Descriptive set theory and forcing :: how to prove theorems about borel sets the hard way /
These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2017.
|
Schriftenreihe: | Lecture notes in logic ;
4. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets. |
Beschreibung: | Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis. |
Beschreibung: | 1 online resource |
ISBN: | 9781316754757 1316754758 1316752828 9781316752821 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn982123767 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||||||| | ||
008 | 170411s2017 enk o 001 0 eng d | ||
040 | |a LGG |b eng |e rda |e pn |c LGG |d N$T |d EBLCP |d N$T |d IDEBK |d UIU |d OCLCF |d YDX |d NOC |d UAB |d OTZ |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCL |d TMA |d OCLCQ |d SFB |d OCLCQ | ||
019 | |a 982600896 |a 982813339 |a 983026640 |a 983362038 |a 983476847 |a 983689956 | ||
020 | |a 9781316754757 |q (electronic bk.) | ||
020 | |a 1316754758 |q (electronic bk.) | ||
020 | |a 1316752828 | ||
020 | |a 9781316752821 | ||
020 | |z 9781316716977 | ||
020 | |z 131671697X | ||
020 | |z 9781107168060 | ||
020 | |z 1107168066 | ||
035 | |a (OCoLC)982123767 |z (OCoLC)982600896 |z (OCoLC)982813339 |z (OCoLC)983026640 |z (OCoLC)983362038 |z (OCoLC)983476847 |z (OCoLC)983689956 | ||
037 | |a 1005922 |b MIL | ||
050 | 4 | |a QA248 | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.3/22 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Miller, Arnold W., |d 1950- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjKcTmf4H8MHGd8yXT4qFC |0 http://id.loc.gov/authorities/names/n95063128 | |
245 | 1 | 0 | |a Descriptive set theory and forcing : |b how to prove theorems about borel sets the hard way / |c Arnold W. Miller. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2017. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in logic ; |v 4 | |
500 | |a Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis. | ||
588 | 0 | |a Print version record. | |
520 | |a These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets. | ||
505 | 0 | |a I -- On the length of Borel hierarchies -- Borel Hierarchy -- Abstract Borel hierarchies -- Characteristic function of a sequence -- Martin's Axiom -- Generic G[textdelta] -- [textalpha]-forcing -- Boolean algebras -- Borel order of a field of sets -- CH and orders of separable metric spaces -- Martin-Solovay Theorem -- Boolean algebra of order [textomega] -- Luzin sets -- Cohen real model -- The random real model -- Covering number of an ideal | |
505 | 8 | |a II -- Analytic sets -- Analytic sets -- Constructible well-orderings -- Hereditarily countable sets -- Shoenfield Absoluteness -- Mansfield-Solovay Theorem -- Uniformity and Scales -- Martin's axiom and Constructibility -- well-orderings -- Large sets | |
505 | 8 | |a III -- Classical Separation Theorems -- Souslin-Luzin Separation Theorem -- Kleene Separation Theorem -- -Reduction -- -codes | |
505 | 8 | |a IV -- Gandy Forcing -- equivalence relations -- Borel metric spaces and lines in the plane -- equivalence relations -- Louveau's Theorem -- Proof of Louveau's Theorem. | |
650 | 0 | |a Set theory. |0 http://id.loc.gov/authorities/subjects/sh85120387 | |
650 | 0 | |a Forcing (Model theory) |0 http://id.loc.gov/authorities/subjects/sh85050461 | |
650 | 0 | |a Borel sets. |0 http://id.loc.gov/authorities/subjects/sh97008457 | |
650 | 6 | |a Théorie des ensembles. | |
650 | 6 | |a Forcing (Théorie des modèles) | |
650 | 6 | |a Ensembles boréliens. | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Teoría de juegos |2 embne | |
650 | 7 | |a Borel sets |2 fast | |
650 | 7 | |a Forcing (Model theory) |2 fast | |
650 | 7 | |a Set theory |2 fast | |
758 | |i has work: |a Descriptive set theory and forcing (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFVxvrg7dpdGm4PyGqRPDC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a MILLER, ARNOLD W. |t DESCRIPTIVE SET THEORY AND FORCING. |d [Place of publication not identified] : CAMBRIDGE UNIV Press, 2016 |z 1107168066 |w (OCoLC)959592886 |
830 | 0 | |a Lecture notes in logic ; |v 4. |0 http://id.loc.gov/authorities/names/n93082404 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475797 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL4812300 | ||
938 | |a EBSCOhost |b EBSC |n 1475797 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38009338 | ||
938 | |a YBP Library Services |b YANK |n 14007742 | ||
938 | |a YBP Library Services |b YANK |n 13972496 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn982123767 |
---|---|
_version_ | 1816882385697898496 |
adam_text | |
any_adam_object | |
author | Miller, Arnold W., 1950- |
author_GND | http://id.loc.gov/authorities/names/n95063128 |
author_facet | Miller, Arnold W., 1950- |
author_role | aut |
author_sort | Miller, Arnold W., 1950- |
author_variant | a w m aw awm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248 |
callnumber-search | QA248 |
callnumber-sort | QA 3248 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | I -- On the length of Borel hierarchies -- Borel Hierarchy -- Abstract Borel hierarchies -- Characteristic function of a sequence -- Martin's Axiom -- Generic G[textdelta] -- [textalpha]-forcing -- Boolean algebras -- Borel order of a field of sets -- CH and orders of separable metric spaces -- Martin-Solovay Theorem -- Boolean algebra of order [textomega] -- Luzin sets -- Cohen real model -- The random real model -- Covering number of an ideal II -- Analytic sets -- Analytic sets -- Constructible well-orderings -- Hereditarily countable sets -- Shoenfield Absoluteness -- Mansfield-Solovay Theorem -- Uniformity and Scales -- Martin's axiom and Constructibility -- well-orderings -- Large sets III -- Classical Separation Theorems -- Souslin-Luzin Separation Theorem -- Kleene Separation Theorem -- -Reduction -- -codes IV -- Gandy Forcing -- equivalence relations -- Borel metric spaces and lines in the plane -- equivalence relations -- Louveau's Theorem -- Proof of Louveau's Theorem. |
ctrlnum | (OCoLC)982123767 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05027cam a2200721 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn982123767</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">170411s2017 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LGG</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">LGG</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDX</subfield><subfield code="d">NOC</subfield><subfield code="d">UAB</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">982600896</subfield><subfield code="a">982813339</subfield><subfield code="a">983026640</subfield><subfield code="a">983362038</subfield><subfield code="a">983476847</subfield><subfield code="a">983689956</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316754757</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316754758</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316752828</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316752821</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781316716977</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">131671697X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107168060</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107168066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)982123767</subfield><subfield code="z">(OCoLC)982600896</subfield><subfield code="z">(OCoLC)982813339</subfield><subfield code="z">(OCoLC)983026640</subfield><subfield code="z">(OCoLC)983362038</subfield><subfield code="z">(OCoLC)983476847</subfield><subfield code="z">(OCoLC)983689956</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">1005922</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA248</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, Arnold W.,</subfield><subfield code="d">1950-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjKcTmf4H8MHGd8yXT4qFC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n95063128</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Descriptive set theory and forcing :</subfield><subfield code="b">how to prove theorems about borel sets the hard way /</subfield><subfield code="c">Arnold W. Miller.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in logic ;</subfield><subfield code="v">4</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">I -- On the length of Borel hierarchies -- Borel Hierarchy -- Abstract Borel hierarchies -- Characteristic function of a sequence -- Martin's Axiom -- Generic G[textdelta] -- [textalpha]-forcing -- Boolean algebras -- Borel order of a field of sets -- CH and orders of separable metric spaces -- Martin-Solovay Theorem -- Boolean algebra of order [textomega] -- Luzin sets -- Cohen real model -- The random real model -- Covering number of an ideal</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">II -- Analytic sets -- Analytic sets -- Constructible well-orderings -- Hereditarily countable sets -- Shoenfield Absoluteness -- Mansfield-Solovay Theorem -- Uniformity and Scales -- Martin's axiom and Constructibility -- well-orderings -- Large sets</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">III -- Classical Separation Theorems -- Souslin-Luzin Separation Theorem -- Kleene Separation Theorem -- -Reduction -- -codes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">IV -- Gandy Forcing -- equivalence relations -- Borel metric spaces and lines in the plane -- equivalence relations -- Louveau's Theorem -- Proof of Louveau's Theorem.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Set theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85120387</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Forcing (Model theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85050461</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Borel sets.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97008457</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des ensembles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Forcing (Théorie des modèles)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ensembles boréliens.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoría de juegos</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Borel sets</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forcing (Model theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Set theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Descriptive set theory and forcing (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFVxvrg7dpdGm4PyGqRPDC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">MILLER, ARNOLD W.</subfield><subfield code="t">DESCRIPTIVE SET THEORY AND FORCING.</subfield><subfield code="d">[Place of publication not identified] : CAMBRIDGE UNIV Press, 2016</subfield><subfield code="z">1107168066</subfield><subfield code="w">(OCoLC)959592886</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in logic ;</subfield><subfield code="v">4.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93082404</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475797</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4812300</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1475797</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38009338</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14007742</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13972496</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn982123767 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:47Z |
institution | BVB |
isbn | 9781316754757 1316754758 1316752828 9781316752821 |
language | English |
oclc_num | 982123767 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press, |
record_format | marc |
series | Lecture notes in logic ; |
series2 | Lecture notes in logic ; |
spelling | Miller, Arnold W., 1950- author. https://id.oclc.org/worldcat/entity/E39PCjKcTmf4H8MHGd8yXT4qFC http://id.loc.gov/authorities/names/n95063128 Descriptive set theory and forcing : how to prove theorems about borel sets the hard way / Arnold W. Miller. Cambridge : Cambridge University Press, 2017. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Lecture notes in logic ; 4 Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis. Print version record. These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets. I -- On the length of Borel hierarchies -- Borel Hierarchy -- Abstract Borel hierarchies -- Characteristic function of a sequence -- Martin's Axiom -- Generic G[textdelta] -- [textalpha]-forcing -- Boolean algebras -- Borel order of a field of sets -- CH and orders of separable metric spaces -- Martin-Solovay Theorem -- Boolean algebra of order [textomega] -- Luzin sets -- Cohen real model -- The random real model -- Covering number of an ideal II -- Analytic sets -- Analytic sets -- Constructible well-orderings -- Hereditarily countable sets -- Shoenfield Absoluteness -- Mansfield-Solovay Theorem -- Uniformity and Scales -- Martin's axiom and Constructibility -- well-orderings -- Large sets III -- Classical Separation Theorems -- Souslin-Luzin Separation Theorem -- Kleene Separation Theorem -- -Reduction -- -codes IV -- Gandy Forcing -- equivalence relations -- Borel metric spaces and lines in the plane -- equivalence relations -- Louveau's Theorem -- Proof of Louveau's Theorem. Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Forcing (Model theory) http://id.loc.gov/authorities/subjects/sh85050461 Borel sets. http://id.loc.gov/authorities/subjects/sh97008457 Théorie des ensembles. Forcing (Théorie des modèles) Ensembles boréliens. MATHEMATICS General. bisacsh Teoría de juegos embne Borel sets fast Forcing (Model theory) fast Set theory fast has work: Descriptive set theory and forcing (Text) https://id.oclc.org/worldcat/entity/E39PCFVxvrg7dpdGm4PyGqRPDC https://id.oclc.org/worldcat/ontology/hasWork Print version: MILLER, ARNOLD W. DESCRIPTIVE SET THEORY AND FORCING. [Place of publication not identified] : CAMBRIDGE UNIV Press, 2016 1107168066 (OCoLC)959592886 Lecture notes in logic ; 4. http://id.loc.gov/authorities/names/n93082404 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475797 Volltext |
spellingShingle | Miller, Arnold W., 1950- Descriptive set theory and forcing : how to prove theorems about borel sets the hard way / Lecture notes in logic ; I -- On the length of Borel hierarchies -- Borel Hierarchy -- Abstract Borel hierarchies -- Characteristic function of a sequence -- Martin's Axiom -- Generic G[textdelta] -- [textalpha]-forcing -- Boolean algebras -- Borel order of a field of sets -- CH and orders of separable metric spaces -- Martin-Solovay Theorem -- Boolean algebra of order [textomega] -- Luzin sets -- Cohen real model -- The random real model -- Covering number of an ideal II -- Analytic sets -- Analytic sets -- Constructible well-orderings -- Hereditarily countable sets -- Shoenfield Absoluteness -- Mansfield-Solovay Theorem -- Uniformity and Scales -- Martin's axiom and Constructibility -- well-orderings -- Large sets III -- Classical Separation Theorems -- Souslin-Luzin Separation Theorem -- Kleene Separation Theorem -- -Reduction -- -codes IV -- Gandy Forcing -- equivalence relations -- Borel metric spaces and lines in the plane -- equivalence relations -- Louveau's Theorem -- Proof of Louveau's Theorem. Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Forcing (Model theory) http://id.loc.gov/authorities/subjects/sh85050461 Borel sets. http://id.loc.gov/authorities/subjects/sh97008457 Théorie des ensembles. Forcing (Théorie des modèles) Ensembles boréliens. MATHEMATICS General. bisacsh Teoría de juegos embne Borel sets fast Forcing (Model theory) fast Set theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85120387 http://id.loc.gov/authorities/subjects/sh85050461 http://id.loc.gov/authorities/subjects/sh97008457 |
title | Descriptive set theory and forcing : how to prove theorems about borel sets the hard way / |
title_auth | Descriptive set theory and forcing : how to prove theorems about borel sets the hard way / |
title_exact_search | Descriptive set theory and forcing : how to prove theorems about borel sets the hard way / |
title_full | Descriptive set theory and forcing : how to prove theorems about borel sets the hard way / Arnold W. Miller. |
title_fullStr | Descriptive set theory and forcing : how to prove theorems about borel sets the hard way / Arnold W. Miller. |
title_full_unstemmed | Descriptive set theory and forcing : how to prove theorems about borel sets the hard way / Arnold W. Miller. |
title_short | Descriptive set theory and forcing : |
title_sort | descriptive set theory and forcing how to prove theorems about borel sets the hard way |
title_sub | how to prove theorems about borel sets the hard way / |
topic | Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Forcing (Model theory) http://id.loc.gov/authorities/subjects/sh85050461 Borel sets. http://id.loc.gov/authorities/subjects/sh97008457 Théorie des ensembles. Forcing (Théorie des modèles) Ensembles boréliens. MATHEMATICS General. bisacsh Teoría de juegos embne Borel sets fast Forcing (Model theory) fast Set theory fast |
topic_facet | Set theory. Forcing (Model theory) Borel sets. Théorie des ensembles. Forcing (Théorie des modèles) Ensembles boréliens. MATHEMATICS General. Teoría de juegos Borel sets Set theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475797 |
work_keys_str_mv | AT millerarnoldw descriptivesettheoryandforcinghowtoprovetheoremsaboutborelsetsthehardway |