Simple Lie algebras over fields of positive characteristic.: Volume II, Classifying the absolute toral rank two case /
The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a fi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
©2017.
|
Ausgabe: | 2nd edition. |
Schriftenreihe: | De Gruyter expositions in mathematics ;
42. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p : 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p : 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p : 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic : 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A.I. Kostrikin and A.A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic : 3 is given. Contents Tori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 case. |
Beschreibung: | 1 online resource (394 pages). |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110517606 3110517604 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn984536925 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 170422s2017 gw ob 001 0 eng d | ||
040 | |a YDX |b eng |e pn |c YDX |d STF |d OCLCO |d IDEBK |d MERUC |d OCLCF |d OCLCQ |d N$T |d COCUF |d LOA |d IGB |d AUW |d BTN |d MHW |d INTCL |d SNK |d K6U |d U3W |d WYU |d OCLCQ |d G3B |d LVT |d S8I |d S8J |d D6H |d VT2 |d U9X |d AUD |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCQ | ||
019 | |a 984601106 |a 986848234 |a 987056259 |a 988291969 |a 988554430 |a 993056211 |a 1024298016 |a 1148093316 |a 1164782590 | ||
020 | |a 9783110517606 |q (electronic book) | ||
020 | |a 3110517604 |q (electronic book) | ||
020 | |z 9783110516760 | ||
024 | 7 | |a 10.1515/9783110517606 |2 doi | |
035 | |a (OCoLC)984536925 |z (OCoLC)984601106 |z (OCoLC)986848234 |z (OCoLC)987056259 |z (OCoLC)988291969 |z (OCoLC)988554430 |z (OCoLC)993056211 |z (OCoLC)1024298016 |z (OCoLC)1148093316 |z (OCoLC)1164782590 | ||
050 | 4 | |a QA252.3 |b .S782 2017 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.482 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Strade, Helmut, |d 1942- |1 https://id.oclc.org/worldcat/entity/E39PBJghrhQpmKy64pP8QqMXVC |0 http://id.loc.gov/authorities/names/n86008393 | |
245 | 1 | 0 | |a Simple Lie algebras over fields of positive characteristic. |n Volume II, |p Classifying the absolute toral rank two case / |c Helmut Strade. |
246 | 3 | 0 | |a Classifying the absolute toral rank two case |
250 | |a 2nd edition. | ||
260 | |a Berlin ; |a Boston : |b De Gruyter, |c ©2017. | ||
300 | |a 1 online resource (394 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a De Gruyter expositions in mathematics ; |v volume 42 | |
588 | 0 | |a Online resource; title from digital title page (viewed on April 26, 2017). | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |t Frontmatter -- |t Contents -- |t Introduction -- |t Chapter 10. Tori in Hamiltonian and Melikian algebras -- |t Chapter 11. 1-sections -- |t Chapter 12. Sandwich elements and rigid tori -- |t Chapter 13. Towards graded algebras -- |t Chapter 14. The toral rank 2 case -- |t Notation -- |t Bibliography -- |t Index |
520 | |a The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p : 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p : 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p : 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic : 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A.I. Kostrikin and A.A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic : 3 is given. Contents Tori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 case. | ||
546 | |a In English. | ||
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 6 | |a Algèbres de Lie. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Lie algebras |2 fast | |
758 | |i has work: |a Classifying the absolute toral rank two case Simple Lie algebras over fields of positive characteristic II (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGkVcwvvp9T3bfyPBTHhDy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Strade, Helmut. |t Classifying the Absolute Toral Rank Two Case. |d Berlin/Boston : De Gruyter, ©2017 |z 9783110516760 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 42. |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504963 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 1504963 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis36890248 | ||
938 | |a YBP Library Services |b YANK |n 14248000 | ||
938 | |a YBP Library Services |b YANK |n 13204410 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn984536925 |
---|---|
_version_ | 1816882387139690496 |
adam_text | |
any_adam_object | |
author | Strade, Helmut, 1942- |
author_GND | http://id.loc.gov/authorities/names/n86008393 |
author_facet | Strade, Helmut, 1942- |
author_role | |
author_sort | Strade, Helmut, 1942- |
author_variant | h s hs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 .S782 2017 |
callnumber-search | QA252.3 .S782 2017 |
callnumber-sort | QA 3252.3 S782 42017 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Contents -- Introduction -- Chapter 10. Tori in Hamiltonian and Melikian algebras -- Chapter 11. 1-sections -- Chapter 12. Sandwich elements and rigid tori -- Chapter 13. Towards graded algebras -- Chapter 14. The toral rank 2 case -- Notation -- Bibliography -- Index |
ctrlnum | (OCoLC)984536925 |
dewey-full | 512/.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.482 |
dewey-search | 512/.482 |
dewey-sort | 3512 3482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05050cam a2200577Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn984536925</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">170422s2017 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">COCUF</subfield><subfield code="d">LOA</subfield><subfield code="d">IGB</subfield><subfield code="d">AUW</subfield><subfield code="d">BTN</subfield><subfield code="d">MHW</subfield><subfield code="d">INTCL</subfield><subfield code="d">SNK</subfield><subfield code="d">K6U</subfield><subfield code="d">U3W</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">LVT</subfield><subfield code="d">S8I</subfield><subfield code="d">S8J</subfield><subfield code="d">D6H</subfield><subfield code="d">VT2</subfield><subfield code="d">U9X</subfield><subfield code="d">AUD</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">984601106</subfield><subfield code="a">986848234</subfield><subfield code="a">987056259</subfield><subfield code="a">988291969</subfield><subfield code="a">988554430</subfield><subfield code="a">993056211</subfield><subfield code="a">1024298016</subfield><subfield code="a">1148093316</subfield><subfield code="a">1164782590</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110517606</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110517604</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110516760</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110517606</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)984536925</subfield><subfield code="z">(OCoLC)984601106</subfield><subfield code="z">(OCoLC)986848234</subfield><subfield code="z">(OCoLC)987056259</subfield><subfield code="z">(OCoLC)988291969</subfield><subfield code="z">(OCoLC)988554430</subfield><subfield code="z">(OCoLC)993056211</subfield><subfield code="z">(OCoLC)1024298016</subfield><subfield code="z">(OCoLC)1148093316</subfield><subfield code="z">(OCoLC)1164782590</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA252.3</subfield><subfield code="b">.S782 2017</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strade, Helmut,</subfield><subfield code="d">1942-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJghrhQpmKy64pP8QqMXVC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86008393</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simple Lie algebras over fields of positive characteristic.</subfield><subfield code="n">Volume II,</subfield><subfield code="p">Classifying the absolute toral rank two case /</subfield><subfield code="c">Helmut Strade.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Classifying the absolute toral rank two case</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (394 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">volume 42</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed on April 26, 2017).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Introduction --</subfield><subfield code="t">Chapter 10. Tori in Hamiltonian and Melikian algebras --</subfield><subfield code="t">Chapter 11. 1-sections --</subfield><subfield code="t">Chapter 12. Sandwich elements and rigid tori --</subfield><subfield code="t">Chapter 13. Towards graded algebras --</subfield><subfield code="t">Chapter 14. The toral rank 2 case --</subfield><subfield code="t">Notation --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p : 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p : 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p : 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic : 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A.I. Kostrikin and A.A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic : 3 is given. Contents Tori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 case.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Classifying the absolute toral rank two case Simple Lie algebras over fields of positive characteristic II (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGkVcwvvp9T3bfyPBTHhDy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Strade, Helmut.</subfield><subfield code="t">Classifying the Absolute Toral Rank Two Case.</subfield><subfield code="d">Berlin/Boston : De Gruyter, ©2017</subfield><subfield code="z">9783110516760</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">42.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504963</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1504963</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis36890248</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14248000</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13204410</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn984536925 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:48Z |
institution | BVB |
isbn | 9783110517606 3110517604 |
language | English |
oclc_num | 984536925 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (394 pages). |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter expositions in mathematics ; |
spelling | Strade, Helmut, 1942- https://id.oclc.org/worldcat/entity/E39PBJghrhQpmKy64pP8QqMXVC http://id.loc.gov/authorities/names/n86008393 Simple Lie algebras over fields of positive characteristic. Volume II, Classifying the absolute toral rank two case / Helmut Strade. Classifying the absolute toral rank two case 2nd edition. Berlin ; Boston : De Gruyter, ©2017. 1 online resource (394 pages). text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda De Gruyter expositions in mathematics ; volume 42 Online resource; title from digital title page (viewed on April 26, 2017). Includes bibliographical references and index. Frontmatter -- Contents -- Introduction -- Chapter 10. Tori in Hamiltonian and Melikian algebras -- Chapter 11. 1-sections -- Chapter 12. Sandwich elements and rigid tori -- Chapter 13. Towards graded algebras -- Chapter 14. The toral rank 2 case -- Notation -- Bibliography -- Index The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p : 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p : 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p : 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic : 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A.I. Kostrikin and A.A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic : 3 is given. Contents Tori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 case. In English. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Algebra Intermediate. bisacsh Lie algebras fast has work: Classifying the absolute toral rank two case Simple Lie algebras over fields of positive characteristic II (Text) https://id.oclc.org/worldcat/entity/E39PCGkVcwvvp9T3bfyPBTHhDy https://id.oclc.org/worldcat/ontology/hasWork Print version: Strade, Helmut. Classifying the Absolute Toral Rank Two Case. Berlin/Boston : De Gruyter, ©2017 9783110516760 De Gruyter expositions in mathematics ; 42. http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504963 Volltext |
spellingShingle | Strade, Helmut, 1942- Simple Lie algebras over fields of positive characteristic. De Gruyter expositions in mathematics ; Frontmatter -- Contents -- Introduction -- Chapter 10. Tori in Hamiltonian and Melikian algebras -- Chapter 11. 1-sections -- Chapter 12. Sandwich elements and rigid tori -- Chapter 13. Towards graded algebras -- Chapter 14. The toral rank 2 case -- Notation -- Bibliography -- Index Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Algebra Intermediate. bisacsh Lie algebras fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076782 |
title | Simple Lie algebras over fields of positive characteristic. |
title_alt | Classifying the absolute toral rank two case Frontmatter -- Contents -- Introduction -- Chapter 10. Tori in Hamiltonian and Melikian algebras -- Chapter 11. 1-sections -- Chapter 12. Sandwich elements and rigid tori -- Chapter 13. Towards graded algebras -- Chapter 14. The toral rank 2 case -- Notation -- Bibliography -- Index |
title_auth | Simple Lie algebras over fields of positive characteristic. |
title_exact_search | Simple Lie algebras over fields of positive characteristic. |
title_full | Simple Lie algebras over fields of positive characteristic. Volume II, Classifying the absolute toral rank two case / Helmut Strade. |
title_fullStr | Simple Lie algebras over fields of positive characteristic. Volume II, Classifying the absolute toral rank two case / Helmut Strade. |
title_full_unstemmed | Simple Lie algebras over fields of positive characteristic. Volume II, Classifying the absolute toral rank two case / Helmut Strade. |
title_short | Simple Lie algebras over fields of positive characteristic. |
title_sort | simple lie algebras over fields of positive characteristic classifying the absolute toral rank two case |
topic | Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Algebra Intermediate. bisacsh Lie algebras fast |
topic_facet | Lie algebras. Algèbres de Lie. MATHEMATICS Algebra Intermediate. Lie algebras |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504963 |
work_keys_str_mv | AT stradehelmut simpleliealgebrasoverfieldsofpositivecharacteristicvolumeii AT stradehelmut classifyingtheabsolutetoralranktwocase |