Topological theory of graphs /:
"This book presents a topological approach to combinatorial configuration, in particular graphs, by introducing a new pair of homology and cohomology via polyhedral. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientabl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston :
De Gruyter,
2017.
|
Ausgabe: | DG edition. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | "This book presents a topological approach to combinatorial configuration, in particular graphs, by introducing a new pair of homology and cohomology via polyhedral. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientable and nonorientable) with given genus, the Gauss crossing conjecture, the graphicness and cographicness of a matroid and so forth. Notably, the specific case of embeddability on a surface of genus zero leads to a number of corollaries, including the theorems of Lefschetz (on double coverings), of MacLane (on cycle bases), and of Whitney (on duality) for planarity. Relevant problems includes the Jordan of axiom in polyhedral forms, efficient methods for extremality for recognizing a variety of embeddings (including rectilinear layouts in VLSI), and pan-polynomials, including those of Jones, Kauffman (on knots), and Tutte (on graphs), among others"--Back cover. |
Beschreibung: | 1 online resource (370 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110479508 3110479508 9783110479225 3110479222 3110479494 9783110479492 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn978572048 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 170318s2017 maua ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d IDEBK |d STF |d WTU |d OCLCQ |d N$T |d OCLCF |d DEGRU |d GWDNB |d OTZ |d OCLCQ |d CUI |d CUY |d MERUC |d IGB |d ZCU |d CN8ML |d SNK |d INTCL |d MHW |d BTN |d AUW |d DEBBG |d VTS |d AAA |d ICG |d OCLCQ |d D6H |d OCLCQ |d G3B |d S8I |d S8J |d S9I |d DKC |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d UEJ |d OCLCQ | ||
016 | 7 | |a 1129320707 |2 DE-101 | |
016 | 7 | |a 1130283372 |2 DE-101 | |
019 | |a 976396004 |a 979063627 |a 979955203 |a 992930525 | ||
020 | |a 9783110479508 |q (electronic bk.) | ||
020 | |a 3110479508 |q (electronic bk.) | ||
020 | |a 9783110479225 | ||
020 | |a 3110479222 | ||
020 | |a 3110479494 | ||
020 | |a 9783110479492 | ||
020 | |z 9783110479492 | ||
020 | |z 3110479494 | ||
020 | |z 311047669X | ||
020 | |z 3110479222 | ||
024 | 7 | |a 10.1515/9783110479492 |2 doi | |
024 | 3 | |a 9783110479492 | |
024 | 7 | |a urn:nbn:de:101:1-2017040528062 |2 urn | |
024 | 3 | |a 9783110479225 | |
024 | 7 | |a urn:nbn:de:101:1-201704192965 |2 urn | |
035 | |a (OCoLC)978572048 |z (OCoLC)976396004 |z (OCoLC)979063627 |z (OCoLC)979955203 |z (OCoLC)992930525 | ||
037 | |a 1000764 |b MIL | ||
050 | 4 | |a QA166.195 |b .L58 2017eb | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.5 |2 23 | |
084 | |a 510 |q DE-101 |2 sdnb | ||
049 | |a MAIN | ||
100 | 1 | |a Liu, Yanpei, |d 1939- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjwTvRmjfGbM6GGpwXJjyd |0 http://id.loc.gov/authorities/names/n95065190 | |
245 | 1 | 0 | |a Topological theory of graphs / |c Yanpei Liu. |
250 | |a DG edition. | ||
250 | |a USTC edition. | ||
264 | 1 | |a Boston : |b De Gruyter, |c 2017. | |
300 | |a 1 online resource (370 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface to DG Edition -- Preface to USTC Edition -- 1 Preliminaries ; 1.1 Sets and relations ; 1.2 Partitions and permutations ; 1.3 Graphs and networks ; 1.4 Groups and spaces ; 1.5 Notes -- 2 Polyhedra ; 2.1 Polygon double covers ; 2.2 Supports and skeletons ; 2.3 Orientable polyhedra ; 2.4 Non-orientable polyhedra ; 2.5 Classic polyhedra ; 2.6 Notes -- 3 Surfaces ; 3.1 Polyhegons ; 3.2 Surface closed curve axiom ; 3.3 Topological transformations ; 3.4 Complete invariants ; 3.5 Graphs on surfaces ; 3.6 Up-embeddability ; 3.7 Notes -- 4 Homology on Polyhedra ; 4.1 Double cover by travels ; 4.2 Homology ; 4.3 Cohomology ; 4.4 Bicycles ; 4.5 Notes -- 5 Polyhedra on the Sphere ; 5.1 Planar polyhedra ; 5.2 Jordan closed-curve axiom ; 5.3 Uniqueness ; 5.4 Straight-line representations ; 5.5 Convex representation ; 5.6 Notes -- 6 Automorphisms of a Polyhedron ; 6.1 Automorphisms of polyhedra ; 6.2 Eulerian and non-Eulerian codes ; 6.3 Determination of automorphisms ; 6.4 Asymmetrization ; 6.5 Notes -- 7 Gauss Crossing Sequences ; 7.1 Crossing polyhegons ; 7.2 Dehn's transformation ; 7.3 Algebraic principles ; 7.4 Gauss crossing problem ; 7.5 Notes -- 8 Cohomology on Graphs ; 8.1 Immersions ; 8.2 Realization of planarity ; 8.3 Reductions ; 8.4 Planarity auxiliary graphs ; 8.5 Basic conclusions ; 8.6 Notes -- 9 Embeddability on Surfaces ; 9.1 Joint tree model ; 9.2 Associate polyhegons ; 9.4 Criteria of embeddability ; 9.5 Notes -- 10 Embeddings on Sphere ; 10.1 Left and right determinations ; 10.2 Forbidden configurations ; 10.3 Basic order characterization ; 10.4 Number of planar embeddings ; 10.5 Notes -- 11 Orthogonality on Surfaces -- 11.1 Definitions ; 11.2 On surfaces of genus zero ; 11.3 Surface models ; 11.4 On surfaces of genus not zero ; 11.5 Notes -- 12 Net Embeddings ; 12.1 Definitions ; 12.2 Face admissibility ; 12.3 General criterion ; 12.4 Special criterion ; 12.4 Special criteria ; 12.5 Notes -- 13 Extremality on Surfaces ; 13.1 Maximal genus ; 13.2 Minimal genus ; 13.3 Shortest embedding ; 13.4 Thickness ; 13.5 Crossing number ; 13.6 Minimal bend ; 13.8 Notes -- 14 Matroidal Graphicness ; 14.1 Definitions ; 14.2 Binary matroids ; 14.3 Regularity ; 14.4 Graphicness ; 14.5 Cographicness ; 14.6 Notes -- 15 Knot Polynomials ; 15.1 Definitions ; 15.2 Knot diagram ; 15.3 Tutte polynomial ; 15.4 Pan-polynomial ; 15.5 Jones Polynomial ; 15.6 Notes -- Bibliography -- Subject Index -- Author Index. | |
520 | |a "This book presents a topological approach to combinatorial configuration, in particular graphs, by introducing a new pair of homology and cohomology via polyhedral. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientable and nonorientable) with given genus, the Gauss crossing conjecture, the graphicness and cographicness of a matroid and so forth. Notably, the specific case of embeddability on a surface of genus zero leads to a number of corollaries, including the theorems of Lefschetz (on double coverings), of MacLane (on cycle bases), and of Whitney (on duality) for planarity. Relevant problems includes the Jordan of axiom in polyhedral forms, efficient methods for extremality for recognizing a variety of embeddings (including rectilinear layouts in VLSI), and pan-polynomials, including those of Jones, Kauffman (on knots), and Tutte (on graphs), among others"--Back cover. | ||
546 | |a In English. | ||
650 | 0 | |a Topological graph theory. |0 http://id.loc.gov/authorities/subjects/sh93005803 | |
650 | 6 | |a Théorie des graphes topologiques. | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Topological graph theory |2 fast | |
650 | 7 | |a Graphentheorie |2 gnd |0 http://d-nb.info/gnd/4113782-6 | |
650 | 7 | |a Topologie |2 gnd |0 http://d-nb.info/gnd/4060425-1 | |
653 | |a (Produktform)Electronic book text | ||
653 | |a (Zielgruppe)Fachpublikum/ Wissenschaft | ||
653 | |a (BISAC Subject Heading)MAT008000 | ||
653 | |a (BISAC Subject Heading)MAT038000: MAT038000 MATHEMATICS / Topology | ||
653 | |a (BISAC Subject Heading)MAT012000: MAT012000 MATHEMATICS / Geometry / General | ||
653 | |a (VLB-WN)9620 | ||
653 | |a (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke | ||
758 | |i has work: |a Topological theory of graphs (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGfYdPRwfBvvtfB9ykPrVP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version : |a Liu, Yanpei, 1939- |t Topological theory of graphs. |d Berlin ; Boston : De Gruyter, [2017] |z 9783110476699 |w (DLC) 2017024510 |w (OCoLC)961010373 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1484790 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1484790 |3 Volltext |
938 | |a De Gruyter |b DEGR |n 9783110479492 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4822108 | ||
938 | |a EBSCOhost |b EBSC |n 1484790 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis36849427 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn978572048 |
---|---|
_version_ | 1829095101642571776 |
adam_text | |
any_adam_object | |
author | Liu, Yanpei, 1939- |
author_GND | http://id.loc.gov/authorities/names/n95065190 |
author_facet | Liu, Yanpei, 1939- |
author_role | aut |
author_sort | Liu, Yanpei, 1939- |
author_variant | y l yl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA166 |
callnumber-raw | QA166.195 .L58 2017eb |
callnumber-search | QA166.195 .L58 2017eb |
callnumber-sort | QA 3166.195 L58 42017EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface to DG Edition -- Preface to USTC Edition -- 1 Preliminaries ; 1.1 Sets and relations ; 1.2 Partitions and permutations ; 1.3 Graphs and networks ; 1.4 Groups and spaces ; 1.5 Notes -- 2 Polyhedra ; 2.1 Polygon double covers ; 2.2 Supports and skeletons ; 2.3 Orientable polyhedra ; 2.4 Non-orientable polyhedra ; 2.5 Classic polyhedra ; 2.6 Notes -- 3 Surfaces ; 3.1 Polyhegons ; 3.2 Surface closed curve axiom ; 3.3 Topological transformations ; 3.4 Complete invariants ; 3.5 Graphs on surfaces ; 3.6 Up-embeddability ; 3.7 Notes -- 4 Homology on Polyhedra ; 4.1 Double cover by travels ; 4.2 Homology ; 4.3 Cohomology ; 4.4 Bicycles ; 4.5 Notes -- 5 Polyhedra on the Sphere ; 5.1 Planar polyhedra ; 5.2 Jordan closed-curve axiom ; 5.3 Uniqueness ; 5.4 Straight-line representations ; 5.5 Convex representation ; 5.6 Notes -- 6 Automorphisms of a Polyhedron ; 6.1 Automorphisms of polyhedra ; 6.2 Eulerian and non-Eulerian codes ; 6.3 Determination of automorphisms ; 6.4 Asymmetrization ; 6.5 Notes -- 7 Gauss Crossing Sequences ; 7.1 Crossing polyhegons ; 7.2 Dehn's transformation ; 7.3 Algebraic principles ; 7.4 Gauss crossing problem ; 7.5 Notes -- 8 Cohomology on Graphs ; 8.1 Immersions ; 8.2 Realization of planarity ; 8.3 Reductions ; 8.4 Planarity auxiliary graphs ; 8.5 Basic conclusions ; 8.6 Notes -- 9 Embeddability on Surfaces ; 9.1 Joint tree model ; 9.2 Associate polyhegons ; 9.4 Criteria of embeddability ; 9.5 Notes -- 10 Embeddings on Sphere ; 10.1 Left and right determinations ; 10.2 Forbidden configurations ; 10.3 Basic order characterization ; 10.4 Number of planar embeddings ; 10.5 Notes -- 11 Orthogonality on Surfaces -- 11.1 Definitions ; 11.2 On surfaces of genus zero ; 11.3 Surface models ; 11.4 On surfaces of genus not zero ; 11.5 Notes -- 12 Net Embeddings ; 12.1 Definitions ; 12.2 Face admissibility ; 12.3 General criterion ; 12.4 Special criterion ; 12.4 Special criteria ; 12.5 Notes -- 13 Extremality on Surfaces ; 13.1 Maximal genus ; 13.2 Minimal genus ; 13.3 Shortest embedding ; 13.4 Thickness ; 13.5 Crossing number ; 13.6 Minimal bend ; 13.8 Notes -- 14 Matroidal Graphicness ; 14.1 Definitions ; 14.2 Binary matroids ; 14.3 Regularity ; 14.4 Graphicness ; 14.5 Cographicness ; 14.6 Notes -- 15 Knot Polynomials ; 15.1 Definitions ; 15.2 Knot diagram ; 15.3 Tutte polynomial ; 15.4 Pan-polynomial ; 15.5 Jones Polynomial ; 15.6 Notes -- Bibliography -- Subject Index -- Author Index. |
ctrlnum | (OCoLC)978572048 |
dewey-full | 511.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.5 |
dewey-search | 511.5 |
dewey-sort | 3511.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | DG edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07044cam a2200841 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn978572048</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">170318s2017 maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">STF</subfield><subfield code="d">WTU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEGRU</subfield><subfield code="d">GWDNB</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUI</subfield><subfield code="d">CUY</subfield><subfield code="d">MERUC</subfield><subfield code="d">IGB</subfield><subfield code="d">ZCU</subfield><subfield code="d">CN8ML</subfield><subfield code="d">SNK</subfield><subfield code="d">INTCL</subfield><subfield code="d">MHW</subfield><subfield code="d">BTN</subfield><subfield code="d">AUW</subfield><subfield code="d">DEBBG</subfield><subfield code="d">VTS</subfield><subfield code="d">AAA</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">S8I</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1129320707</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1130283372</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">976396004</subfield><subfield code="a">979063627</subfield><subfield code="a">979955203</subfield><subfield code="a">992930525</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110479508</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110479508</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110479225</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110479222</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110479494</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110479492</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110479492</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110479494</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">311047669X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110479222</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110479492</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110479492</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:101:1-2017040528062</subfield><subfield code="2">urn</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110479225</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:101:1-201704192965</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)978572048</subfield><subfield code="z">(OCoLC)976396004</subfield><subfield code="z">(OCoLC)979063627</subfield><subfield code="z">(OCoLC)979955203</subfield><subfield code="z">(OCoLC)992930525</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">1000764</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA166.195</subfield><subfield code="b">.L58 2017eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="q">DE-101</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yanpei,</subfield><subfield code="d">1939-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjwTvRmjfGbM6GGpwXJjyd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n95065190</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological theory of graphs /</subfield><subfield code="c">Yanpei Liu.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">DG edition.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">USTC edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (370 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface to DG Edition -- Preface to USTC Edition -- 1 Preliminaries ; 1.1 Sets and relations ; 1.2 Partitions and permutations ; 1.3 Graphs and networks ; 1.4 Groups and spaces ; 1.5 Notes -- 2 Polyhedra ; 2.1 Polygon double covers ; 2.2 Supports and skeletons ; 2.3 Orientable polyhedra ; 2.4 Non-orientable polyhedra ; 2.5 Classic polyhedra ; 2.6 Notes -- 3 Surfaces ; 3.1 Polyhegons ; 3.2 Surface closed curve axiom ; 3.3 Topological transformations ; 3.4 Complete invariants ; 3.5 Graphs on surfaces ; 3.6 Up-embeddability ; 3.7 Notes -- 4 Homology on Polyhedra ; 4.1 Double cover by travels ; 4.2 Homology ; 4.3 Cohomology ; 4.4 Bicycles ; 4.5 Notes -- 5 Polyhedra on the Sphere ; 5.1 Planar polyhedra ; 5.2 Jordan closed-curve axiom ; 5.3 Uniqueness ; 5.4 Straight-line representations ; 5.5 Convex representation ; 5.6 Notes -- 6 Automorphisms of a Polyhedron ; 6.1 Automorphisms of polyhedra ; 6.2 Eulerian and non-Eulerian codes ; 6.3 Determination of automorphisms ; 6.4 Asymmetrization ; 6.5 Notes -- 7 Gauss Crossing Sequences ; 7.1 Crossing polyhegons ; 7.2 Dehn's transformation ; 7.3 Algebraic principles ; 7.4 Gauss crossing problem ; 7.5 Notes -- 8 Cohomology on Graphs ; 8.1 Immersions ; 8.2 Realization of planarity ; 8.3 Reductions ; 8.4 Planarity auxiliary graphs ; 8.5 Basic conclusions ; 8.6 Notes -- 9 Embeddability on Surfaces ; 9.1 Joint tree model ; 9.2 Associate polyhegons ; 9.4 Criteria of embeddability ; 9.5 Notes -- 10 Embeddings on Sphere ; 10.1 Left and right determinations ; 10.2 Forbidden configurations ; 10.3 Basic order characterization ; 10.4 Number of planar embeddings ; 10.5 Notes -- 11 Orthogonality on Surfaces -- 11.1 Definitions ; 11.2 On surfaces of genus zero ; 11.3 Surface models ; 11.4 On surfaces of genus not zero ; 11.5 Notes -- 12 Net Embeddings ; 12.1 Definitions ; 12.2 Face admissibility ; 12.3 General criterion ; 12.4 Special criterion ; 12.4 Special criteria ; 12.5 Notes -- 13 Extremality on Surfaces ; 13.1 Maximal genus ; 13.2 Minimal genus ; 13.3 Shortest embedding ; 13.4 Thickness ; 13.5 Crossing number ; 13.6 Minimal bend ; 13.8 Notes -- 14 Matroidal Graphicness ; 14.1 Definitions ; 14.2 Binary matroids ; 14.3 Regularity ; 14.4 Graphicness ; 14.5 Cographicness ; 14.6 Notes -- 15 Knot Polynomials ; 15.1 Definitions ; 15.2 Knot diagram ; 15.3 Tutte polynomial ; 15.4 Pan-polynomial ; 15.5 Jones Polynomial ; 15.6 Notes -- Bibliography -- Subject Index -- Author Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book presents a topological approach to combinatorial configuration, in particular graphs, by introducing a new pair of homology and cohomology via polyhedral. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientable and nonorientable) with given genus, the Gauss crossing conjecture, the graphicness and cographicness of a matroid and so forth. Notably, the specific case of embeddability on a surface of genus zero leads to a number of corollaries, including the theorems of Lefschetz (on double coverings), of MacLane (on cycle bases), and of Whitney (on duality) for planarity. Relevant problems includes the Jordan of axiom in polyhedral forms, efficient methods for extremality for recognizing a variety of embeddings (including rectilinear layouts in VLSI), and pan-polynomials, including those of Jones, Kauffman (on knots), and Tutte (on graphs), among others"--Back cover.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Topological graph theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93005803</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des graphes topologiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological graph theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4113782-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4060425-1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Produktform)Electronic book text</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Zielgruppe)Fachpublikum/ Wissenschaft</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT008000</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT038000: MAT038000 MATHEMATICS / Topology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(BISAC Subject Heading)MAT012000: MAT012000 MATHEMATICS / Geometry / General</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(VLB-WN)9620</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">(Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Topological theory of graphs (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGfYdPRwfBvvtfB9ykPrVP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version :</subfield><subfield code="a">Liu, Yanpei, 1939-</subfield><subfield code="t">Topological theory of graphs.</subfield><subfield code="d">Berlin ; Boston : De Gruyter, [2017]</subfield><subfield code="z">9783110476699</subfield><subfield code="w">(DLC) 2017024510</subfield><subfield code="w">(OCoLC)961010373</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1484790</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1484790</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110479492</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4822108</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1484790</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis36849427</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn978572048 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:43:40Z |
institution | BVB |
isbn | 9783110479508 3110479508 9783110479225 3110479222 3110479494 9783110479492 |
language | English |
oclc_num | 978572048 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (370 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter, |
record_format | marc |
spelling | Liu, Yanpei, 1939- author. https://id.oclc.org/worldcat/entity/E39PCjwTvRmjfGbM6GGpwXJjyd http://id.loc.gov/authorities/names/n95065190 Topological theory of graphs / Yanpei Liu. DG edition. USTC edition. Boston : De Gruyter, 2017. 1 online resource (370 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda Print version record. Includes bibliographical references and index. Preface to DG Edition -- Preface to USTC Edition -- 1 Preliminaries ; 1.1 Sets and relations ; 1.2 Partitions and permutations ; 1.3 Graphs and networks ; 1.4 Groups and spaces ; 1.5 Notes -- 2 Polyhedra ; 2.1 Polygon double covers ; 2.2 Supports and skeletons ; 2.3 Orientable polyhedra ; 2.4 Non-orientable polyhedra ; 2.5 Classic polyhedra ; 2.6 Notes -- 3 Surfaces ; 3.1 Polyhegons ; 3.2 Surface closed curve axiom ; 3.3 Topological transformations ; 3.4 Complete invariants ; 3.5 Graphs on surfaces ; 3.6 Up-embeddability ; 3.7 Notes -- 4 Homology on Polyhedra ; 4.1 Double cover by travels ; 4.2 Homology ; 4.3 Cohomology ; 4.4 Bicycles ; 4.5 Notes -- 5 Polyhedra on the Sphere ; 5.1 Planar polyhedra ; 5.2 Jordan closed-curve axiom ; 5.3 Uniqueness ; 5.4 Straight-line representations ; 5.5 Convex representation ; 5.6 Notes -- 6 Automorphisms of a Polyhedron ; 6.1 Automorphisms of polyhedra ; 6.2 Eulerian and non-Eulerian codes ; 6.3 Determination of automorphisms ; 6.4 Asymmetrization ; 6.5 Notes -- 7 Gauss Crossing Sequences ; 7.1 Crossing polyhegons ; 7.2 Dehn's transformation ; 7.3 Algebraic principles ; 7.4 Gauss crossing problem ; 7.5 Notes -- 8 Cohomology on Graphs ; 8.1 Immersions ; 8.2 Realization of planarity ; 8.3 Reductions ; 8.4 Planarity auxiliary graphs ; 8.5 Basic conclusions ; 8.6 Notes -- 9 Embeddability on Surfaces ; 9.1 Joint tree model ; 9.2 Associate polyhegons ; 9.4 Criteria of embeddability ; 9.5 Notes -- 10 Embeddings on Sphere ; 10.1 Left and right determinations ; 10.2 Forbidden configurations ; 10.3 Basic order characterization ; 10.4 Number of planar embeddings ; 10.5 Notes -- 11 Orthogonality on Surfaces -- 11.1 Definitions ; 11.2 On surfaces of genus zero ; 11.3 Surface models ; 11.4 On surfaces of genus not zero ; 11.5 Notes -- 12 Net Embeddings ; 12.1 Definitions ; 12.2 Face admissibility ; 12.3 General criterion ; 12.4 Special criterion ; 12.4 Special criteria ; 12.5 Notes -- 13 Extremality on Surfaces ; 13.1 Maximal genus ; 13.2 Minimal genus ; 13.3 Shortest embedding ; 13.4 Thickness ; 13.5 Crossing number ; 13.6 Minimal bend ; 13.8 Notes -- 14 Matroidal Graphicness ; 14.1 Definitions ; 14.2 Binary matroids ; 14.3 Regularity ; 14.4 Graphicness ; 14.5 Cographicness ; 14.6 Notes -- 15 Knot Polynomials ; 15.1 Definitions ; 15.2 Knot diagram ; 15.3 Tutte polynomial ; 15.4 Pan-polynomial ; 15.5 Jones Polynomial ; 15.6 Notes -- Bibliography -- Subject Index -- Author Index. "This book presents a topological approach to combinatorial configuration, in particular graphs, by introducing a new pair of homology and cohomology via polyhedral. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientable and nonorientable) with given genus, the Gauss crossing conjecture, the graphicness and cographicness of a matroid and so forth. Notably, the specific case of embeddability on a surface of genus zero leads to a number of corollaries, including the theorems of Lefschetz (on double coverings), of MacLane (on cycle bases), and of Whitney (on duality) for planarity. Relevant problems includes the Jordan of axiom in polyhedral forms, efficient methods for extremality for recognizing a variety of embeddings (including rectilinear layouts in VLSI), and pan-polynomials, including those of Jones, Kauffman (on knots), and Tutte (on graphs), among others"--Back cover. In English. Topological graph theory. http://id.loc.gov/authorities/subjects/sh93005803 Théorie des graphes topologiques. MATHEMATICS General. bisacsh Topological graph theory fast Graphentheorie gnd http://d-nb.info/gnd/4113782-6 Topologie gnd http://d-nb.info/gnd/4060425-1 (Produktform)Electronic book text (Zielgruppe)Fachpublikum/ Wissenschaft (BISAC Subject Heading)MAT008000 (BISAC Subject Heading)MAT038000: MAT038000 MATHEMATICS / Topology (BISAC Subject Heading)MAT012000: MAT012000 MATHEMATICS / Geometry / General (VLB-WN)9620 (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke has work: Topological theory of graphs (Text) https://id.oclc.org/worldcat/entity/E39PCGfYdPRwfBvvtfB9ykPrVP https://id.oclc.org/worldcat/ontology/hasWork Print version : Liu, Yanpei, 1939- Topological theory of graphs. Berlin ; Boston : De Gruyter, [2017] 9783110476699 (DLC) 2017024510 (OCoLC)961010373 |
spellingShingle | Liu, Yanpei, 1939- Topological theory of graphs / Preface to DG Edition -- Preface to USTC Edition -- 1 Preliminaries ; 1.1 Sets and relations ; 1.2 Partitions and permutations ; 1.3 Graphs and networks ; 1.4 Groups and spaces ; 1.5 Notes -- 2 Polyhedra ; 2.1 Polygon double covers ; 2.2 Supports and skeletons ; 2.3 Orientable polyhedra ; 2.4 Non-orientable polyhedra ; 2.5 Classic polyhedra ; 2.6 Notes -- 3 Surfaces ; 3.1 Polyhegons ; 3.2 Surface closed curve axiom ; 3.3 Topological transformations ; 3.4 Complete invariants ; 3.5 Graphs on surfaces ; 3.6 Up-embeddability ; 3.7 Notes -- 4 Homology on Polyhedra ; 4.1 Double cover by travels ; 4.2 Homology ; 4.3 Cohomology ; 4.4 Bicycles ; 4.5 Notes -- 5 Polyhedra on the Sphere ; 5.1 Planar polyhedra ; 5.2 Jordan closed-curve axiom ; 5.3 Uniqueness ; 5.4 Straight-line representations ; 5.5 Convex representation ; 5.6 Notes -- 6 Automorphisms of a Polyhedron ; 6.1 Automorphisms of polyhedra ; 6.2 Eulerian and non-Eulerian codes ; 6.3 Determination of automorphisms ; 6.4 Asymmetrization ; 6.5 Notes -- 7 Gauss Crossing Sequences ; 7.1 Crossing polyhegons ; 7.2 Dehn's transformation ; 7.3 Algebraic principles ; 7.4 Gauss crossing problem ; 7.5 Notes -- 8 Cohomology on Graphs ; 8.1 Immersions ; 8.2 Realization of planarity ; 8.3 Reductions ; 8.4 Planarity auxiliary graphs ; 8.5 Basic conclusions ; 8.6 Notes -- 9 Embeddability on Surfaces ; 9.1 Joint tree model ; 9.2 Associate polyhegons ; 9.4 Criteria of embeddability ; 9.5 Notes -- 10 Embeddings on Sphere ; 10.1 Left and right determinations ; 10.2 Forbidden configurations ; 10.3 Basic order characterization ; 10.4 Number of planar embeddings ; 10.5 Notes -- 11 Orthogonality on Surfaces -- 11.1 Definitions ; 11.2 On surfaces of genus zero ; 11.3 Surface models ; 11.4 On surfaces of genus not zero ; 11.5 Notes -- 12 Net Embeddings ; 12.1 Definitions ; 12.2 Face admissibility ; 12.3 General criterion ; 12.4 Special criterion ; 12.4 Special criteria ; 12.5 Notes -- 13 Extremality on Surfaces ; 13.1 Maximal genus ; 13.2 Minimal genus ; 13.3 Shortest embedding ; 13.4 Thickness ; 13.5 Crossing number ; 13.6 Minimal bend ; 13.8 Notes -- 14 Matroidal Graphicness ; 14.1 Definitions ; 14.2 Binary matroids ; 14.3 Regularity ; 14.4 Graphicness ; 14.5 Cographicness ; 14.6 Notes -- 15 Knot Polynomials ; 15.1 Definitions ; 15.2 Knot diagram ; 15.3 Tutte polynomial ; 15.4 Pan-polynomial ; 15.5 Jones Polynomial ; 15.6 Notes -- Bibliography -- Subject Index -- Author Index. Topological graph theory. http://id.loc.gov/authorities/subjects/sh93005803 Théorie des graphes topologiques. MATHEMATICS General. bisacsh Topological graph theory fast Graphentheorie gnd http://d-nb.info/gnd/4113782-6 Topologie gnd http://d-nb.info/gnd/4060425-1 |
subject_GND | http://id.loc.gov/authorities/subjects/sh93005803 http://d-nb.info/gnd/4113782-6 http://d-nb.info/gnd/4060425-1 |
title | Topological theory of graphs / |
title_auth | Topological theory of graphs / |
title_exact_search | Topological theory of graphs / |
title_full | Topological theory of graphs / Yanpei Liu. |
title_fullStr | Topological theory of graphs / Yanpei Liu. |
title_full_unstemmed | Topological theory of graphs / Yanpei Liu. |
title_short | Topological theory of graphs / |
title_sort | topological theory of graphs |
topic | Topological graph theory. http://id.loc.gov/authorities/subjects/sh93005803 Théorie des graphes topologiques. MATHEMATICS General. bisacsh Topological graph theory fast Graphentheorie gnd http://d-nb.info/gnd/4113782-6 Topologie gnd http://d-nb.info/gnd/4060425-1 |
topic_facet | Topological graph theory. Théorie des graphes topologiques. MATHEMATICS General. Topological graph theory Graphentheorie Topologie |
work_keys_str_mv | AT liuyanpei topologicaltheoryofgraphs |