens-Photovoltaic Cell Coupling; 8.1. Concentration Coefficients; 8.2. Simulations of the Holographic Lenses-Cell Coupling Behavior; 8.3. Experimental Measurements; 9. Simulation of a Conceptual Prototype under Real Conditions; Conclusion; References; Chapter 3; The Impact of Alloyed Capping Layers on the Performance of InAs/GaAs Quantum Dot Solar Cells; Abstract; 1. Introduction; 2. Experimental Details; 3. Impact of thin GaAsSb Capping Layers.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1. Introduction to Thin GaAsSb Capping Layers3.2. Compositional and Structural Analysis; 3.3. Band Structure Simulation; 3.4. Photocurrent Analysis; 3.5. Solar Cell Performance; 4. Impact of thin GaAs(Sb)N Capping Layers; 4.1. Introduction to Thin GaAs(Sb)N Capping Layers; 4.2. Growth and Optimization of GaAs(Sb)N-Capped InAs/GaAs Quantum Dots; 4.3. Structural Analysis and Photoluminescence; 4.4. Solar Cell Performance: Effect of the N Incorporation on Carrier Collection; 4.5. Carrier Escape Times: Theoretical Modelling; 4.6. Alternative Approaches for the Quaternary Capping Layers.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Analysis of Relative Contributions to the Total Photocurrent: Impact of the Capping Layer NatureConclusion; Acknowledgments; References; Chapter 4; Soap-Based Thermal Insulation: An Environmentally Friendly Alternative to Petroleum Counterparts; Abstract; 1. Introduction; 2. Literature Review; 3. Aim; 4. Research Methodology and Process; Aerating the Soap; 5. Thermal Testing of the Samples; 6. Improving the Soap Samples Further; 6.1. Insulation Degradation; 6.2. Waterproofing the Soap; 6.3. Fire Retardant Soap Casing; 6.4. Making the Soap Vermin Proof; 7. In-Situ Testing.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Power resources</subfield><subfield code="x">Research.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85105997</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ressources énergétiques</subfield><subfield code="x">Recherche.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Mechanical.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Power resources</subfield><subfield code="x">Research</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Acosta, Morena J.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Advances in energy research Volume 26 (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PD3hXhrg4th8HyPjKQWCk9P</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Advances in energy research. Volume 26.</subfield><subfield code="d">©2017</subfield><subfield code="z">1536111031</subfield><subfield code="z">9781536111033</subfield><subfield code="w">(OCoLC)975021850</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512184</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4849069</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1512184</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13817400</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn985105647 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:27:48Z |
institution | BVB |
isbn | 9781536113259 1536113255 |
language | English |
oclc_num | 985105647 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Nova Science Publishers, Inc., |
record_format | marc |
series2 | Advances in energy research |
spelling | Advances in energy research. Volume 26 / Morena J. Acosta, editor. New York : Nova Science Publishers, Inc., [2017] ©2017 1 online resource : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Advances in energy research Online resource; title from PDF title page (EBSCO, viewed May 31, 2017). Preface; Chapter 1; Heat Transfer in Micro-Ducts; Abstract; Nomenclature; Greek Symbols; Subscripts; 1. Introduction; 2. Background and Review of Previous Studies; 2.1. Classification of the Flow Regimes; 2.2. First and Second Model Slip Flow Models; 2.3. Survey of Previous Studies; 3. Theoretical Formulation; 3.1. Basic Governing Equations; 3.2. Numerical Method and Validation; 4. Results and Discussion; 4.1. Hydrodynamic Field; 4.2. Thermal Field; 4.2.1. Continuum Case (Kn = 0); 4.2.2. Slip Velocity Effects (Kn`"); Conclusion; Acknowledgment; References; Chapter 2. Optical and Energetic Performance of Volume Holographic Optical Elements for Solar Energy ApplicationsAbstract; 1. Introduction; 2. Holographic Recording; 2.1. Wavefront Recording and Reconstruction in Holography; 2.2. Hologram Types; 2.3. Recording Materials; 3. Literature Review; 4. Geometrical Model for Holographic Lenses; 4.1. Paraxial Approximation; 4.2. Ray Tracing; 5. Energetic Model for Volume Holograms; 5.1. Bragg Condition for Volume Phase Holograms; 5.2. Coupled Wave Theory; 6. Simulated Behavior of a Holographic Cylindrical Lens; 6.1. Local Analysis; 6.2. Global Analysis. 7. Experimental Analysis of a Cylindrical Holographic Lens7.1. Recording Setup; 7.2. Experimental Measurements; 8. Lens-Photovoltaic Cell Coupling; 8.1. Concentration Coefficients; 8.2. Simulations of the Holographic Lenses-Cell Coupling Behavior; 8.3. Experimental Measurements; 9. Simulation of a Conceptual Prototype under Real Conditions; Conclusion; References; Chapter 3; The Impact of Alloyed Capping Layers on the Performance of InAs/GaAs Quantum Dot Solar Cells; Abstract; 1. Introduction; 2. Experimental Details; 3. Impact of thin GaAsSb Capping Layers. 3.1. Introduction to Thin GaAsSb Capping Layers3.2. Compositional and Structural Analysis; 3.3. Band Structure Simulation; 3.4. Photocurrent Analysis; 3.5. Solar Cell Performance; 4. Impact of thin GaAs(Sb)N Capping Layers; 4.1. Introduction to Thin GaAs(Sb)N Capping Layers; 4.2. Growth and Optimization of GaAs(Sb)N-Capped InAs/GaAs Quantum Dots; 4.3. Structural Analysis and Photoluminescence; 4.4. Solar Cell Performance: Effect of the N Incorporation on Carrier Collection; 4.5. Carrier Escape Times: Theoretical Modelling; 4.6. Alternative Approaches for the Quaternary Capping Layers. 5. Analysis of Relative Contributions to the Total Photocurrent: Impact of the Capping Layer NatureConclusion; Acknowledgments; References; Chapter 4; Soap-Based Thermal Insulation: An Environmentally Friendly Alternative to Petroleum Counterparts; Abstract; 1. Introduction; 2. Literature Review; 3. Aim; 4. Research Methodology and Process; Aerating the Soap; 5. Thermal Testing of the Samples; 6. Improving the Soap Samples Further; 6.1. Insulation Degradation; 6.2. Waterproofing the Soap; 6.3. Fire Retardant Soap Casing; 6.4. Making the Soap Vermin Proof; 7. In-Situ Testing. Includes bibliographical references and index. Power resources Research. http://id.loc.gov/authorities/subjects/sh85105997 Ressources énergétiques Recherche. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Power resources Research fast Acosta, Morena J., editor. has work: Advances in energy research Volume 26 (Text) https://id.oclc.org/worldcat/entity/E39PD3hXhrg4th8HyPjKQWCk9P https://id.oclc.org/worldcat/ontology/hasWork Print version: Advances in energy research. Volume 26. ©2017 1536111031 9781536111033 (OCoLC)975021850 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512184 Volltext |
spellingShingle | Advances in energy research. Preface; Chapter 1; Heat Transfer in Micro-Ducts; Abstract; Nomenclature; Greek Symbols; Subscripts; 1. Introduction; 2. Background and Review of Previous Studies; 2.1. Classification of the Flow Regimes; 2.2. First and Second Model Slip Flow Models; 2.3. Survey of Previous Studies; 3. Theoretical Formulation; 3.1. Basic Governing Equations; 3.2. Numerical Method and Validation; 4. Results and Discussion; 4.1. Hydrodynamic Field; 4.2. Thermal Field; 4.2.1. Continuum Case (Kn = 0); 4.2.2. Slip Velocity Effects (Kn`"); Conclusion; Acknowledgment; References; Chapter 2. Optical and Energetic Performance of Volume Holographic Optical Elements for Solar Energy ApplicationsAbstract; 1. Introduction; 2. Holographic Recording; 2.1. Wavefront Recording and Reconstruction in Holography; 2.2. Hologram Types; 2.3. Recording Materials; 3. Literature Review; 4. Geometrical Model for Holographic Lenses; 4.1. Paraxial Approximation; 4.2. Ray Tracing; 5. Energetic Model for Volume Holograms; 5.1. Bragg Condition for Volume Phase Holograms; 5.2. Coupled Wave Theory; 6. Simulated Behavior of a Holographic Cylindrical Lens; 6.1. Local Analysis; 6.2. Global Analysis. 7. Experimental Analysis of a Cylindrical Holographic Lens7.1. Recording Setup; 7.2. Experimental Measurements; 8. Lens-Photovoltaic Cell Coupling; 8.1. Concentration Coefficients; 8.2. Simulations of the Holographic Lenses-Cell Coupling Behavior; 8.3. Experimental Measurements; 9. Simulation of a Conceptual Prototype under Real Conditions; Conclusion; References; Chapter 3; The Impact of Alloyed Capping Layers on the Performance of InAs/GaAs Quantum Dot Solar Cells; Abstract; 1. Introduction; 2. Experimental Details; 3. Impact of thin GaAsSb Capping Layers. 3.1. Introduction to Thin GaAsSb Capping Layers3.2. Compositional and Structural Analysis; 3.3. Band Structure Simulation; 3.4. Photocurrent Analysis; 3.5. Solar Cell Performance; 4. Impact of thin GaAs(Sb)N Capping Layers; 4.1. Introduction to Thin GaAs(Sb)N Capping Layers; 4.2. Growth and Optimization of GaAs(Sb)N-Capped InAs/GaAs Quantum Dots; 4.3. Structural Analysis and Photoluminescence; 4.4. Solar Cell Performance: Effect of the N Incorporation on Carrier Collection; 4.5. Carrier Escape Times: Theoretical Modelling; 4.6. Alternative Approaches for the Quaternary Capping Layers. 5. Analysis of Relative Contributions to the Total Photocurrent: Impact of the Capping Layer NatureConclusion; Acknowledgments; References; Chapter 4; Soap-Based Thermal Insulation: An Environmentally Friendly Alternative to Petroleum Counterparts; Abstract; 1. Introduction; 2. Literature Review; 3. Aim; 4. Research Methodology and Process; Aerating the Soap; 5. Thermal Testing of the Samples; 6. Improving the Soap Samples Further; 6.1. Insulation Degradation; 6.2. Waterproofing the Soap; 6.3. Fire Retardant Soap Casing; 6.4. Making the Soap Vermin Proof; 7. In-Situ Testing. Power resources Research. http://id.loc.gov/authorities/subjects/sh85105997 Ressources énergétiques Recherche. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Power resources Research fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85105997 |
title | Advances in energy research. |
title_auth | Advances in energy research. |
title_exact_search | Advances in energy research. |
title_full | Advances in energy research. Volume 26 / Morena J. Acosta, editor. |
title_fullStr | Advances in energy research. Volume 26 / Morena J. Acosta, editor. |
title_full_unstemmed | Advances in energy research. Volume 26 / Morena J. Acosta, editor. |
title_short | Advances in energy research. |
title_sort | advances in energy research |
topic | Power resources Research. http://id.loc.gov/authorities/subjects/sh85105997 Ressources énergétiques Recherche. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Power resources Research fast |
topic_facet | Power resources Research. Ressources énergétiques Recherche. TECHNOLOGY & ENGINEERING Mechanical. Power resources Research |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512184 |
work_keys_str_mv | AT acostamorenaj advancesinenergyresearchvolume26 |