The core model iterability problem /:
Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Large cardinal hypotheses play...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2017.
|
Schriftenreihe: | Lecture notes in logic ;
8. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Large cardinal hypotheses play a central role in modern set theory. One important way to understand such hypotheses is to construct concrete, minimal universes, or 'core models', satisfying them. Since Godel's pioneering work on the universe of constructible sets, several larger core models satisfying stronger hypotheses have been constructed, and these have proved quite useful. In this volume, the eighth publication in the 'Lecture Notes in Logic' series, Steel extends this theory so that it can produce core models having Woodin cardinals, a large cardinal hypothesis that is the focus of much current research. The book is intended for advanced graduate students and researchers in set theory. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781316754726 1316754723 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn982187096 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||||||| | ||
008 | 170412s2017 enk ob 001 0 eng d | ||
040 | |a LGG |b eng |e rda |e pn |c LGG |d LGG |d N$T |d EBLCP |d N$T |d IDEBK |d YDX |d UIU |d OCLCF |d NOC |d UAB |d OTZ |d OCLCQ |d DEBBG |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCL |d TMA |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 982747111 |a 989712540 |a 994744578 | ||
020 | |a 9781316754726 |q (electronic bk.) | ||
020 | |a 1316754723 |q (electronic bk.) | ||
020 | |z 9781107167964 | ||
020 | |z 1107167965 | ||
020 | |z 9781316716892 | ||
020 | |z 1316716899 | ||
035 | |a (OCoLC)982187096 |z (OCoLC)982747111 |z (OCoLC)989712540 |z (OCoLC)994744578 | ||
050 | 4 | |a QA248 | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.3/22 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Steel, J. R. |q (John R.), |d 1948- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJwdbT73bhPyMbjXypRBT3 |0 http://id.loc.gov/authorities/names/n88083272 | |
245 | 1 | 4 | |a The core model iterability problem / |c John R. Steel. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2017. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in logic ; |v 8 | |
504 | |a Includes bibliographical references and index. | ||
520 | 8 | |a Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Large cardinal hypotheses play a central role in modern set theory. One important way to understand such hypotheses is to construct concrete, minimal universes, or 'core models', satisfying them. Since Godel's pioneering work on the universe of constructible sets, several larger core models satisfying stronger hypotheses have been constructed, and these have proved quite useful. In this volume, the eighth publication in the 'Lecture Notes in Logic' series, Steel extends this theory so that it can produce core models having Woodin cardinals, a large cardinal hypothesis that is the focus of much current research. The book is intended for advanced graduate students and researchers in set theory. | |
588 | 0 | |a Print version record. | |
505 | 0 | |a The construction of Kc -- Iterability -- Thick classes and universal weasels -- The hull and definability properties -- The construction of true K -- An inductive definition of K -- Some applications -- Embeddings of K -- A general iterability theorem. | |
650 | 0 | |a Constructibility (Set theory) |0 http://id.loc.gov/authorities/subjects/sh85031342 | |
650 | 0 | |a Large cardinals (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh94004021 | |
650 | 6 | |a Constructibilité (Théorie des ensembles) | |
650 | 6 | |a Grands cardinaux (Nombres) | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 0 | 7 | |a Matemáticas constructivas |2 embucm |
650 | 7 | |a Constructibility (Set theory) |2 fast | |
650 | 7 | |a Large cardinals (Mathematics) |2 fast | |
758 | |i has work: |a The core model iterability problem (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGVpQ67pkWmGYFbw9BQHyb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a STEEL, JOHN R. |t CORE MODEL ITERABILITY PROBLEM. |d [S.l.] : CAMBRIDGE UNIV PRESS, 2016 |z 1107167965 |w (OCoLC)959951935 |
830 | 0 | |a Lecture notes in logic ; |v 8. |0 http://id.loc.gov/authorities/names/n93082404 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475794 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL4812297 | ||
938 | |a EBSCOhost |b EBSC |n 1475794 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38009335 | ||
938 | |a YBP Library Services |b YANK |n 14007739 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn982187096 |
---|---|
_version_ | 1816882385696849920 |
adam_text | |
any_adam_object | |
author | Steel, J. R. (John R.), 1948- |
author_GND | http://id.loc.gov/authorities/names/n88083272 |
author_facet | Steel, J. R. (John R.), 1948- |
author_role | aut |
author_sort | Steel, J. R. 1948- |
author_variant | j r s jr jrs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248 |
callnumber-search | QA248 |
callnumber-sort | QA 3248 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | The construction of Kc -- Iterability -- Thick classes and universal weasels -- The hull and definability properties -- The construction of true K -- An inductive definition of K -- Some applications -- Embeddings of K -- A general iterability theorem. |
ctrlnum | (OCoLC)982187096 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03971cam a2200601 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn982187096</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">170412s2017 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LGG</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">LGG</subfield><subfield code="d">LGG</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDX</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NOC</subfield><subfield code="d">UAB</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">982747111</subfield><subfield code="a">989712540</subfield><subfield code="a">994744578</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316754726</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316754723</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107167964</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107167965</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781316716892</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1316716899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)982187096</subfield><subfield code="z">(OCoLC)982747111</subfield><subfield code="z">(OCoLC)989712540</subfield><subfield code="z">(OCoLC)994744578</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA248</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Steel, J. R.</subfield><subfield code="q">(John R.),</subfield><subfield code="d">1948-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJwdbT73bhPyMbjXypRBT3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88083272</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The core model iterability problem /</subfield><subfield code="c">John R. Steel.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in logic ;</subfield><subfield code="v">8</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Large cardinal hypotheses play a central role in modern set theory. One important way to understand such hypotheses is to construct concrete, minimal universes, or 'core models', satisfying them. Since Godel's pioneering work on the universe of constructible sets, several larger core models satisfying stronger hypotheses have been constructed, and these have proved quite useful. In this volume, the eighth publication in the 'Lecture Notes in Logic' series, Steel extends this theory so that it can produce core models having Woodin cardinals, a large cardinal hypothesis that is the focus of much current research. The book is intended for advanced graduate students and researchers in set theory.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">The construction of Kc -- Iterability -- Thick classes and universal weasels -- The hull and definability properties -- The construction of true K -- An inductive definition of K -- Some applications -- Embeddings of K -- A general iterability theorem.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Constructibility (Set theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031342</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Large cardinals (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh94004021</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Constructibilité (Théorie des ensembles)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Grands cardinaux (Nombres)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matemáticas constructivas</subfield><subfield code="2">embucm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Constructibility (Set theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Large cardinals (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The core model iterability problem (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGVpQ67pkWmGYFbw9BQHyb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">STEEL, JOHN R.</subfield><subfield code="t">CORE MODEL ITERABILITY PROBLEM.</subfield><subfield code="d">[S.l.] : CAMBRIDGE UNIV PRESS, 2016</subfield><subfield code="z">1107167965</subfield><subfield code="w">(OCoLC)959951935</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in logic ;</subfield><subfield code="v">8.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93082404</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475794</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4812297</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1475794</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38009335</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14007739</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn982187096 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:47Z |
institution | BVB |
isbn | 9781316754726 1316754723 |
language | English |
oclc_num | 982187096 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press, |
record_format | marc |
series | Lecture notes in logic ; |
series2 | Lecture notes in logic ; |
spelling | Steel, J. R. (John R.), 1948- author. https://id.oclc.org/worldcat/entity/E39PBJwdbT73bhPyMbjXypRBT3 http://id.loc.gov/authorities/names/n88083272 The core model iterability problem / John R. Steel. Cambridge : Cambridge University Press, 2017. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Lecture notes in logic ; 8 Includes bibliographical references and index. Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Large cardinal hypotheses play a central role in modern set theory. One important way to understand such hypotheses is to construct concrete, minimal universes, or 'core models', satisfying them. Since Godel's pioneering work on the universe of constructible sets, several larger core models satisfying stronger hypotheses have been constructed, and these have proved quite useful. In this volume, the eighth publication in the 'Lecture Notes in Logic' series, Steel extends this theory so that it can produce core models having Woodin cardinals, a large cardinal hypothesis that is the focus of much current research. The book is intended for advanced graduate students and researchers in set theory. Print version record. The construction of Kc -- Iterability -- Thick classes and universal weasels -- The hull and definability properties -- The construction of true K -- An inductive definition of K -- Some applications -- Embeddings of K -- A general iterability theorem. Constructibility (Set theory) http://id.loc.gov/authorities/subjects/sh85031342 Large cardinals (Mathematics) http://id.loc.gov/authorities/subjects/sh94004021 Constructibilité (Théorie des ensembles) Grands cardinaux (Nombres) MATHEMATICS General. bisacsh Matemáticas constructivas embucm Constructibility (Set theory) fast Large cardinals (Mathematics) fast has work: The core model iterability problem (Text) https://id.oclc.org/worldcat/entity/E39PCGVpQ67pkWmGYFbw9BQHyb https://id.oclc.org/worldcat/ontology/hasWork Print version: STEEL, JOHN R. CORE MODEL ITERABILITY PROBLEM. [S.l.] : CAMBRIDGE UNIV PRESS, 2016 1107167965 (OCoLC)959951935 Lecture notes in logic ; 8. http://id.loc.gov/authorities/names/n93082404 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475794 Volltext |
spellingShingle | Steel, J. R. (John R.), 1948- The core model iterability problem / Lecture notes in logic ; The construction of Kc -- Iterability -- Thick classes and universal weasels -- The hull and definability properties -- The construction of true K -- An inductive definition of K -- Some applications -- Embeddings of K -- A general iterability theorem. Constructibility (Set theory) http://id.loc.gov/authorities/subjects/sh85031342 Large cardinals (Mathematics) http://id.loc.gov/authorities/subjects/sh94004021 Constructibilité (Théorie des ensembles) Grands cardinaux (Nombres) MATHEMATICS General. bisacsh Matemáticas constructivas embucm Constructibility (Set theory) fast Large cardinals (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85031342 http://id.loc.gov/authorities/subjects/sh94004021 |
title | The core model iterability problem / |
title_auth | The core model iterability problem / |
title_exact_search | The core model iterability problem / |
title_full | The core model iterability problem / John R. Steel. |
title_fullStr | The core model iterability problem / John R. Steel. |
title_full_unstemmed | The core model iterability problem / John R. Steel. |
title_short | The core model iterability problem / |
title_sort | core model iterability problem |
topic | Constructibility (Set theory) http://id.loc.gov/authorities/subjects/sh85031342 Large cardinals (Mathematics) http://id.loc.gov/authorities/subjects/sh94004021 Constructibilité (Théorie des ensembles) Grands cardinaux (Nombres) MATHEMATICS General. bisacsh Matemáticas constructivas embucm Constructibility (Set theory) fast Large cardinals (Mathematics) fast |
topic_facet | Constructibility (Set theory) Large cardinals (Mathematics) Constructibilité (Théorie des ensembles) Grands cardinaux (Nombres) MATHEMATICS General. Matemáticas constructivas |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475794 |
work_keys_str_mv | AT steeljr thecoremodeliterabilityproblem AT steeljr coremodeliterabilityproblem |