Probabilistic semantic web :: reasoning and learning /
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands :
IOS Press,
[2017]
|
Schriftenreihe: | Studies on the Semantic Web ;
v. 028. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Beschreibung: | 1 online resource (xvi, 173 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781614997344 1614997349 |
ISSN: | 2215-0870 ; |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn970041839 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 170126s2017 ne ob 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d IOSPR |d BTCTA |d N$T |d OCLCF |d IDEBK |d NJP |d CUY |d OCLCQ |d YDX |d SNK |d DKU |d AUW |d IGB |d D6H |d EBLCP |d MERUC |d CHVBK |d VTS |d EZ9 |d AGLDB |d INT |d WYU |d OCLCQ |d G3B |d S8J |d S9I |d STF |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 970636474 |a 987023556 | ||
020 | |a 9781614997344 |q (electronic bk.) | ||
020 | |a 1614997349 |q (electronic bk.) | ||
020 | |z 9781614997337 |q (print) | ||
020 | |z 1614997330 | ||
035 | |a (OCoLC)970041839 |z (OCoLC)970636474 |z (OCoLC)987023556 | ||
037 | |a 988906 |b MIL | ||
050 | 4 | |a QA76.5913 |b .Z474 2016 | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 025.042/7 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Zese, Riccardo, |e author. | |
245 | 1 | 0 | |a Probabilistic semantic web : |b reasoning and learning / |c Riccardo Zese. |
264 | 1 | |a Amsterdam, Netherlands : |b IOS Press, |c [2017] | |
300 | |a 1 online resource (xvi, 173 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a Studies on the semantic web, |x 2215-0870 ; |v vol. 028 | |
504 | |a Includes bibliographical references. | ||
505 | 0 | |a Part I. Introduction; Chapter 1. Semantic Web; 1.1 Description Logics and Semantic Web; 1.2 The Current Vision of the Semantic Web; Chapter 2. Probability; 2.1 Probabilistic Inference; 2.2 Probabilistic Learning; Chapter 3. Aims of the Thesis; Chapter 4. Structure of the Thesis; Part II. Description Logics; Chapter 5. Foundations of Description Logics; Chapter 6. Description Logics' Characteristics; 6.1 Concept and Role Constructors; 6.2 Family of DLs; 6.3 Knowledge Base; 6.3.1 TBox; 6.3.2 RBox; 6.3.3 ABox; 6.4 Semantics. | |
505 | 8 | |a Chapter 7. Significant Examples of Description Logics; Chapter 8. OWL: the Web Ontology Language; Chapter 9. Inference in Description Logics; 9.1 Approaches to Compute Explanations; 9.1.1 Solving min-a-enum: The Standard Definition; 9.1.2 Resolving min-a-enum: Pinpointing Formula; Part III. A Probabilistic Semantics for Description Logics; Chapter 10. Distribution Semantics; 10.1 Formal Definition; 10.2 PLP Languages under the Distribution Semantics; 10.2.1 Logic Programming; 10.2.2 LPAD; 10.2.3 ProbLog; 10.3 Inference in Probabilistic Logic Programming; 10.3.1 ProbLog Inference System. | |
505 | 8 | |a 10.3.2 PITA; 10.4 Learning in Probabilistic Logic Programming; Chapter 11. DISPONTE; Chapter 12. Probabilistic Description Logics; Part IV. Inference in Probabilistic DLs; Chapter 13. Inference; 13.1 Splitting Algorithm; 13.2 Binary Decision Diagrams; Chapter 14. BUNDLE; Chapter 15. TRILL; 15.1 TRILL on SWISH; Chapter 16. TRILL P; Chapter 17. Complexity of Inference; Chapter 18. Related Inference Systems; Chapter 19. Experiments; 19.1 BUNDLE: Comparison with PRONTO; 19.2 BUNDLE: Not Entailed Queries; 19.3 BUNDLE: Inference with Limited Number of Explanations; 19.4 BUNDLE: Scalability. | |
505 | 8 | |a 19.5 TRILL, TRILL P & BUNDLE: Comparing Different Approaches; 19.6 Discussion; Part V. Learning in Probabilistic DLs; Chapter 20. Learning; Chapter 21. EDGE: Parameter Learning; 21.1 Expectation Maximization Algorithm; 21.2 EDGE; Chapter 22. LEAP: Structure Learning; 22.1 CELOE; 22.2 LEAP; Chapter 23. Distributed Learning; 23.1 Map Reduce Approach; 23.2 The Message Passing Interface Standard; 23.3 EDGE MR; 23.4 LEAP MR; Chapter 24. Related Learning Systems; Chapter 25. Experiments; 25.1 EDGE: Comparison with Association Rules; 25.2 LEAP & EDGE: a Comparison Between Different Learning Problems. | |
505 | 8 | |a 25.3 EDGE MR: Parallelization Speedup; 25.4 EDGE MR: Memory Consumption; 25.5 LEAP MR: Parallelization Speedup; 25.6 Discussion; Part VI. Summary and Future Work; Chapter 26. Conclusion; Chapter 27. Future Work. | |
588 | 0 | |a Online resource; title from PDF title page (IOS Press, viewed January 26, 2017). | |
650 | 0 | |a Semantic Web. |0 http://id.loc.gov/authorities/subjects/sh2002000569 | |
650 | 0 | |a Semantic computing. |0 http://id.loc.gov/authorities/subjects/sh2009007899 | |
650 | 6 | |a Web sémantique. | |
650 | 6 | |a Informatique sémantique. | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Semantic computing |2 fast | |
650 | 7 | |a Semantic Web |2 fast | |
758 | |i has work: |a Probabilistic Semantic Web (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYWfVmDWRy4H7FcV8jfkcK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Zese, R. |t Probabilistic Semantic Web : Reasoning and Learning. |d Amsterdam : IOS Press, ©2016 |z 9781614997337 |
830 | 0 | |a Studies on the Semantic Web ; |v v. 028. |0 http://id.loc.gov/authorities/names/no2009156151 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1455955 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1455955 |3 Volltext |
938 | |a Baker and Taylor |b BTCP |n BK0020290690 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4790188 | ||
938 | |a EBSCOhost |b EBSC |n 1455955 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis37449733 | ||
938 | |a YBP Library Services |b YANK |n 13399588 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn970041839 |
---|---|
_version_ | 1826942140128690176 |
adam_text | |
any_adam_object | |
author | Zese, Riccardo |
author_facet | Zese, Riccardo |
author_role | aut |
author_sort | Zese, Riccardo |
author_variant | r z rz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.5913 .Z474 2016 |
callnumber-search | QA76.5913 .Z474 2016 |
callnumber-sort | QA 276.5913 Z474 42016 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Part I. Introduction; Chapter 1. Semantic Web; 1.1 Description Logics and Semantic Web; 1.2 The Current Vision of the Semantic Web; Chapter 2. Probability; 2.1 Probabilistic Inference; 2.2 Probabilistic Learning; Chapter 3. Aims of the Thesis; Chapter 4. Structure of the Thesis; Part II. Description Logics; Chapter 5. Foundations of Description Logics; Chapter 6. Description Logics' Characteristics; 6.1 Concept and Role Constructors; 6.2 Family of DLs; 6.3 Knowledge Base; 6.3.1 TBox; 6.3.2 RBox; 6.3.3 ABox; 6.4 Semantics. Chapter 7. Significant Examples of Description Logics; Chapter 8. OWL: the Web Ontology Language; Chapter 9. Inference in Description Logics; 9.1 Approaches to Compute Explanations; 9.1.1 Solving min-a-enum: The Standard Definition; 9.1.2 Resolving min-a-enum: Pinpointing Formula; Part III. A Probabilistic Semantics for Description Logics; Chapter 10. Distribution Semantics; 10.1 Formal Definition; 10.2 PLP Languages under the Distribution Semantics; 10.2.1 Logic Programming; 10.2.2 LPAD; 10.2.3 ProbLog; 10.3 Inference in Probabilistic Logic Programming; 10.3.1 ProbLog Inference System. 10.3.2 PITA; 10.4 Learning in Probabilistic Logic Programming; Chapter 11. DISPONTE; Chapter 12. Probabilistic Description Logics; Part IV. Inference in Probabilistic DLs; Chapter 13. Inference; 13.1 Splitting Algorithm; 13.2 Binary Decision Diagrams; Chapter 14. BUNDLE; Chapter 15. TRILL; 15.1 TRILL on SWISH; Chapter 16. TRILL P; Chapter 17. Complexity of Inference; Chapter 18. Related Inference Systems; Chapter 19. Experiments; 19.1 BUNDLE: Comparison with PRONTO; 19.2 BUNDLE: Not Entailed Queries; 19.3 BUNDLE: Inference with Limited Number of Explanations; 19.4 BUNDLE: Scalability. 19.5 TRILL, TRILL P & BUNDLE: Comparing Different Approaches; 19.6 Discussion; Part V. Learning in Probabilistic DLs; Chapter 20. Learning; Chapter 21. EDGE: Parameter Learning; 21.1 Expectation Maximization Algorithm; 21.2 EDGE; Chapter 22. LEAP: Structure Learning; 22.1 CELOE; 22.2 LEAP; Chapter 23. Distributed Learning; 23.1 Map Reduce Approach; 23.2 The Message Passing Interface Standard; 23.3 EDGE MR; 23.4 LEAP MR; Chapter 24. Related Learning Systems; Chapter 25. Experiments; 25.1 EDGE: Comparison with Association Rules; 25.2 LEAP & EDGE: a Comparison Between Different Learning Problems. 25.3 EDGE MR: Parallelization Speedup; 25.4 EDGE MR: Memory Consumption; 25.5 LEAP MR: Parallelization Speedup; 25.6 Discussion; Part VI. Summary and Future Work; Chapter 26. Conclusion; Chapter 27. Future Work. |
ctrlnum | (OCoLC)970041839 |
dewey-full | 025.042/7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 025 - Operations of libraries and archives |
dewey-raw | 025.042/7 |
dewey-search | 025.042/7 |
dewey-sort | 225.042 17 |
dewey-tens | 020 - Library and information sciences |
discipline | Allgemeines |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05300cam a2200637 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn970041839</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">170126s2017 ne ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IOSPR</subfield><subfield code="d">BTCTA</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">NJP</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">SNK</subfield><subfield code="d">DKU</subfield><subfield code="d">AUW</subfield><subfield code="d">IGB</subfield><subfield code="d">D6H</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">CHVBK</subfield><subfield code="d">VTS</subfield><subfield code="d">EZ9</subfield><subfield code="d">AGLDB</subfield><subfield code="d">INT</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">970636474</subfield><subfield code="a">987023556</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614997344</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1614997349</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781614997337</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1614997330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)970041839</subfield><subfield code="z">(OCoLC)970636474</subfield><subfield code="z">(OCoLC)987023556</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">988906</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.5913</subfield><subfield code="b">.Z474 2016</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">025.042/7</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zese, Riccardo,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic semantic web :</subfield><subfield code="b">reasoning and learning /</subfield><subfield code="c">Riccardo Zese.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands :</subfield><subfield code="b">IOS Press,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 173 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies on the semantic web,</subfield><subfield code="x">2215-0870 ;</subfield><subfield code="v">vol. 028</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Part I. Introduction; Chapter 1. Semantic Web; 1.1 Description Logics and Semantic Web; 1.2 The Current Vision of the Semantic Web; Chapter 2. Probability; 2.1 Probabilistic Inference; 2.2 Probabilistic Learning; Chapter 3. Aims of the Thesis; Chapter 4. Structure of the Thesis; Part II. Description Logics; Chapter 5. Foundations of Description Logics; Chapter 6. Description Logics' Characteristics; 6.1 Concept and Role Constructors; 6.2 Family of DLs; 6.3 Knowledge Base; 6.3.1 TBox; 6.3.2 RBox; 6.3.3 ABox; 6.4 Semantics.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 7. Significant Examples of Description Logics; Chapter 8. OWL: the Web Ontology Language; Chapter 9. Inference in Description Logics; 9.1 Approaches to Compute Explanations; 9.1.1 Solving min-a-enum: The Standard Definition; 9.1.2 Resolving min-a-enum: Pinpointing Formula; Part III. A Probabilistic Semantics for Description Logics; Chapter 10. Distribution Semantics; 10.1 Formal Definition; 10.2 PLP Languages under the Distribution Semantics; 10.2.1 Logic Programming; 10.2.2 LPAD; 10.2.3 ProbLog; 10.3 Inference in Probabilistic Logic Programming; 10.3.1 ProbLog Inference System.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.3.2 PITA; 10.4 Learning in Probabilistic Logic Programming; Chapter 11. DISPONTE; Chapter 12. Probabilistic Description Logics; Part IV. Inference in Probabilistic DLs; Chapter 13. Inference; 13.1 Splitting Algorithm; 13.2 Binary Decision Diagrams; Chapter 14. BUNDLE; Chapter 15. TRILL; 15.1 TRILL on SWISH; Chapter 16. TRILL P; Chapter 17. Complexity of Inference; Chapter 18. Related Inference Systems; Chapter 19. Experiments; 19.1 BUNDLE: Comparison with PRONTO; 19.2 BUNDLE: Not Entailed Queries; 19.3 BUNDLE: Inference with Limited Number of Explanations; 19.4 BUNDLE: Scalability.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">19.5 TRILL, TRILL P & BUNDLE: Comparing Different Approaches; 19.6 Discussion; Part V. Learning in Probabilistic DLs; Chapter 20. Learning; Chapter 21. EDGE: Parameter Learning; 21.1 Expectation Maximization Algorithm; 21.2 EDGE; Chapter 22. LEAP: Structure Learning; 22.1 CELOE; 22.2 LEAP; Chapter 23. Distributed Learning; 23.1 Map Reduce Approach; 23.2 The Message Passing Interface Standard; 23.3 EDGE MR; 23.4 LEAP MR; Chapter 24. Related Learning Systems; Chapter 25. Experiments; 25.1 EDGE: Comparison with Association Rules; 25.2 LEAP & EDGE: a Comparison Between Different Learning Problems.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">25.3 EDGE MR: Parallelization Speedup; 25.4 EDGE MR: Memory Consumption; 25.5 LEAP MR: Parallelization Speedup; 25.6 Discussion; Part VI. Summary and Future Work; Chapter 26. Conclusion; Chapter 27. Future Work.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (IOS Press, viewed January 26, 2017).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Semantic Web.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002000569</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Semantic computing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2009007899</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Web sémantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Informatique sémantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semantic computing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semantic Web</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Probabilistic Semantic Web (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYWfVmDWRy4H7FcV8jfkcK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Zese, R.</subfield><subfield code="t">Probabilistic Semantic Web : Reasoning and Learning.</subfield><subfield code="d">Amsterdam : IOS Press, ©2016</subfield><subfield code="z">9781614997337</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies on the Semantic Web ;</subfield><subfield code="v">v. 028.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009156151</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1455955</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1455955</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Baker and Taylor</subfield><subfield code="b">BTCP</subfield><subfield code="n">BK0020290690</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4790188</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1455955</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis37449733</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13399588</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn970041839 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:23:16Z |
institution | BVB |
isbn | 9781614997344 1614997349 |
issn | 2215-0870 ; |
language | English |
oclc_num | 970041839 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 173 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | IOS Press, |
record_format | marc |
series | Studies on the Semantic Web ; |
series2 | Studies on the semantic web, |
spelling | Zese, Riccardo, author. Probabilistic semantic web : reasoning and learning / Riccardo Zese. Amsterdam, Netherlands : IOS Press, [2017] 1 online resource (xvi, 173 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Studies on the semantic web, 2215-0870 ; vol. 028 Includes bibliographical references. Part I. Introduction; Chapter 1. Semantic Web; 1.1 Description Logics and Semantic Web; 1.2 The Current Vision of the Semantic Web; Chapter 2. Probability; 2.1 Probabilistic Inference; 2.2 Probabilistic Learning; Chapter 3. Aims of the Thesis; Chapter 4. Structure of the Thesis; Part II. Description Logics; Chapter 5. Foundations of Description Logics; Chapter 6. Description Logics' Characteristics; 6.1 Concept and Role Constructors; 6.2 Family of DLs; 6.3 Knowledge Base; 6.3.1 TBox; 6.3.2 RBox; 6.3.3 ABox; 6.4 Semantics. Chapter 7. Significant Examples of Description Logics; Chapter 8. OWL: the Web Ontology Language; Chapter 9. Inference in Description Logics; 9.1 Approaches to Compute Explanations; 9.1.1 Solving min-a-enum: The Standard Definition; 9.1.2 Resolving min-a-enum: Pinpointing Formula; Part III. A Probabilistic Semantics for Description Logics; Chapter 10. Distribution Semantics; 10.1 Formal Definition; 10.2 PLP Languages under the Distribution Semantics; 10.2.1 Logic Programming; 10.2.2 LPAD; 10.2.3 ProbLog; 10.3 Inference in Probabilistic Logic Programming; 10.3.1 ProbLog Inference System. 10.3.2 PITA; 10.4 Learning in Probabilistic Logic Programming; Chapter 11. DISPONTE; Chapter 12. Probabilistic Description Logics; Part IV. Inference in Probabilistic DLs; Chapter 13. Inference; 13.1 Splitting Algorithm; 13.2 Binary Decision Diagrams; Chapter 14. BUNDLE; Chapter 15. TRILL; 15.1 TRILL on SWISH; Chapter 16. TRILL P; Chapter 17. Complexity of Inference; Chapter 18. Related Inference Systems; Chapter 19. Experiments; 19.1 BUNDLE: Comparison with PRONTO; 19.2 BUNDLE: Not Entailed Queries; 19.3 BUNDLE: Inference with Limited Number of Explanations; 19.4 BUNDLE: Scalability. 19.5 TRILL, TRILL P & BUNDLE: Comparing Different Approaches; 19.6 Discussion; Part V. Learning in Probabilistic DLs; Chapter 20. Learning; Chapter 21. EDGE: Parameter Learning; 21.1 Expectation Maximization Algorithm; 21.2 EDGE; Chapter 22. LEAP: Structure Learning; 22.1 CELOE; 22.2 LEAP; Chapter 23. Distributed Learning; 23.1 Map Reduce Approach; 23.2 The Message Passing Interface Standard; 23.3 EDGE MR; 23.4 LEAP MR; Chapter 24. Related Learning Systems; Chapter 25. Experiments; 25.1 EDGE: Comparison with Association Rules; 25.2 LEAP & EDGE: a Comparison Between Different Learning Problems. 25.3 EDGE MR: Parallelization Speedup; 25.4 EDGE MR: Memory Consumption; 25.5 LEAP MR: Parallelization Speedup; 25.6 Discussion; Part VI. Summary and Future Work; Chapter 26. Conclusion; Chapter 27. Future Work. Online resource; title from PDF title page (IOS Press, viewed January 26, 2017). Semantic Web. http://id.loc.gov/authorities/subjects/sh2002000569 Semantic computing. http://id.loc.gov/authorities/subjects/sh2009007899 Web sémantique. Informatique sémantique. COMPUTERS Intelligence (AI) & Semantics. bisacsh Semantic computing fast Semantic Web fast has work: Probabilistic Semantic Web (Text) https://id.oclc.org/worldcat/entity/E39PCYWfVmDWRy4H7FcV8jfkcK https://id.oclc.org/worldcat/ontology/hasWork Print version: Zese, R. Probabilistic Semantic Web : Reasoning and Learning. Amsterdam : IOS Press, ©2016 9781614997337 Studies on the Semantic Web ; v. 028. http://id.loc.gov/authorities/names/no2009156151 |
spellingShingle | Zese, Riccardo Probabilistic semantic web : reasoning and learning / Studies on the Semantic Web ; Part I. Introduction; Chapter 1. Semantic Web; 1.1 Description Logics and Semantic Web; 1.2 The Current Vision of the Semantic Web; Chapter 2. Probability; 2.1 Probabilistic Inference; 2.2 Probabilistic Learning; Chapter 3. Aims of the Thesis; Chapter 4. Structure of the Thesis; Part II. Description Logics; Chapter 5. Foundations of Description Logics; Chapter 6. Description Logics' Characteristics; 6.1 Concept and Role Constructors; 6.2 Family of DLs; 6.3 Knowledge Base; 6.3.1 TBox; 6.3.2 RBox; 6.3.3 ABox; 6.4 Semantics. Chapter 7. Significant Examples of Description Logics; Chapter 8. OWL: the Web Ontology Language; Chapter 9. Inference in Description Logics; 9.1 Approaches to Compute Explanations; 9.1.1 Solving min-a-enum: The Standard Definition; 9.1.2 Resolving min-a-enum: Pinpointing Formula; Part III. A Probabilistic Semantics for Description Logics; Chapter 10. Distribution Semantics; 10.1 Formal Definition; 10.2 PLP Languages under the Distribution Semantics; 10.2.1 Logic Programming; 10.2.2 LPAD; 10.2.3 ProbLog; 10.3 Inference in Probabilistic Logic Programming; 10.3.1 ProbLog Inference System. 10.3.2 PITA; 10.4 Learning in Probabilistic Logic Programming; Chapter 11. DISPONTE; Chapter 12. Probabilistic Description Logics; Part IV. Inference in Probabilistic DLs; Chapter 13. Inference; 13.1 Splitting Algorithm; 13.2 Binary Decision Diagrams; Chapter 14. BUNDLE; Chapter 15. TRILL; 15.1 TRILL on SWISH; Chapter 16. TRILL P; Chapter 17. Complexity of Inference; Chapter 18. Related Inference Systems; Chapter 19. Experiments; 19.1 BUNDLE: Comparison with PRONTO; 19.2 BUNDLE: Not Entailed Queries; 19.3 BUNDLE: Inference with Limited Number of Explanations; 19.4 BUNDLE: Scalability. 19.5 TRILL, TRILL P & BUNDLE: Comparing Different Approaches; 19.6 Discussion; Part V. Learning in Probabilistic DLs; Chapter 20. Learning; Chapter 21. EDGE: Parameter Learning; 21.1 Expectation Maximization Algorithm; 21.2 EDGE; Chapter 22. LEAP: Structure Learning; 22.1 CELOE; 22.2 LEAP; Chapter 23. Distributed Learning; 23.1 Map Reduce Approach; 23.2 The Message Passing Interface Standard; 23.3 EDGE MR; 23.4 LEAP MR; Chapter 24. Related Learning Systems; Chapter 25. Experiments; 25.1 EDGE: Comparison with Association Rules; 25.2 LEAP & EDGE: a Comparison Between Different Learning Problems. 25.3 EDGE MR: Parallelization Speedup; 25.4 EDGE MR: Memory Consumption; 25.5 LEAP MR: Parallelization Speedup; 25.6 Discussion; Part VI. Summary and Future Work; Chapter 26. Conclusion; Chapter 27. Future Work. Semantic Web. http://id.loc.gov/authorities/subjects/sh2002000569 Semantic computing. http://id.loc.gov/authorities/subjects/sh2009007899 Web sémantique. Informatique sémantique. COMPUTERS Intelligence (AI) & Semantics. bisacsh Semantic computing fast Semantic Web fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2002000569 http://id.loc.gov/authorities/subjects/sh2009007899 |
title | Probabilistic semantic web : reasoning and learning / |
title_auth | Probabilistic semantic web : reasoning and learning / |
title_exact_search | Probabilistic semantic web : reasoning and learning / |
title_full | Probabilistic semantic web : reasoning and learning / Riccardo Zese. |
title_fullStr | Probabilistic semantic web : reasoning and learning / Riccardo Zese. |
title_full_unstemmed | Probabilistic semantic web : reasoning and learning / Riccardo Zese. |
title_short | Probabilistic semantic web : |
title_sort | probabilistic semantic web reasoning and learning |
title_sub | reasoning and learning / |
topic | Semantic Web. http://id.loc.gov/authorities/subjects/sh2002000569 Semantic computing. http://id.loc.gov/authorities/subjects/sh2009007899 Web sémantique. Informatique sémantique. COMPUTERS Intelligence (AI) & Semantics. bisacsh Semantic computing fast Semantic Web fast |
topic_facet | Semantic Web. Semantic computing. Web sémantique. Informatique sémantique. COMPUTERS Intelligence (AI) & Semantics. Semantic computing Semantic Web |
work_keys_str_mv | AT zesericcardo probabilisticsemanticwebreasoningandlearning |