Topological theory of graphs /:

"This book presents a topological approach to combinatorial configuration, in particular graphs, by introducing a new pair of homology and cohomology via polyhedral. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Liu, Yanpei, 1939- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston : De Gruyter, 2017.
Ausgabe:DG edition.
Schlagworte:
Online-Zugang:DE-862
DE-863
Zusammenfassung:"This book presents a topological approach to combinatorial configuration, in particular graphs, by introducing a new pair of homology and cohomology via polyhedral. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientable and nonorientable) with given genus, the Gauss crossing conjecture, the graphicness and cographicness of a matroid and so forth. Notably, the specific case of embeddability on a surface of genus zero leads to a number of corollaries, including the theorems of Lefschetz (on double coverings), of MacLane (on cycle bases), and of Whitney (on duality) for planarity. Relevant problems includes the Jordan of axiom in polyhedral forms, efficient methods for extremality for recognizing a variety of embeddings (including rectilinear layouts in VLSI), and pan-polynomials, including those of Jones, Kauffman (on knots), and Tutte (on graphs), among others"--Back cover.
Beschreibung:1 online resource (370 pages) : illustrations
Bibliographie:Includes bibliographical references and index.
ISBN:9783110479508
3110479508
9783110479225
3110479222
3110479494
9783110479492

Es ist kein Print-Exemplar vorhanden.

Volltext öffnen