Vanishing viscosity method :: solutions to nonlinear systems /
"The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrate...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin ; Boston :
Walter de Gruyter GmbH,
[2017]
|
Subjects: | |
Online Access: | DE-862 DE-863 |
Summary: | "The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science."--Resource home page |
Physical Description: | 1 online resource (viii, 561 pages .) |
Bibliography: | Includes bibliographical references. |
ISBN: | 9783110492576 3110492571 9783110494273 3110494272 3110495287 9783110495287 9783110494280 3110494280 |
Staff View
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn972238041 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 170210s2017 gw a ob 000 0 eng d | ||
010 | |a 2016042712 | ||
040 | |a YDX |b eng |e rda |e pn |c YDX |d OCLCO |d N$T |d YDX |d EBLCP |d IDEBK |d CUY |d HEBIS |d OCLCO |d OTZ |d STF |d MERUC |d COO |d OCLCF |d OCLCQ |d CUI |d COCUF |d LOA |d IGB |d K6U |d ZCU |d CN8ML |d SNK |d INTCL |d MHW |d BTN |d AUW |d OCLCQ |d DEBBG |d VTS |d ICG |d OCLCQ |d VT2 |d D6H |d OCLCQ |d G3B |d U3W |d WYU |d S8I |d S8J |d S9I |d LVT |d OCLCA |d DKC |d OCLCQ |d UX1 |d CEF |d UWK |d ADU |d OCLCQ |d UKCRE |d HS0 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d UEJ |d OCLCO |d OCLCQ | ||
019 | |a 966363900 |a 970390091 |a 971365362 |a 1002020936 |a 1003974275 |a 1030821861 |a 1030844359 |a 1030908852 |a 1031318468 |a 1033539885 |a 1035703642 |a 1037797608 |a 1045058346 |a 1055405686 |a 1056501899 |a 1076649983 |a 1081296427 |a 1100571008 |a 1101716718 |a 1103570612 |a 1110413507 |a 1113388876 |a 1119151038 |a 1153011805 |a 1153466772 |a 1162597910 |a 1227633325 |a 1228608512 | ||
020 | |a 9783110492576 |q (electronic bk.) | ||
020 | |a 3110492571 |q (electronic bk.) | ||
020 | |a 9783110494273 | ||
020 | |a 3110494272 | ||
020 | |a 3110495287 | ||
020 | |a 9783110495287 | ||
020 | |a 9783110494280 | ||
020 | |a 3110494280 | ||
020 | |z 3110495287 | ||
020 | |z 9783110495287 | ||
020 | |z 3110494280 | ||
020 | |z 0110495284 | ||
024 | 3 | |a 9783110495287 | |
035 | |a (OCoLC)972238041 |z (OCoLC)966363900 |z (OCoLC)970390091 |z (OCoLC)971365362 |z (OCoLC)1002020936 |z (OCoLC)1003974275 |z (OCoLC)1030821861 |z (OCoLC)1030844359 |z (OCoLC)1030908852 |z (OCoLC)1031318468 |z (OCoLC)1033539885 |z (OCoLC)1035703642 |z (OCoLC)1037797608 |z (OCoLC)1045058346 |z (OCoLC)1055405686 |z (OCoLC)1056501899 |z (OCoLC)1076649983 |z (OCoLC)1081296427 |z (OCoLC)1100571008 |z (OCoLC)1101716718 |z (OCoLC)1103570612 |z (OCoLC)1110413507 |z (OCoLC)1113388876 |z (OCoLC)1119151038 |z (OCoLC)1153011805 |z (OCoLC)1153466772 |z (OCoLC)1162597910 |z (OCoLC)1227633325 |z (OCoLC)1228608512 | ||
037 | |a 978210 |b MIL | ||
050 | 4 | |a QA316 |b .G86 2017 | |
072 | 7 | |a QA |2 lcco | |
072 | 7 | |a QC |2 lcco | |
072 | 7 | |a TA |2 lcco | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.353 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Guo, Boling, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjCrXmd36gYGYjWFyfd98P |0 http://id.loc.gov/authorities/names/n2007077855 | |
245 | 1 | 0 | |a Vanishing viscosity method : |b solutions to nonlinear systems / |c Boling Guo, Dongfen Bian, Fangfang Li, Xiaoyu Xi. |
264 | 1 | |a Berlin ; |a Boston : |b Walter de Gruyter GmbH, |c [2017] | |
300 | |a 1 online resource (viii, 561 pages .) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1 Sobolev Space and Preliminaries ; 1.1 Basic Notation and Function Spaces ; 1.1.1 Basic Notation ; 1.1.2 Function Spaces ; 1.1.3 Some Basic Inequalities ; 1.2 Weak Derivatives and Its Properties, Wm p (K) and Hj, p(K) Spaces. | |
505 | 8 | |a 1.3 Sobolev Embedding Theorem and Interpolation Formula 1.4 Compactness Theory ; 1.5 Fixed Point Principle ; 2 The Vanishing Viscosity Method of Some Nonlinear Evolution System ; 2.1 Periodic Boundary and Cauchy Problem for High-Order Generalized KdV System in Dimension One. | |
505 | 8 | |a 2.2 Some KdV System with High-Order Derivative Term 2.3 High-Order Multivariable KdV Systems and Hirota Coupled KdV Systems ; 2.4 Initial Boundary Value Problem for Ferrimagnetic Equations. | |
505 | 8 | |a 2.7 Initial Value Problem for the Nonlinear Singular Integral and Differential Equations in Deep Water 2.8 Initial Value Problem for the Nonlinear Schrödinger Equations ; 2.9 Initial Value Problem and Boundary Value Problem for the Nonlinear Schrödinger Equation with Derivative. | |
520 | |a "The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science."--Resource home page | ||
650 | 0 | |a Viscosity solutions. |0 http://id.loc.gov/authorities/subjects/sh92004493 | |
650 | 6 | |a Solutions de viscosité. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Viscosity solutions |2 fast | |
650 | 7 | |a Dynamisches System |2 gnd | |
650 | 7 | |a Viskositätslösung |2 gnd |0 http://d-nb.info/gnd/4463279-4 | |
700 | 1 | |a Bian, Dongfen, |e author. | |
700 | 1 | |a Li, Fangfang, |e author. | |
700 | 1 | |a Xi, Xiaoyu, |e author. | |
758 | |i has work: |a Vanishing viscosity method (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFxtjB6cGBjfg8wykkgWQq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Vanishing viscosity method. |d Berlin ; Boston : Walter de Gruyter GmbH, [2017] |z 9783110495287 |w (DLC) 2016042712 |w (OCoLC)953423903 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1458989 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1458989 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL4793941 | ||
938 | |a EBSCOhost |b EBSC |n 1458989 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis35172249 | ||
938 | |a YBP Library Services |b YANK |n 13158975 | ||
938 | |a YBP Library Services |b YANK |n 13158861 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Record in the Search Index
DE-BY-FWS_katkey | ZDB-4-EBA-ocn972238041 |
---|---|
_version_ | 1826942141586210816 |
adam_text | |
any_adam_object | |
author | Guo, Boling Bian, Dongfen Li, Fangfang Xi, Xiaoyu |
author_GND | http://id.loc.gov/authorities/names/n2007077855 |
author_facet | Guo, Boling Bian, Dongfen Li, Fangfang Xi, Xiaoyu |
author_role | aut aut aut aut |
author_sort | Guo, Boling |
author_variant | b g bg d b db f l fl x x xx |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA316 |
callnumber-raw | QA316 .G86 2017 |
callnumber-search | QA316 .G86 2017 |
callnumber-sort | QA 3316 G86 42017 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1 Sobolev Space and Preliminaries ; 1.1 Basic Notation and Function Spaces ; 1.1.1 Basic Notation ; 1.1.2 Function Spaces ; 1.1.3 Some Basic Inequalities ; 1.2 Weak Derivatives and Its Properties, Wm p (K) and Hj, p(K) Spaces. 1.3 Sobolev Embedding Theorem and Interpolation Formula 1.4 Compactness Theory ; 1.5 Fixed Point Principle ; 2 The Vanishing Viscosity Method of Some Nonlinear Evolution System ; 2.1 Periodic Boundary and Cauchy Problem for High-Order Generalized KdV System in Dimension One. 2.2 Some KdV System with High-Order Derivative Term 2.3 High-Order Multivariable KdV Systems and Hirota Coupled KdV Systems ; 2.4 Initial Boundary Value Problem for Ferrimagnetic Equations. 2.7 Initial Value Problem for the Nonlinear Singular Integral and Differential Equations in Deep Water 2.8 Initial Value Problem for the Nonlinear Schrödinger Equations ; 2.9 Initial Value Problem and Boundary Value Problem for the Nonlinear Schrödinger Equation with Derivative. |
ctrlnum | (OCoLC)972238041 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05623cam a2200817 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn972238041</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">170210s2017 gw a ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2016042712</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CUY</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OTZ</subfield><subfield code="d">STF</subfield><subfield code="d">MERUC</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUI</subfield><subfield code="d">COCUF</subfield><subfield code="d">LOA</subfield><subfield code="d">IGB</subfield><subfield code="d">K6U</subfield><subfield code="d">ZCU</subfield><subfield code="d">CN8ML</subfield><subfield code="d">SNK</subfield><subfield code="d">INTCL</subfield><subfield code="d">MHW</subfield><subfield code="d">BTN</subfield><subfield code="d">AUW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBBG</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">U3W</subfield><subfield code="d">WYU</subfield><subfield code="d">S8I</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCA</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UX1</subfield><subfield code="d">CEF</subfield><subfield code="d">UWK</subfield><subfield code="d">ADU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">966363900</subfield><subfield code="a">970390091</subfield><subfield code="a">971365362</subfield><subfield code="a">1002020936</subfield><subfield code="a">1003974275</subfield><subfield code="a">1030821861</subfield><subfield code="a">1030844359</subfield><subfield code="a">1030908852</subfield><subfield code="a">1031318468</subfield><subfield code="a">1033539885</subfield><subfield code="a">1035703642</subfield><subfield code="a">1037797608</subfield><subfield code="a">1045058346</subfield><subfield code="a">1055405686</subfield><subfield code="a">1056501899</subfield><subfield code="a">1076649983</subfield><subfield code="a">1081296427</subfield><subfield code="a">1100571008</subfield><subfield code="a">1101716718</subfield><subfield code="a">1103570612</subfield><subfield code="a">1110413507</subfield><subfield code="a">1113388876</subfield><subfield code="a">1119151038</subfield><subfield code="a">1153011805</subfield><subfield code="a">1153466772</subfield><subfield code="a">1162597910</subfield><subfield code="a">1227633325</subfield><subfield code="a">1228608512</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110492576</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110492571</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110494273</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110494272</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110495287</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110495287</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110494280</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110494280</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110495287</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110495287</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110494280</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0110495284</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110495287</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)972238041</subfield><subfield code="z">(OCoLC)966363900</subfield><subfield code="z">(OCoLC)970390091</subfield><subfield code="z">(OCoLC)971365362</subfield><subfield code="z">(OCoLC)1002020936</subfield><subfield code="z">(OCoLC)1003974275</subfield><subfield code="z">(OCoLC)1030821861</subfield><subfield code="z">(OCoLC)1030844359</subfield><subfield code="z">(OCoLC)1030908852</subfield><subfield code="z">(OCoLC)1031318468</subfield><subfield code="z">(OCoLC)1033539885</subfield><subfield code="z">(OCoLC)1035703642</subfield><subfield code="z">(OCoLC)1037797608</subfield><subfield code="z">(OCoLC)1045058346</subfield><subfield code="z">(OCoLC)1055405686</subfield><subfield code="z">(OCoLC)1056501899</subfield><subfield code="z">(OCoLC)1076649983</subfield><subfield code="z">(OCoLC)1081296427</subfield><subfield code="z">(OCoLC)1100571008</subfield><subfield code="z">(OCoLC)1101716718</subfield><subfield code="z">(OCoLC)1103570612</subfield><subfield code="z">(OCoLC)1110413507</subfield><subfield code="z">(OCoLC)1113388876</subfield><subfield code="z">(OCoLC)1119151038</subfield><subfield code="z">(OCoLC)1153011805</subfield><subfield code="z">(OCoLC)1153466772</subfield><subfield code="z">(OCoLC)1162597910</subfield><subfield code="z">(OCoLC)1227633325</subfield><subfield code="z">(OCoLC)1228608512</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">978210</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA316</subfield><subfield code="b">.G86 2017</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QC</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Boling,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCrXmd36gYGYjWFyfd98P</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2007077855</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vanishing viscosity method :</subfield><subfield code="b">solutions to nonlinear systems /</subfield><subfield code="c">Boling Guo, Dongfen Bian, Fangfang Li, Xiaoyu Xi.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">Walter de Gruyter GmbH,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 561 pages .)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1 Sobolev Space and Preliminaries ; 1.1 Basic Notation and Function Spaces ; 1.1.1 Basic Notation ; 1.1.2 Function Spaces ; 1.1.3 Some Basic Inequalities ; 1.2 Weak Derivatives and Its Properties, Wm p (K) and Hj, p(K) Spaces.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.3 Sobolev Embedding Theorem and Interpolation Formula 1.4 Compactness Theory ; 1.5 Fixed Point Principle ; 2 The Vanishing Viscosity Method of Some Nonlinear Evolution System ; 2.1 Periodic Boundary and Cauchy Problem for High-Order Generalized KdV System in Dimension One.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2 Some KdV System with High-Order Derivative Term 2.3 High-Order Multivariable KdV Systems and Hirota Coupled KdV Systems ; 2.4 Initial Boundary Value Problem for Ferrimagnetic Equations.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.7 Initial Value Problem for the Nonlinear Singular Integral and Differential Equations in Deep Water 2.8 Initial Value Problem for the Nonlinear Schrödinger Equations ; 2.9 Initial Value Problem and Boundary Value Problem for the Nonlinear Schrödinger Equation with Derivative.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science."--Resource home page</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Viscosity solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92004493</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Solutions de viscosité.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Viscosity solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Viskositätslösung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4463279-4</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bian, Dongfen,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fangfang,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Xiaoyu,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Vanishing viscosity method (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFxtjB6cGBjfg8wykkgWQq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Vanishing viscosity method.</subfield><subfield code="d">Berlin ; Boston : Walter de Gruyter GmbH, [2017]</subfield><subfield code="z">9783110495287</subfield><subfield code="w">(DLC) 2016042712</subfield><subfield code="w">(OCoLC)953423903</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1458989</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1458989</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4793941</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1458989</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis35172249</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13158975</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13158861</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn972238041 |
illustrated | Illustrated |
indexdate | 2025-03-18T14:23:17Z |
institution | BVB |
isbn | 9783110492576 3110492571 9783110494273 3110494272 3110495287 9783110495287 9783110494280 3110494280 |
language | English |
lccn | 2016042712 |
oclc_num | 972238041 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 561 pages .) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Walter de Gruyter GmbH, |
record_format | marc |
spelling | Guo, Boling, author. https://id.oclc.org/worldcat/entity/E39PCjCrXmd36gYGYjWFyfd98P http://id.loc.gov/authorities/names/n2007077855 Vanishing viscosity method : solutions to nonlinear systems / Boling Guo, Dongfen Bian, Fangfang Li, Xiaoyu Xi. Berlin ; Boston : Walter de Gruyter GmbH, [2017] 1 online resource (viii, 561 pages .) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Includes bibliographical references. Print version record. 1 Sobolev Space and Preliminaries ; 1.1 Basic Notation and Function Spaces ; 1.1.1 Basic Notation ; 1.1.2 Function Spaces ; 1.1.3 Some Basic Inequalities ; 1.2 Weak Derivatives and Its Properties, Wm p (K) and Hj, p(K) Spaces. 1.3 Sobolev Embedding Theorem and Interpolation Formula 1.4 Compactness Theory ; 1.5 Fixed Point Principle ; 2 The Vanishing Viscosity Method of Some Nonlinear Evolution System ; 2.1 Periodic Boundary and Cauchy Problem for High-Order Generalized KdV System in Dimension One. 2.2 Some KdV System with High-Order Derivative Term 2.3 High-Order Multivariable KdV Systems and Hirota Coupled KdV Systems ; 2.4 Initial Boundary Value Problem for Ferrimagnetic Equations. 2.7 Initial Value Problem for the Nonlinear Singular Integral and Differential Equations in Deep Water 2.8 Initial Value Problem for the Nonlinear Schrödinger Equations ; 2.9 Initial Value Problem and Boundary Value Problem for the Nonlinear Schrödinger Equation with Derivative. "The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science."--Resource home page Viscosity solutions. http://id.loc.gov/authorities/subjects/sh92004493 Solutions de viscosité. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Viscosity solutions fast Dynamisches System gnd Viskositätslösung gnd http://d-nb.info/gnd/4463279-4 Bian, Dongfen, author. Li, Fangfang, author. Xi, Xiaoyu, author. has work: Vanishing viscosity method (Text) https://id.oclc.org/worldcat/entity/E39PCFxtjB6cGBjfg8wykkgWQq https://id.oclc.org/worldcat/ontology/hasWork Print version: Vanishing viscosity method. Berlin ; Boston : Walter de Gruyter GmbH, [2017] 9783110495287 (DLC) 2016042712 (OCoLC)953423903 |
spellingShingle | Guo, Boling Bian, Dongfen Li, Fangfang Xi, Xiaoyu Vanishing viscosity method : solutions to nonlinear systems / 1 Sobolev Space and Preliminaries ; 1.1 Basic Notation and Function Spaces ; 1.1.1 Basic Notation ; 1.1.2 Function Spaces ; 1.1.3 Some Basic Inequalities ; 1.2 Weak Derivatives and Its Properties, Wm p (K) and Hj, p(K) Spaces. 1.3 Sobolev Embedding Theorem and Interpolation Formula 1.4 Compactness Theory ; 1.5 Fixed Point Principle ; 2 The Vanishing Viscosity Method of Some Nonlinear Evolution System ; 2.1 Periodic Boundary and Cauchy Problem for High-Order Generalized KdV System in Dimension One. 2.2 Some KdV System with High-Order Derivative Term 2.3 High-Order Multivariable KdV Systems and Hirota Coupled KdV Systems ; 2.4 Initial Boundary Value Problem for Ferrimagnetic Equations. 2.7 Initial Value Problem for the Nonlinear Singular Integral and Differential Equations in Deep Water 2.8 Initial Value Problem for the Nonlinear Schrödinger Equations ; 2.9 Initial Value Problem and Boundary Value Problem for the Nonlinear Schrödinger Equation with Derivative. Viscosity solutions. http://id.loc.gov/authorities/subjects/sh92004493 Solutions de viscosité. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Viscosity solutions fast Dynamisches System gnd Viskositätslösung gnd http://d-nb.info/gnd/4463279-4 |
subject_GND | http://id.loc.gov/authorities/subjects/sh92004493 http://d-nb.info/gnd/4463279-4 |
title | Vanishing viscosity method : solutions to nonlinear systems / |
title_auth | Vanishing viscosity method : solutions to nonlinear systems / |
title_exact_search | Vanishing viscosity method : solutions to nonlinear systems / |
title_full | Vanishing viscosity method : solutions to nonlinear systems / Boling Guo, Dongfen Bian, Fangfang Li, Xiaoyu Xi. |
title_fullStr | Vanishing viscosity method : solutions to nonlinear systems / Boling Guo, Dongfen Bian, Fangfang Li, Xiaoyu Xi. |
title_full_unstemmed | Vanishing viscosity method : solutions to nonlinear systems / Boling Guo, Dongfen Bian, Fangfang Li, Xiaoyu Xi. |
title_short | Vanishing viscosity method : |
title_sort | vanishing viscosity method solutions to nonlinear systems |
title_sub | solutions to nonlinear systems / |
topic | Viscosity solutions. http://id.loc.gov/authorities/subjects/sh92004493 Solutions de viscosité. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Viscosity solutions fast Dynamisches System gnd Viskositätslösung gnd http://d-nb.info/gnd/4463279-4 |
topic_facet | Viscosity solutions. Solutions de viscosité. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Viscosity solutions Dynamisches System Viskositätslösung |
work_keys_str_mv | AT guoboling vanishingviscositymethodsolutionstononlinearsystems AT biandongfen vanishingviscositymethodsolutionstononlinearsystems AT lifangfang vanishingviscositymethodsolutionstononlinearsystems AT xixiaoyu vanishingviscositymethodsolutionstononlinearsystems |