Materia quantistica ultrafredda :: Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 /
Gespeichert in:
Körperschaft: | |
---|---|
Weitere Verfasser: | , , , |
Format: | Elektronisch Tagungsbericht E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands ; Washington, DC : Bologna, Italy :
IOS Press ; Società Italiana di Fisica,
2016.
|
Schriftenreihe: | Rendiconti della Scuola internazionale di fisica "Enrico Fermi",
CXCI Corso = Proceedings of the International School of Physics "Enrico Fermi" ; course 191 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (xv, 570 pages). |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781614996941 1614996946 |
ISSN: | 1879-8195 ; |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn963257720 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 161118s2016 ne ob 100 0 eng c | ||
040 | |a STF |b eng |e rda |e pn |c STF |d OCLCO |d N$T |d IOSPR |d IDEBK |d BTCTA |d OCLCF |d N$T |d YDX |d OCLCQ |d OCLCO |d OCLCQ |d SNK |d DKU |d AUW |d MHW |d IGB |d D6H |d VTS |d AGLDB |d INT |d WYU |d OCLCQ |d G3B |d S8J |d S9I |d STF |d OCLCQ |d M8D |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9781614996941 |q (electronic bk.) | ||
020 | |a 1614996946 |q (electronic bk.) | ||
020 | |z 9781614996934 |q (IOS Press ; |q print) | ||
020 | |z 9788874381050 | ||
020 | |z 8874381050 | ||
035 | |a (OCoLC)963257720 | ||
042 | |a pcc | ||
050 | 4 | |a QC174.4 | |
072 | 7 | |a SCI |x 024000 |2 bisacsh | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 055000 |2 bisacsh | |
082 | 7 | |a 530.13/3 |2 23 | |
049 | |a MAIN | ||
111 | 2 | |a International School of Physics "Enrico Fermi" |n (191st : |d 2014 : |c Varenna, Italy) |0 http://id.loc.gov/authorities/names/no2016156041 | |
245 | 1 | 0 | |a Materia quantistica ultrafredda : |b Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / |c a cura di M. Inguscio, W. Ketterle e S. Stringari, direttori del corso, e di G. Roati = Quantum matter at ultralow temperatures : Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014 / edited by M. Inguscio, W. Ketterle and S. Stringari, director of the course, and G. Roati. |
246 | 3 | 1 | |a Quantum matter at ultralow temperatures : |b Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014 |
264 | 1 | |a Amsterdam, Netherlands ; |a Washington, DC : |b IOS Press ; |a Bologna, Italy : |b Società Italiana di Fisica, |c 2016. | |
300 | |a 1 online resource (xv, 570 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |2 rda | ||
490 | 1 | |a Rendiconti della Scuola internazionale di fisica "Enrico Fermi", |x 1879-8195 ; |v CXCI Corso = Proceedings of the International School of Physics "Enrico Fermi" ; |v course 191 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Online resource; title from PDF title page (IOS, viewed November 18, 2016). | |
505 | 0 | 0 | |g Machine generated contents note: |g 1. |t Magnetism and quantum physics / |r J. Dalibard -- |g 1.1. |t Gauge invariance / |r J. Dalibard -- |g 1.2. |t Cyclotron motion and Landau levels / |r J. Dalibard -- |g 1.3. |t Aharonov-Bohm effect / |r J. Dalibard -- |g 1.4. |t Rotating gases / |r J. Dalibard -- |g 2. |t Geometric phases and gauge fields for free atoms / |r J. Dalibard -- |g 2.1. |t Berry's phase / |r J. Dalibard -- |g 2.2. |t Adiabatic following of a dressed state / |r J. Dalibard -- |g 2.3. |t two-level case / |r J. Dalibard -- |g 2.4. |t Validity of the adiabatic approximation / |r J. Dalibard -- |g 2.5. |t Spontaneous emission and recoil heating / |r J. Dalibard -- |g 3. |t Non-Abelian potentials and spin-orbit coupling / |r J. Dalibard -- |g 3.1. |t Non-Abelian potentials in quantum optics / |r J. Dalibard -- |g 3.2. |t Tripod configuration and 2D spin-orbit coupling / |r J. Dalibard -- |g 3.3. |t 1D version of spin-orbit coupling / |r J. Dalibard -- |g 4. |t Gauge fields on a lattice / |r J. Dalibard -- |g 4.1. |t Tight-binding model / |r J. Dalibard -- |g 4.2. |t Hofstadter butterfly / |r J. Dalibard -- |g 4.3. |t Chern number for an energy band / |r J. Dalibard -- |g 5. |t Generation of lattice gauge fields via shaking or modulation / |r J. Dalibard -- |g 5.1. |t Rapid shaking of a lattice / |r J. Dalibard -- |g 5.2. |t Resonant shaking/modulation / |r J. Dalibard -- |g 6. |t Generation of lattice gauge fields via internal atomic transitions / |r J. Dalibard -- |g 6.1. |t Laser-assisted tunneling in a 1D ladder / |r J. Dalibard -- |g 6.2. |t Lattice with artificial dimension / |r J. Dalibard -- |g 6.3. |t Laser-induced tunneling in a 2D lattice / |r J. Dalibard -- |g 6.4. |t Optical flux lattices / |r J. Dalibard -- |g 7. |t Conclusion / |r J. Dalibard -- |t Appendix A. Landau levels / |r J. Dalibard -- |t Eigenstates with the Landau gauge / |r J. Dalibard -- |t Probability current in a Landau state / |r J. Dalibard -- |t Eigenstates with the symmetric gauge / |r J. Dalibard -- |t Appendix B. Topology in the square lattice / |r J. Dalibard -- |t Band structure and periodicity in reciprocal space / |r J. Dalibard -- |t Constant force and unitary transformation / |r J. Dalibard -- |t Bloch oscillations and adiabatic following / |r J. Dalibard -- |t velocity operator and its matrix elements / |r J. Dalibard -- |t Berry curvature / |r J. Dalibard -- |t Conduction from a filled band and Chern number / |r J. Dalibard -- |t Chern number is an integer / |r J. Dalibard -- |g 1. |t Feshbach resonances / |r W. Zwerger -- |g 1.1. |t Two-body scattering / |r W. Zwerger -- |g 1.2. |t Feshbach resonances / |r W. Zwerger -- |g 1.3. |t Three-body losses / |r W. Zwerger -- |g 1.4. |t Unitary bosons and the Efimov effect / |r W. Zwerger -- |g 2. |t Tan relations / |r W. Zwerger -- |g 2.1. |t Thermodynamic relations / |r W. Zwerger -- |g 2.2. |t Quantitative results for the contact / |r W. Zwerger -- |g 2.3. |t Closed-channel fraction / |r W. Zwerger -- |g 2.4. |t Single-channel model and zero-range limit / |r W. Zwerger -- |g 2.5. |t Short-distance correlations / |r W. Zwerger -- |g 3. |t Unitary fermions: universality and scale invariance / |r W. Zwerger -- |g 3.1. |t Quantum critical point and universality / |r W. Zwerger -- |g 3.2. |t Thermodynamics of the unitary Fermi gas / |r W. Zwerger -- |g 3.3. |t Luttinger-Ward theory / |r W. Zwerger -- |g 3.4. |t Scale invariance / |r W. Zwerger -- |g 3.5. |t Broken scale invariance and conformal anomaly in 2D / |r W. Zwerger -- |g 4. |t RF-spectroscopy and transport / |r W. Zwerger -- |g 4.1. |t RF-spectroscopy / |r W. Zwerger -- |g 4.2. |t Quantum limited viscosity and spin diffusion / |r W. Zwerger -- |g 1. |t Introduction / |r M.W. Zwierlein -- |g 2. |t Universal thermodynamics / |r M.W. Zwierlein -- |g 2.1. |t Thermodynamics of trapped gases / |r M.W. Zwierlein -- |g 2.1.1. |t Zero-temperature equation of state / |r M.W. Zwierlein -- |g 2.1.2. |t Viral theorem for the trapped gas at unitarity / |r M.W. Zwierlein -- |g 2-2. |t General thermodynamic relations / |r M.W. Zwierlein -- |g 2.2.1. |t Obtaining the pressure from density profiles / |r M.W. Zwierlein -- |g 2.2.2. |t "Magic formula" for harmonic trapping / |r M.W. Zwierlein -- |g 2.3. |t Universal thermodynamics of the unitary Fermi gas / |r M.W. Zwierlein -- |g 2.3.1. |t Compressibility equation of state / |r M.W. Zwierlein -- |g 2.3.2. |t Specific heat versus temperature-the Lambda transition in a gas / |r M.W. Zwierlein -- |g 2.3.3. |t Chemical potential, energy and free energy / |r M.W. Zwierlein -- |g 2.3.4. |t Entropy, density and pressure / |r M.W. Zwierlein -- |g 2.3.5. |t Importance of cross-validation with theory / |r M.W. Zwierlein -- |g 2.3.6. |t Further applications of the "fit-free" method / |r M.W. Zwierlein -- |g 2.4. |t Equation of state in the BEC-BCS crossover-The contact / |r M.W. Zwierlein -- |g 2.4.1. |t Energy of molecular Bose-Einstein condensates / |r M.W. Zwierlein -- |g 2.4.2. |t Energy of weakly interacting Fermi gas / |r M.W. Zwierlein -- |g 2.4.3. |t Near unitarity / |r M.W. Zwierlein -- |g 2.4.4. |t Pressure relation / |r M.W. Zwierlein -- |g 2.4.5. |t General Virial theorem / |r M.W. Zwierlein -- |g 2.5. |t Equation of state in the BEC-BCS crossover Experiments / |r M.W. Zwierlein -- |g 2.5.1. |t Equation of state from density profiles / |r M.W. Zwierlein -- |g 2.5.2. |t Momentum distribution / |r M.W. Zwierlein -- |g 2.5.3. |t Radiofrequency spectroscopy / |r M.W. Zwierlein -- |g 2.5.4. |t Photoassociation / |r M.W. Zwierlein -- |g 2.5.5. |t Bragg spectroscopy / |r M.W. Zwierlein -- |g 2.5.6. |t Temperature dependence of the homogeneous contact / |r M.W. Zwierlein -- |g 2.5.7. |t Collective oscillations / |r M.W. Zwierlein -- |g 2.5.8. |t Condensation energy / |r M.W. Zwierlein -- |g 2.6. |t normal state above Tc: Pseudo-gap phase, Fermi liquid, or Fermi gas? / |r M.W. Zwierlein -- |g 3. |t Fermionic superfluidity with spin imbalance / |r M.W. Zwierlein -- |g 3.1. |t Chandrasekhar-Clogston limit / |r M.W. Zwierlein -- |g 3.2. |t Phase separation / |r M.W. Zwierlein -- |g 3.3. |t Limit of high imbalance-the Fermi polaron / |r M.W. Zwierlein -- |g 3.4. |t Fermi liquid of polarons / |r M.W. Zwierlein -- |g 3.5. |t Thermodynamics of spin-imbalanced Fermi mixtures / |r M.W. Zwierlein -- |g 3.5.1. |t Equation of state at unitarity / |r M.W. Zwierlein -- |g 3.6. |t Prospects for observing the FFLO state / |r M.W. Zwierlein -- |g 4. |t Conclusion and perspectives / |r M.W. Zwierlein -- |g 1. |t Basic properties / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 1.1. |t quantum fluids landscape / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 1.2. |t Atomic species / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 1.2.1. |t Alkali atoms / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 1.2.2. |t High-spin atoms / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 1.2.3. |t Stability against dipolar relaxation / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 1.3. |t Rotationally symmetric interactions / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 2. |t Magnetic order of spinor Bose-Einstein condensates / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 2.1. |t Bose-Einstein magnetism in a non-interacting spinor gas / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 2.2. |t Spin-dependent s-wave interactions in more recognizable form / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 2.3. |t Ground states in the mean-field and single-mode approximations / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 2.4. |t Mean-field ground states under applied magnetic fields / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 2.5. |t Experimental evidence for magnetic order of ferromagnetic and anti-ferromagnetic F=1 spinor condensates / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 2.6. |t Correlations in the exact many-body ground state of the F=1 spinor gas / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3. |t Imaging spinor condensates / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3.1. |t Stern-Gerlach imaging / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3.2. |t Dispersive birefringent imaging / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3.2.1. |t Circular birefringent imaging / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3.3. |t Projective imaging / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3.3.1. |t Absorptive spin-sensitive in situ imaging (ASSISI) / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3.3.2. |t Noise in dispersive imaging and ASSISI / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3.4. |t Spin-spin correlations and magnetic susceptibility / |r G. Edward Marti / |r D.M. |
505 | 0 | 0 | |t Stamper-Kurn -- |g 3.5. |t Multi-axis imaging and topological invariants / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3.5.1. |t Multi-axis imaging of ferromagnetic structures / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 3.5.2. |t Magnetization curvature / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 4. |t Spin dynamics / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 4.1. |t Microscopic spin dynamics / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 4.2. |t Mean-field picture of collective spin dynamics / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 4.3. |t Spin-mixing instability / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 4.3.1. |t Experiments in the single-mode regime / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 4.3.2. |t Quantum quenches in spatially extended spinor Bose-Einstein condensates / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 5. |t Magnetic excitations / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 5.1. |t Quasiparticles of a spin-1 spinor condensate / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 5.2. |t Linearized Schrodinger equation / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 5.2.1. |t Ferromagnetic F=1 condensate / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 5.2.2. |t Polar F=1 condensate / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 5.3. |t Making and detecting magnons / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 5.4. |t Magnon propagation / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 5.5. |t Magnon contrast interferometry and recoil frequency / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 6. |t Conclusion / |r G. Edward Marti / |r D.M. Stamper-Kurn -- |g 1. |t Introduction / |r I. Bloch -- |g 2. |t Bose and Fermi Hubbard models / |r I. Bloch -- |g 2.1. |t Bose-Hubbard model / |r I. Bloch -- |g 2.2. |t Fermi-Hubbard model / |r I. Bloch -- |g 3. |t Quantum magnetism with ultracold atoms in optical lattices / |r I. Bloch -- |g 3.1. |t Superexchange spin interactions / |r I. Bloch -- |g 3.1.1. |t Superexchange interactions in a double well / |r I. Bloch. |
505 | 0 | 0 | |g Note continued: |g 3.1.2. |t Superexchange interactions on a lattice / |r I. Bloch -- |g 3.2. |t Resonating valence bond states in a plaquette / |r I. Bloch -- |g 4. |t Site-resolved imaging / |r I. Bloch -- |g 5. |t Thermometry at the limit of individual thermal excitations / |r I. Bloch -- |g 6. |t Single-site-resolved addressing of individual atoms / |r I. Bloch -- |g 7. |t Quantum gas microscopy-new possibilities for cold quantum gases / |r I. Bloch -- |g 7.1. |t Using quantum gas microscopes to probe quantum magnetism / |r I. Bloch -- |g 7.2. |t Long-range-interacting quantum magnets / |r I. Bloch -- |g 8. |t Outlook / |r I. Bloch -- |g 1. |t Introduction / |r F. Grusdt / |r E. Demler -- |g 2. |t Derivation of the Frohlich Hamiltonian / |r F. Grusdt / |r E. Demler -- |g 2.1. |t Microscopic Hamiltonian: Impurity in a BEC / |r F. Grusdt / |r E. Demler -- |g 2.2. |t Frohlich Hamiltonian in a BEC / |r F. Grusdt / |r E. Demler -- |g 2.3. |t Microscopic derivation of the Frohlich model / |r F. Grusdt / |r E. Demler -- |g 2.4. |t Characteristic scales and the polaronic coupling constant / |r E. Demler / |r F. Grusdt -- |g 2.5. |t Lippmann-Schwinger equation / |r F. Grusdt / |r E. Demler -- |g 3. |t Overview of common theoretical approaches / |r F. Grusdt / |r E. Demler -- |g 3.1. |t Perturbative approaches s / |r F. Grusdt / |r E. Demler -- |g 3.1.1. |t Rayleigh-Schrodinger perturbation theory / |r F. Grusdt / |r E. Demler -- |g 3.1.2. |t Green's function perturbation theory and self-consistent Born / |r F. Grusdt / |r E. Demler -- |g 3.2. |t Exact solution for infinite mass / |r F. Grusdt / |r E. Demler -- |g 3.3. |t Lee-Low-Pines treatment / |r F. Grusdt / |r E. Demler -- |g 3.4. |t Weak coupling mean-field theory / |r F. Grusdt / |r E. Demler -- |g 3.4.1. |t Self-consistency equation / |r F. Grusdt / |r E. Demler -- |g 3.4.2. |t Polaron energy / |r F. Grusdt / |r E. Demler -- |g 3.4.3. |t Polaron mass / |r F. Grusdt / |r E. Demler -- |g 3.5. |t Strong coupling Landau-Pekar approach / |r F. Grusdt / |r E. Demler -- |g 3.5.1. |t Polaron energy / |r F. Grusdt / |r E. Demler -- |g 3.5.2. |t Polaron mass / |r F. Grusdt / |r E. Demler -- |g 3.6. |t Feynman path integral approach / |r F. Grusdt / |r E. Demler -- |g 3.6.1. |t Jensen-Feynman variational principle / |r F. Grusdt / |r E. Demler -- |g 3.6.2. |t Feynman's trial action / |r F. Grusdt / |r E. Demler -- |g 3.6.3. |t Polaron mass / |r F. Grusdt / |r E. Demler -- |g 3.7. |t Monte Carlo approaches / |r F. Grusdt / |r E. Demler -- |g 4. |t Renormalization group approach>> / |r F. Grusdt / |r E. Demler -- |g 4.1. |t Frohlich model and renormalized coupling constants / |r F. Grusdt / |r E. Demler -- |g 4.2. |t Renormalization group formalism for the Frohlich model / |r F. Grusdt / |r E. Demler -- |g 4.2.1. |t Dimensional analysis / |r F. Grusdt / |r E. Demler -- |g 4.2.2. |t Formulation of the RG / |r F. Grusdt / |r E. Demler -- |g 4.2.3. |t RG flow equations / |r F. Grusdt / |r E. Demler -- |g 4.2.4. |t Solutions of RG flow equations / |r F. Grusdt / |r E. Demler -- |g 4.3. |t Polaron ground state energy in the renormalization group approach / |r F. Grusdt / |r E. Demler -- |g 4.3.1. |t Logarithmic UV divergence of the polaron energy / |r F. Grusdt / |r E. Demler -- |g 4.4. |t Ground state polaron properties from RG / |r F. Grusdt / |r E. Demler -- |g 4.4.1. |t Polaron mass / |r F. Grusdt / |r E. Demler -- |g 4.4.2. |t Phonon number / |r F. Grusdt / |r E. Demler -- |g 4.4.3. |t Quasiparticle weight / |r F. Grusdt / |r E. Demler -- |g 4.5. |t Gaussian variational approach / |r F. Grusdt / |r E. Demler -- |g 5. |t UV regularization and log-divergence / |r E. Demler / |r F. Grusdt -- |g 5.1. |t Regularization of the power-law divergence / |r E. Demler / |r F. Grusdt -- |g 5.2. |t Explanation of the logarithmic divergence / |r E. Demler / |r F. Grusdt -- |g 6. |t Results for experimentally relevant parameters / |r E. Demler / |r F. Grusdt -- |g 6.1. |t Experimental considerations / |r E. Demler / |r F. Grusdt -- |g 6.1.1. |t Conditions for the Frohlich model / |r E. Demler / |r F. Grusdt -- |g 6.1.2. |t Experimentally achievable coupling strengths / |r E. Demler / |r F. Grusdt -- |g 6.2. |t RF spectroscopy / |r E. Demler / |r F. Grusdt -- |g 6.2.1. |t Basic theory of RF spectroscopy / |r E. Demler / |r F. Grusdt -- |g 6.2.2. |t Basic properties of RF spectra / |r E. Demler / |r F. Grusdt -- |g 6.3. |t Properties of polarons / |r E. Demler / |r F. Grusdt -- |g 6.3.1. |t Polaronic mass / |r E. Demler / |r F. Grusdt -- |g 6.3.2. |t Phonon number / |r E. Demler / |r F. Grusdt -- |g 6.3.3. |t Quasiparticle weight / |r E. Demler / |r F. Grusdt -- |g 7. |t Example of a dynamical problem: Bloch oscillations of Bose polarons / |r E. Demler / |r F. Grusdt -- |g 7.1. |t Time-dependent mean-field approach / |r E. Demler / |r F. Grusdt -- |g 7.1.1. |t Equations of motion-Dirac's time-dependent variational principle / |r E. Demler / |r F. Grusdt -- |g 7.2. |t Bloch oscillations of polarons in lattices / |r E. Demler / |r F. Grusdt -- |g 7.2.1. |t Model / |r E. Demler / |r F. Grusdt -- |g 7.2.2. |t Time-dependent mean-field description / |r E. Demler / |r F. Grusdt -- |g 7.2.3. |t Adiabatic approximation and polaron dynamics / |r E. Demler / |r F. Grusdt -- |g 7.2.4. |t Polaron transport properties / |r E. Demler / |r F. Grusdt -- |g 8. |t Outlook / |r E. Demler / |r F. Grusdt -- |t Appendix A / |r E. Demler / |r F. Grusdt -- |g A.1. |t Lee-Low-Pines formalism in a lattice / |r E. Demler / |r F. Grusdt -- |g A.1.1. |t Coupling constant and relation to experiments / |r E. Demler / |r F. Grusdt -- |g A.1.2. |t Time-dependent Lee-Low-Pines transformation in the lattice / |r E. Demler / |r F. Grusdt -- |g A.2. |t Renormalized impurity mass / |r E. Demler / |r F. Grusdt -- |g A.3. |t Polaron properties from the RG-derivations / |r E. Demler / |r F. Grusdt -- |g A.3.1. |t Polaron phonon number / |r E. Demler / |r F. Grusdt -- |g A.3.2. |t Polaron momentum / |r E. Demler / |r F. Grusdt -- |g A.3.3. |t Quasiparticle weight / |r E. Demler / |r F. Grusdt -- |g 1. |t Introduction / |r T. Giamarchi -- |g 2. |t Why one dimension / |r T. Giamarchi -- |g 3. |t 1D basics / |r T. Giamarchi -- |g 3.1. |t What are one-dimensional systems? / |r T. Giamarchi -- |g 3.2. |t Some realizations with cold atoms or CM / |r T. Giamarchi -- |g 3.3. |t Universal physics in one dimension (Luttinger liquid) / |r T. Giamarchi -- |g 3.4. |t Fermions and spins / |r T. Giamarchi -- |g 3.5. |t Luttinger parameters / |r T. Giamarchi -- |g 4. |t Experimental tests of TLL / |r T. Giamarchi -- |g 4.1. |t Magnetic insulators / |r T. Giamarchi -- |g 4.2. |t Cold atomic systems / |r T. Giamarchi -- |g 4.3. |t Other experimental features of 1d: Fractionalization of excitations / |r T. Giamarchi -- |g 5. |t TLL and beyond / |r T. Giamarchi -- |g 5.1. |t Effect of a lattice: Mott transition / |r T. Giamarchi -- |g 5.2. |t Disorder / |r T. Giamarchi -- |g 6. |t Wishes and open problems / |r T. Giamarchi -- |g 1. |t Introduction / |r T. Pfau / |r J. Balewski -- |g 2. |t Electron-atom scattering / |r T. Pfau / |r J. Balewski -- |g 2.1. |t Fermi pseudopotential / |r T. Pfau / |r J. Balewski -- |g 2.2. |t Higher-order contributions / |r T. Pfau / |r J. Balewski -- |g 3. |t Rydberg spectroscopy / |r T. Pfau / |r J. Balewski -- |g 3.1. |t Ultracold but thermal gases / |r T. Pfau / |r J. Balewski -- |g 3.2. |t Bose-Einstein condensates / |r T. Pfau / |r J. Balewski -- |g 4. |t Lifetime of Rydberg atoms in dense gases / |r T. Pfau / |r J. Balewski -- |g 4.1. |t Dependence on principal quantum number and density / |r T. Pfau / |r J. Balewski -- |g 4.2. |t Possible decay processes / |r T. Pfau / |r J. Balewski -- |g 4.3. |t Dependence on spectral position / |r T. Pfau / |r J. Balewski -- |g 5. |t Conclusion / |r T. Pfau / |r J. Balewski -- |g 1. |t Introduction / |r A. Recati -- |g 2. |t Model / |r A. Recati -- |g 3. |t Mean-field Gross-Pitaevskii equations / |r A. Recati -- |g 3.1. |t Ground state / |r A. Recati -- |g 4. |t Excitation spectra / |r A. Recati -- |g 4.0. |t Spin structure factor and magnetic fluctuations / |r A. Recati -- |g 4.1. |t Trapped gas / |r A. Recati -- |g 4.2. |t Relation to Josephson dynamics / |r A. Recati -- |g 5. |t Soliton and vortex dimers / |r A. Recati -- |g 6. |t Tight-binding model for gases in optical lattices / |r A. Recati -- |g 1. |t Motivation / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 2. |t One-dimensional Bose gases / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 3. |t Creating a non-equilibrium state / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 4. |t Probing the quantum state / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 4.1. |t Density ripples / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. |
505 | 0 | 0 | |r Schweigler -- |g 4.2. |t Phase correlation functions / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 4.3. |t Full distribution functions / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 5. |t Generalized Gibbs ensemble / |r B. Rauer / |r T. Schweigler / |r T. Langen / |r J. Schmiedmayer -- |g 6. |t Dynamics beyond prethermalization / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 6.1. |t Recurrences / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 6.2. |t Imbalanced splitting / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 7. |t Application: Interferometry with squeezed states / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 8. |t Conclusion / |r B. Rauer / |r J. Schmiedmayer / |r T. Langen / |r T. Schweigler -- |g 1. |t Introduction / |r J. Tura / |r A.B. Sainz / |r M. Lewen-Stein / |r R. Agusiak / |r A. Acin / |r T. Grass -- |g 2. |t Crash course on entanglement / |r J. Tura / |r A.B. Sainz / |r M. Lewen-Stein / |r R. Agusiak / |r A. Acin / |r T. Grass -- |g 2.1. |t Bipartite pure states: Schmidt decomposition / |r A. Acin / |r M. Lewen-Stein / |r R. Agusiak / |r A.B. Sainz / |r T. Grass / |r J. Tura -- |g 2.2. |t Bipartite mixed states: Separable and entangled states / |r J. Tura / |r A.B. Sainz / |r M. Lewen-Stein / |r R. Agusiak / |r A. Acin / |r T. Grass -- |g 2.3. |t Entanglement criteria / |r J. Tura / |r A.B. Sainz / |r M. Lewen-Stein / |r R. Agusiak / |r A. Acin / |r T. Grass -- |g 2.4. |t Entanglement measures / |r J. Tura / |r A.B. Sainz / |r M. Lewen-Stein / |r R. Agusiak / |r A. Acin / |r T. Grass -- |g 2.5. |t von Neumann entropy / |r J. Tura / |r A.B. Sainz / |r M. Lewen-Stein / |r R. Agusiak / |r A. Acin / |r T. Grass -- |g 3. |t Entanglement in many-body systems / |r J. Tura / |r A.B. Sainz / |r M. Lewen-Stein / |r R. Agusiak / |r A. Acin / |r T. Grass -- |g 3.1. |t Computational complexity / |r J. Tura / |r A.B. Sainz / |r T. Grass / |r R. Agusiak / |r A. Acin / |r M. Lewen-Stein. |
505 | 0 | 0 | |g Note continued: |g 3.2. |t Entanglement of a generic state / |r A. Acin / |r R. Agusiak / |r T. Grass / |r J. Tura / |r A.B. Sainz / |r M. Lewen-Stein -- |g 4. |t Area laws / |r A. Acin / |r R. Agusiak / |r T. Grass / |r A.B. Sainz / |r J. Tura / |r M. Lewen-Stein -- |g 4.1. |t Quantum area laws in 1D / |r J. Tura / |r A.B. Sainz / |r T. Grass / |r R. Agusiak / |r A. Acin / |r M. Lewen-Stein -- |g 4.2. |t Higher-dimensional systems / |r J. Tura / |r A.B. Sainz / |r T. Grass / |r R. Agusiak / |r A. Acin / |r M. Lewen-Stein -- |g 4.2.1. |t Area laws for mutual information-classical and quantum Gibbs states / |r A.B. Sainz / |r J. Tura / |r T. Grass / |r M. Lewen-Stein / |r A. Acin / |r R. Agusiak -- |g 4.3. |t world according to tensor networks / |r A. Acin / |r R. Agusiak / |r T. Grass / |r A.B. Sainz / |r J. Tura / |r M. Lewen-Stein -- |g 5. |t Non-locality in many-body systems / |r A. Acin / |r R. Agusiak / |r T. Grass / |r A.B. Sainz / |r J. Tura / |r M. Lewen-Stein -- |g 5.1. |t Probabilities and correlations-DIQIP approach / |r J. Tura / |r A.B. Sainz / |r T. Grass / |r R. Agusiak / |r A. Acin / |r M. Lewen-Stein -- |g 5.2. |t Detecting non-locality in many-body systems with two-body correlators / |r J. Tura / |r A.B. Sainz / |r A. Acin / |r R. Agusiak / |r T. Grass / |r M. Lewen-Stein -- |g 5.3. |t Permutational invariance / |r R. Agusiak / |r A. Acin / |r M. Lewen-Stein / |r J. Tura / |r A.B. Sainz / |r T. Grass -- |g 5.4. |t Symmetric two-body Bell inequalities: example / |r A.B. Sainz / |r J. Tura / |r T. Grass / |r R. Agusiak / |r A. Acin / |r M. Lewen-Stein -- |g 5.5. |t Many-body symmetric states / |r A.B. Sainz / |r J. Tura / |r T. Grass / |r M. Lewen-Stein / |r A. Acin / |r R. Agusiak -- |g 6. |t Conclusions / |r J. Tura / |r A.B. Sainz / |r A. Acin / |r R. Agusiak / |r T. Grass / |r M. Lewen-Stein -- |g 1. |t Introduction / |r M.A. Baranov -- |g 2. |t Exchange and statistics / |r M.A. Baranov -- |g 2.1. |t Braid group, representations, and exchange statistics / |r M.A. Baranov -- |g 2.2. |t Physical requirements for non-Abelian anyons / |r M.A. Baranov -- |g 3. |t Majorana fermions as non-Abelian anyons / |r M.A. Baranov -- |g 4. |t Majorana fermions in Kitaev wire / |r M.A. Baranov -- |g 5. |t Majorana fermions in systems of cold atoms / |r M.A. Baranov -- |g 5.1. |t Braiding Majorana fermions in wires setup / |r M.A. Baranov -- |g 5.2. |t Physics behind the braiding / |r M.A. Baranov -- |g 5.3. |t Demonstration of non-Abelian statistics / |r M.A. Baranov -- |g 6. |t Using Majorana fermions for quantum computation / |r M.A. Baranov -- |g 7. |t Summary / |r M.A. Baranov. |
650 | 0 | |a Quantum statistics |v Congresses. | |
650 | 0 | |a Low temperatures |v Congresses. | |
650 | 6 | |a Statistique quantique |v Congrès. | |
650 | 6 | |a Basses températures |v Congrès. | |
650 | 7 | |a SCIENCE |x Energy. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x General. |2 bisacsh | |
650 | 7 | |a Low temperatures |2 fast | |
650 | 7 | |a Quantum statistics |2 fast | |
655 | 7 | |a proceedings (reports) |2 aat | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
655 | 7 | |a Conference papers and proceedings. |2 lcgft |0 http://id.loc.gov/authorities/genreForms/gf2014026068 | |
655 | 7 | |a Actes de congrès. |2 rvmgf | |
700 | 1 | |a Inguscio, M., |e editor. | |
700 | 1 | |a Ketterle, Wolfgang, |e editor. | |
700 | 1 | |a Stringari, S., |e editor. | |
700 | 1 | |a Roati, G., |e editor. | |
710 | 2 | |a Società italiana di fisica, |e issuing body. |0 http://id.loc.gov/authorities/names/n79145388 | |
758 | |i has work: |a Materia quantistica ultrafredda (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG4wwjQYcYtTWkDvrvPpvb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a International School of Physics "Enrico Fermi" (191st : 2014 : Varenna, Italy). |t Materia quantistica ultrafredda. |d Amsterdam, Netherlands ; Washington, DC : IOS Press ; Bologna, Italy : Società Italiana di Fisica, 2016 |w (DLC) 2016949853 |
811 | 2 | |a International School of Physics "Enrico Fermi." |t Proceedings of the International School of Physics "Enrico Fermi" ; |v course 191. |0 http://id.loc.gov/authorities/names/n42019799 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1429448 |3 Volltext |
938 | |a Baker and Taylor |b BTCP |n BK0019972651 | ||
938 | |a EBSCOhost |b EBSC |n 1429448 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis36905223 | ||
938 | |a YBP Library Services |b YANK |n 13287854 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn963257720 |
---|---|
_version_ | 1816882369561362432 |
adam_text | |
any_adam_object | |
author2 | Inguscio, M. Ketterle, Wolfgang Stringari, S. Roati, G. |
author2_role | edt edt edt edt |
author2_variant | m i mi w k wk s s ss g r gr |
author_additional | J. Dalibard -- W. Zwerger -- M.W. Zwierlein -- G. Edward Marti / D.M. Stamper-Kurn -- D.M. I. Bloch -- I. Bloch. F. Grusdt / E. Demler -- E. Demler / F. Grusdt -- T. Giamarchi -- T. Pfau / J. Balewski -- A. Recati -- B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- T. Schweigler -- T. Schweigler / J. Schmiedmayer -- J. Tura / A.B. Sainz / M. Lewen-Stein / R. Agusiak / A. Acin / T. Grass -- T. Grass / J. Tura -- M. Lewen-Stein. M. Lewen-Stein -- R. Agusiak -- M.A. Baranov -- M.A. Baranov. |
author_corporate | International School of Physics "Enrico Fermi" Varenna, Italy |
author_corporate_role | |
author_facet | Inguscio, M. Ketterle, Wolfgang Stringari, S. Roati, G. International School of Physics "Enrico Fermi" Varenna, Italy |
author_sort | International School of Physics "Enrico Fermi" Varenna, Italy |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.4 |
callnumber-search | QC174.4 |
callnumber-sort | QC 3174.4 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Magnetism and quantum physics / Gauge invariance / Cyclotron motion and Landau levels / Aharonov-Bohm effect / Rotating gases / Geometric phases and gauge fields for free atoms / Berry's phase / Adiabatic following of a dressed state / two-level case / Validity of the adiabatic approximation / Spontaneous emission and recoil heating / Non-Abelian potentials and spin-orbit coupling / Non-Abelian potentials in quantum optics / Tripod configuration and 2D spin-orbit coupling / 1D version of spin-orbit coupling / Gauge fields on a lattice / Tight-binding model / Hofstadter butterfly / Chern number for an energy band / Generation of lattice gauge fields via shaking or modulation / Rapid shaking of a lattice / Resonant shaking/modulation / Generation of lattice gauge fields via internal atomic transitions / Laser-assisted tunneling in a 1D ladder / Lattice with artificial dimension / Laser-induced tunneling in a 2D lattice / Optical flux lattices / Conclusion / Appendix A. Landau levels / Eigenstates with the Landau gauge / Probability current in a Landau state / Eigenstates with the symmetric gauge / Appendix B. Topology in the square lattice / Band structure and periodicity in reciprocal space / Constant force and unitary transformation / Bloch oscillations and adiabatic following / velocity operator and its matrix elements / Berry curvature / Conduction from a filled band and Chern number / Chern number is an integer / Feshbach resonances / Two-body scattering / Three-body losses / Unitary bosons and the Efimov effect / Tan relations / Thermodynamic relations / Quantitative results for the contact / Closed-channel fraction / Single-channel model and zero-range limit / Short-distance correlations / Unitary fermions: universality and scale invariance / Quantum critical point and universality / Thermodynamics of the unitary Fermi gas / Luttinger-Ward theory / Scale invariance / Broken scale invariance and conformal anomaly in 2D / RF-spectroscopy and transport / RF-spectroscopy / Quantum limited viscosity and spin diffusion / Introduction / Universal thermodynamics / Thermodynamics of trapped gases / Zero-temperature equation of state / Viral theorem for the trapped gas at unitarity / General thermodynamic relations / Obtaining the pressure from density profiles / "Magic formula" for harmonic trapping / Universal thermodynamics of the unitary Fermi gas / Compressibility equation of state / Specific heat versus temperature-the Lambda transition in a gas / Chemical potential, energy and free energy / Entropy, density and pressure / Importance of cross-validation with theory / Further applications of the "fit-free" method / Equation of state in the BEC-BCS crossover-The contact / Energy of molecular Bose-Einstein condensates / Energy of weakly interacting Fermi gas / Near unitarity / Pressure relation / General Virial theorem / Equation of state in the BEC-BCS crossover Experiments / Equation of state from density profiles / Momentum distribution / Radiofrequency spectroscopy / Photoassociation / Bragg spectroscopy / Temperature dependence of the homogeneous contact / Collective oscillations / Condensation energy / normal state above Tc: Pseudo-gap phase, Fermi liquid, or Fermi gas? / Fermionic superfluidity with spin imbalance / Chandrasekhar-Clogston limit / Phase separation / Limit of high imbalance-the Fermi polaron / Fermi liquid of polarons / Thermodynamics of spin-imbalanced Fermi mixtures / Equation of state at unitarity / Prospects for observing the FFLO state / Conclusion and perspectives / Basic properties / quantum fluids landscape / Atomic species / Alkali atoms / High-spin atoms / Stability against dipolar relaxation / Rotationally symmetric interactions / Magnetic order of spinor Bose-Einstein condensates / Bose-Einstein magnetism in a non-interacting spinor gas / Spin-dependent s-wave interactions in more recognizable form / Ground states in the mean-field and single-mode approximations / Mean-field ground states under applied magnetic fields / Experimental evidence for magnetic order of ferromagnetic and anti-ferromagnetic F=1 spinor condensates / Correlations in the exact many-body ground state of the F=1 spinor gas / Imaging spinor condensates / Stern-Gerlach imaging / Dispersive birefringent imaging / Circular birefringent imaging / Projective imaging / Absorptive spin-sensitive in situ imaging (ASSISI) / Noise in dispersive imaging and ASSISI / Spin-spin correlations and magnetic susceptibility / Stamper-Kurn -- Multi-axis imaging and topological invariants / Multi-axis imaging of ferromagnetic structures / Magnetization curvature / Spin dynamics / Microscopic spin dynamics / Mean-field picture of collective spin dynamics / Spin-mixing instability / Experiments in the single-mode regime / Quantum quenches in spatially extended spinor Bose-Einstein condensates / Magnetic excitations / Quasiparticles of a spin-1 spinor condensate / Linearized Schrodinger equation / Ferromagnetic F=1 condensate / Polar F=1 condensate / Making and detecting magnons / Magnon propagation / Magnon contrast interferometry and recoil frequency / Bose and Fermi Hubbard models / Bose-Hubbard model / Fermi-Hubbard model / Quantum magnetism with ultracold atoms in optical lattices / Superexchange spin interactions / Superexchange interactions in a double well / Superexchange interactions on a lattice / Resonating valence bond states in a plaquette / Site-resolved imaging / Thermometry at the limit of individual thermal excitations / Single-site-resolved addressing of individual atoms / Quantum gas microscopy-new possibilities for cold quantum gases / Using quantum gas microscopes to probe quantum magnetism / Long-range-interacting quantum magnets / Outlook / Derivation of the Frohlich Hamiltonian / Microscopic Hamiltonian: Impurity in a BEC / Frohlich Hamiltonian in a BEC / Microscopic derivation of the Frohlich model / Characteristic scales and the polaronic coupling constant / Lippmann-Schwinger equation / Overview of common theoretical approaches / Perturbative approaches s / Rayleigh-Schrodinger perturbation theory / Green's function perturbation theory and self-consistent Born / Exact solution for infinite mass / Lee-Low-Pines treatment / Weak coupling mean-field theory / Self-consistency equation / Polaron energy / Polaron mass / Strong coupling Landau-Pekar approach / Feynman path integral approach / Jensen-Feynman variational principle / Feynman's trial action / Monte Carlo approaches / Renormalization group approach>> / Frohlich model and renormalized coupling constants / Renormalization group formalism for the Frohlich model / Dimensional analysis / Formulation of the RG / RG flow equations / Solutions of RG flow equations / Polaron ground state energy in the renormalization group approach / Logarithmic UV divergence of the polaron energy / Ground state polaron properties from RG / Phonon number / Quasiparticle weight / Gaussian variational approach / UV regularization and log-divergence / Regularization of the power-law divergence / Explanation of the logarithmic divergence / Results for experimentally relevant parameters / Experimental considerations / Conditions for the Frohlich model / Experimentally achievable coupling strengths / RF spectroscopy / Basic theory of RF spectroscopy / Basic properties of RF spectra / Properties of polarons / Polaronic mass / Example of a dynamical problem: Bloch oscillations of Bose polarons / Time-dependent mean-field approach / Equations of motion-Dirac's time-dependent variational principle / Bloch oscillations of polarons in lattices / Model / Time-dependent mean-field description / Adiabatic approximation and polaron dynamics / Polaron transport properties / Appendix A / Lee-Low-Pines formalism in a lattice / Coupling constant and relation to experiments / Time-dependent Lee-Low-Pines transformation in the lattice / Renormalized impurity mass / Polaron properties from the RG-derivations / Polaron phonon number / Polaron momentum / Why one dimension / 1D basics / What are one-dimensional systems? / Some realizations with cold atoms or CM / Universal physics in one dimension (Luttinger liquid) / Fermions and spins / Luttinger parameters / Experimental tests of TLL / Magnetic insulators / Cold atomic systems / Other experimental features of 1d: Fractionalization of excitations / TLL and beyond / Effect of a lattice: Mott transition / Disorder / Wishes and open problems / Electron-atom scattering / Fermi pseudopotential / Higher-order contributions / Rydberg spectroscopy / Ultracold but thermal gases / Bose-Einstein condensates / Lifetime of Rydberg atoms in dense gases / Dependence on principal quantum number and density / Possible decay processes / Dependence on spectral position / Mean-field Gross-Pitaevskii equations / Ground state / Excitation spectra / Spin structure factor and magnetic fluctuations / Trapped gas / Relation to Josephson dynamics / Soliton and vortex dimers / Tight-binding model for gases in optical lattices / Motivation / One-dimensional Bose gases / Creating a non-equilibrium state / Probing the quantum state / Density ripples / Phase correlation functions / Full distribution functions / Generalized Gibbs ensemble / Dynamics beyond prethermalization / Recurrences / Imbalanced splitting / Application: Interferometry with squeezed states / Crash course on entanglement / Bipartite pure states: Schmidt decomposition / Bipartite mixed states: Separable and entangled states / Entanglement criteria / Entanglement measures / von Neumann entropy / Entanglement in many-body systems / Computational complexity / Entanglement of a generic state / Area laws / Quantum area laws in 1D / Higher-dimensional systems / Area laws for mutual information-classical and quantum Gibbs states / world according to tensor networks / Non-locality in many-body systems / Probabilities and correlations-DIQIP approach / Detecting non-locality in many-body systems with two-body correlators / Permutational invariance / Symmetric two-body Bell inequalities: example / Many-body symmetric states / Conclusions / Exchange and statistics / Braid group, representations, and exchange statistics / Physical requirements for non-Abelian anyons / Majorana fermions as non-Abelian anyons / Majorana fermions in Kitaev wire / Majorana fermions in systems of cold atoms / Braiding Majorana fermions in wires setup / Physics behind the braiding / Demonstration of non-Abelian statistics / Using Majorana fermions for quantum computation / Summary / |
ctrlnum | (OCoLC)963257720 |
dewey-full | 530.13/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.13/3 |
dewey-search | 530.13/3 |
dewey-sort | 3530.13 13 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic Conference Proceeding eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>26451cam a2200793 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn963257720</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">161118s2016 ne ob 100 0 eng c</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">STF</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">STF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">IOSPR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">BTCTA</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SNK</subfield><subfield code="d">DKU</subfield><subfield code="d">AUW</subfield><subfield code="d">MHW</subfield><subfield code="d">IGB</subfield><subfield code="d">D6H</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">INT</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614996941</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1614996946</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781614996934</subfield><subfield code="q">(IOS Press ;</subfield><subfield code="q">print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9788874381050</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">8874381050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)963257720</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">pcc</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.4</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">024000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">055000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.13/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">International School of Physics "Enrico Fermi"</subfield><subfield code="n">(191st :</subfield><subfield code="d">2014 :</subfield><subfield code="c">Varenna, Italy)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2016156041</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Materia quantistica ultrafredda :</subfield><subfield code="b">Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 /</subfield><subfield code="c">a cura di M. Inguscio, W. Ketterle e S. Stringari, direttori del corso, e di G. Roati = Quantum matter at ultralow temperatures : Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014 / edited by M. Inguscio, W. Ketterle and S. Stringari, director of the course, and G. Roati.</subfield></datafield><datafield tag="246" ind1="3" ind2="1"><subfield code="a">Quantum matter at ultralow temperatures :</subfield><subfield code="b">Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands ;</subfield><subfield code="a">Washington, DC :</subfield><subfield code="b">IOS Press ;</subfield><subfield code="a">Bologna, Italy :</subfield><subfield code="b">Società Italiana di Fisica,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 570 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Rendiconti della Scuola internazionale di fisica "Enrico Fermi",</subfield><subfield code="x">1879-8195 ;</subfield><subfield code="v">CXCI Corso = Proceedings of the International School of Physics "Enrico Fermi" ;</subfield><subfield code="v">course 191</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (IOS, viewed November 18, 2016).</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Machine generated contents note:</subfield><subfield code="g">1.</subfield><subfield code="t">Magnetism and quantum physics /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">1.1.</subfield><subfield code="t">Gauge invariance /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">1.2.</subfield><subfield code="t">Cyclotron motion and Landau levels /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">1.3.</subfield><subfield code="t">Aharonov-Bohm effect /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">1.4.</subfield><subfield code="t">Rotating gases /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">2.</subfield><subfield code="t">Geometric phases and gauge fields for free atoms /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Berry's phase /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Adiabatic following of a dressed state /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">2.3.</subfield><subfield code="t">two-level case /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Validity of the adiabatic approximation /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Spontaneous emission and recoil heating /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">3.</subfield><subfield code="t">Non-Abelian potentials and spin-orbit coupling /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Non-Abelian potentials in quantum optics /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Tripod configuration and 2D spin-orbit coupling /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">3.3.</subfield><subfield code="t">1D version of spin-orbit coupling /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">4.</subfield><subfield code="t">Gauge fields on a lattice /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Tight-binding model /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Hofstadter butterfly /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Chern number for an energy band /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">5.</subfield><subfield code="t">Generation of lattice gauge fields via shaking or modulation /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Rapid shaking of a lattice /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Resonant shaking/modulation /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">6.</subfield><subfield code="t">Generation of lattice gauge fields via internal atomic transitions /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Laser-assisted tunneling in a 1D ladder /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Lattice with artificial dimension /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Laser-induced tunneling in a 2D lattice /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Optical flux lattices /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">7.</subfield><subfield code="t">Conclusion /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Appendix A. Landau levels /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Eigenstates with the Landau gauge /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Probability current in a Landau state /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Eigenstates with the symmetric gauge /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Appendix B. Topology in the square lattice /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Band structure and periodicity in reciprocal space /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Constant force and unitary transformation /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Bloch oscillations and adiabatic following /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">velocity operator and its matrix elements /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Berry curvature /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Conduction from a filled band and Chern number /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="t">Chern number is an integer /</subfield><subfield code="r">J. Dalibard --</subfield><subfield code="g">1.</subfield><subfield code="t">Feshbach resonances /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">1.1.</subfield><subfield code="t">Two-body scattering /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">1.2.</subfield><subfield code="t">Feshbach resonances /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">1.3.</subfield><subfield code="t">Three-body losses /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">1.4.</subfield><subfield code="t">Unitary bosons and the Efimov effect /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">2.</subfield><subfield code="t">Tan relations /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Thermodynamic relations /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Quantitative results for the contact /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Closed-channel fraction /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Single-channel model and zero-range limit /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Short-distance correlations /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">3.</subfield><subfield code="t">Unitary fermions: universality and scale invariance /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Quantum critical point and universality /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Thermodynamics of the unitary Fermi gas /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Luttinger-Ward theory /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Scale invariance /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">3.5.</subfield><subfield code="t">Broken scale invariance and conformal anomaly in 2D /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">4.</subfield><subfield code="t">RF-spectroscopy and transport /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">4.1.</subfield><subfield code="t">RF-spectroscopy /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Quantum limited viscosity and spin diffusion /</subfield><subfield code="r">W. Zwerger --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.</subfield><subfield code="t">Universal thermodynamics /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Thermodynamics of trapped gases /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.1.1.</subfield><subfield code="t">Zero-temperature equation of state /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.1.2.</subfield><subfield code="t">Viral theorem for the trapped gas at unitarity /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2-2.</subfield><subfield code="t">General thermodynamic relations /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.2.1.</subfield><subfield code="t">Obtaining the pressure from density profiles /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.2.2.</subfield><subfield code="t">"Magic formula" for harmonic trapping /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Universal thermodynamics of the unitary Fermi gas /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.3.1.</subfield><subfield code="t">Compressibility equation of state /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.3.2.</subfield><subfield code="t">Specific heat versus temperature-the Lambda transition in a gas /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.3.3.</subfield><subfield code="t">Chemical potential, energy and free energy /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.3.4.</subfield><subfield code="t">Entropy, density and pressure /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.3.5.</subfield><subfield code="t">Importance of cross-validation with theory /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.3.6.</subfield><subfield code="t">Further applications of the "fit-free" method /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Equation of state in the BEC-BCS crossover-The contact /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.4.1.</subfield><subfield code="t">Energy of molecular Bose-Einstein condensates /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.4.2.</subfield><subfield code="t">Energy of weakly interacting Fermi gas /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.4.3.</subfield><subfield code="t">Near unitarity /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.4.4.</subfield><subfield code="t">Pressure relation /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.4.5.</subfield><subfield code="t">General Virial theorem /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Equation of state in the BEC-BCS crossover Experiments /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.5.1.</subfield><subfield code="t">Equation of state from density profiles /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.5.2.</subfield><subfield code="t">Momentum distribution /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.5.3.</subfield><subfield code="t">Radiofrequency spectroscopy /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.5.4.</subfield><subfield code="t">Photoassociation /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.5.5.</subfield><subfield code="t">Bragg spectroscopy /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.5.6.</subfield><subfield code="t">Temperature dependence of the homogeneous contact /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.5.7.</subfield><subfield code="t">Collective oscillations /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.5.8.</subfield><subfield code="t">Condensation energy /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">2.6.</subfield><subfield code="t">normal state above Tc: Pseudo-gap phase, Fermi liquid, or Fermi gas? /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">3.</subfield><subfield code="t">Fermionic superfluidity with spin imbalance /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Chandrasekhar-Clogston limit /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Phase separation /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Limit of high imbalance-the Fermi polaron /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Fermi liquid of polarons /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">3.5.</subfield><subfield code="t">Thermodynamics of spin-imbalanced Fermi mixtures /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">3.5.1.</subfield><subfield code="t">Equation of state at unitarity /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">3.6.</subfield><subfield code="t">Prospects for observing the FFLO state /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">4.</subfield><subfield code="t">Conclusion and perspectives /</subfield><subfield code="r">M.W. Zwierlein --</subfield><subfield code="g">1.</subfield><subfield code="t">Basic properties /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">1.1.</subfield><subfield code="t">quantum fluids landscape /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">1.2.</subfield><subfield code="t">Atomic species /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">1.2.1.</subfield><subfield code="t">Alkali atoms /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">1.2.2.</subfield><subfield code="t">High-spin atoms /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">1.2.3.</subfield><subfield code="t">Stability against dipolar relaxation /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">1.3.</subfield><subfield code="t">Rotationally symmetric interactions /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">2.</subfield><subfield code="t">Magnetic order of spinor Bose-Einstein condensates /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Bose-Einstein magnetism in a non-interacting spinor gas /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Spin-dependent s-wave interactions in more recognizable form /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Ground states in the mean-field and single-mode approximations /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Mean-field ground states under applied magnetic fields /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Experimental evidence for magnetic order of ferromagnetic and anti-ferromagnetic F=1 spinor condensates /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">2.6.</subfield><subfield code="t">Correlations in the exact many-body ground state of the F=1 spinor gas /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.</subfield><subfield code="t">Imaging spinor condensates /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Stern-Gerlach imaging /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Dispersive birefringent imaging /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.2.1.</subfield><subfield code="t">Circular birefringent imaging /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Projective imaging /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.3.1.</subfield><subfield code="t">Absorptive spin-sensitive in situ imaging (ASSISI) /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.3.2.</subfield><subfield code="t">Noise in dispersive imaging and ASSISI /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Spin-spin correlations and magnetic susceptibility /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Stamper-Kurn --</subfield><subfield code="g">3.5.</subfield><subfield code="t">Multi-axis imaging and topological invariants /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.5.1.</subfield><subfield code="t">Multi-axis imaging of ferromagnetic structures /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">3.5.2.</subfield><subfield code="t">Magnetization curvature /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">4.</subfield><subfield code="t">Spin dynamics /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Microscopic spin dynamics /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Mean-field picture of collective spin dynamics /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Spin-mixing instability /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">4.3.1.</subfield><subfield code="t">Experiments in the single-mode regime /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">4.3.2.</subfield><subfield code="t">Quantum quenches in spatially extended spinor Bose-Einstein condensates /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">5.</subfield><subfield code="t">Magnetic excitations /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Quasiparticles of a spin-1 spinor condensate /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Linearized Schrodinger equation /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">5.2.1.</subfield><subfield code="t">Ferromagnetic F=1 condensate /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">5.2.2.</subfield><subfield code="t">Polar F=1 condensate /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Making and detecting magnons /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Magnon propagation /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">5.5.</subfield><subfield code="t">Magnon contrast interferometry and recoil frequency /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">6.</subfield><subfield code="t">Conclusion /</subfield><subfield code="r">G. Edward Marti /</subfield><subfield code="r">D.M. Stamper-Kurn --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">2.</subfield><subfield code="t">Bose and Fermi Hubbard models /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Bose-Hubbard model /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Fermi-Hubbard model /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">3.</subfield><subfield code="t">Quantum magnetism with ultracold atoms in optical lattices /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Superexchange spin interactions /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">3.1.1.</subfield><subfield code="t">Superexchange interactions in a double well /</subfield><subfield code="r">I. Bloch.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Note continued:</subfield><subfield code="g">3.1.2.</subfield><subfield code="t">Superexchange interactions on a lattice /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Resonating valence bond states in a plaquette /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">4.</subfield><subfield code="t">Site-resolved imaging /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">5.</subfield><subfield code="t">Thermometry at the limit of individual thermal excitations /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">6.</subfield><subfield code="t">Single-site-resolved addressing of individual atoms /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">7.</subfield><subfield code="t">Quantum gas microscopy-new possibilities for cold quantum gases /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Using quantum gas microscopes to probe quantum magnetism /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Long-range-interacting quantum magnets /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">8.</subfield><subfield code="t">Outlook /</subfield><subfield code="r">I. Bloch --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">2.</subfield><subfield code="t">Derivation of the Frohlich Hamiltonian /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Microscopic Hamiltonian: Impurity in a BEC /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Frohlich Hamiltonian in a BEC /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Microscopic derivation of the Frohlich model /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Characteristic scales and the polaronic coupling constant /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Lippmann-Schwinger equation /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.</subfield><subfield code="t">Overview of common theoretical approaches /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Perturbative approaches s /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.1.1.</subfield><subfield code="t">Rayleigh-Schrodinger perturbation theory /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.1.2.</subfield><subfield code="t">Green's function perturbation theory and self-consistent Born /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Exact solution for infinite mass /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Lee-Low-Pines treatment /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Weak coupling mean-field theory /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.4.1.</subfield><subfield code="t">Self-consistency equation /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.4.2.</subfield><subfield code="t">Polaron energy /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.4.3.</subfield><subfield code="t">Polaron mass /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.5.</subfield><subfield code="t">Strong coupling Landau-Pekar approach /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.5.1.</subfield><subfield code="t">Polaron energy /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.5.2.</subfield><subfield code="t">Polaron mass /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.6.</subfield><subfield code="t">Feynman path integral approach /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.6.1.</subfield><subfield code="t">Jensen-Feynman variational principle /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.6.2.</subfield><subfield code="t">Feynman's trial action /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.6.3.</subfield><subfield code="t">Polaron mass /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">3.7.</subfield><subfield code="t">Monte Carlo approaches /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.</subfield><subfield code="t">Renormalization group approach>> /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Frohlich model and renormalized coupling constants /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Renormalization group formalism for the Frohlich model /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.2.1.</subfield><subfield code="t">Dimensional analysis /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.2.2.</subfield><subfield code="t">Formulation of the RG /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.2.3.</subfield><subfield code="t">RG flow equations /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.2.4.</subfield><subfield code="t">Solutions of RG flow equations /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Polaron ground state energy in the renormalization group approach /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.3.1.</subfield><subfield code="t">Logarithmic UV divergence of the polaron energy /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Ground state polaron properties from RG /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.4.1.</subfield><subfield code="t">Polaron mass /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.4.2.</subfield><subfield code="t">Phonon number /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.4.3.</subfield><subfield code="t">Quasiparticle weight /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">4.5.</subfield><subfield code="t">Gaussian variational approach /</subfield><subfield code="r">F. Grusdt /</subfield><subfield code="r">E. Demler --</subfield><subfield code="g">5.</subfield><subfield code="t">UV regularization and log-divergence /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Regularization of the power-law divergence /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Explanation of the logarithmic divergence /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.</subfield><subfield code="t">Results for experimentally relevant parameters /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Experimental considerations /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.1.1.</subfield><subfield code="t">Conditions for the Frohlich model /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.1.2.</subfield><subfield code="t">Experimentally achievable coupling strengths /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.2.</subfield><subfield code="t">RF spectroscopy /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.2.1.</subfield><subfield code="t">Basic theory of RF spectroscopy /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.2.2.</subfield><subfield code="t">Basic properties of RF spectra /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Properties of polarons /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.3.1.</subfield><subfield code="t">Polaronic mass /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.3.2.</subfield><subfield code="t">Phonon number /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">6.3.3.</subfield><subfield code="t">Quasiparticle weight /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">7.</subfield><subfield code="t">Example of a dynamical problem: Bloch oscillations of Bose polarons /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Time-dependent mean-field approach /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">7.1.1.</subfield><subfield code="t">Equations of motion-Dirac's time-dependent variational principle /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Bloch oscillations of polarons in lattices /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">7.2.1.</subfield><subfield code="t">Model /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">7.2.2.</subfield><subfield code="t">Time-dependent mean-field description /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">7.2.3.</subfield><subfield code="t">Adiabatic approximation and polaron dynamics /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">7.2.4.</subfield><subfield code="t">Polaron transport properties /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">8.</subfield><subfield code="t">Outlook /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="t">Appendix A /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">A.1.</subfield><subfield code="t">Lee-Low-Pines formalism in a lattice /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">A.1.1.</subfield><subfield code="t">Coupling constant and relation to experiments /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">A.1.2.</subfield><subfield code="t">Time-dependent Lee-Low-Pines transformation in the lattice /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">A.2.</subfield><subfield code="t">Renormalized impurity mass /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">A.3.</subfield><subfield code="t">Polaron properties from the RG-derivations /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">A.3.1.</subfield><subfield code="t">Polaron phonon number /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">A.3.2.</subfield><subfield code="t">Polaron momentum /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">A.3.3.</subfield><subfield code="t">Quasiparticle weight /</subfield><subfield code="r">E. Demler /</subfield><subfield code="r">F. Grusdt --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">2.</subfield><subfield code="t">Why one dimension /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">3.</subfield><subfield code="t">1D basics /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">3.1.</subfield><subfield code="t">What are one-dimensional systems? /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Some realizations with cold atoms or CM /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Universal physics in one dimension (Luttinger liquid) /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Fermions and spins /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">3.5.</subfield><subfield code="t">Luttinger parameters /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">4.</subfield><subfield code="t">Experimental tests of TLL /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Magnetic insulators /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Cold atomic systems /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Other experimental features of 1d: Fractionalization of excitations /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">5.</subfield><subfield code="t">TLL and beyond /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Effect of a lattice: Mott transition /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Disorder /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">6.</subfield><subfield code="t">Wishes and open problems /</subfield><subfield code="r">T. Giamarchi --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">2.</subfield><subfield code="t">Electron-atom scattering /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Fermi pseudopotential /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Higher-order contributions /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">3.</subfield><subfield code="t">Rydberg spectroscopy /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Ultracold but thermal gases /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Bose-Einstein condensates /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">4.</subfield><subfield code="t">Lifetime of Rydberg atoms in dense gases /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Dependence on principal quantum number and density /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Possible decay processes /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Dependence on spectral position /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusion /</subfield><subfield code="r">T. Pfau /</subfield><subfield code="r">J. Balewski --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">2.</subfield><subfield code="t">Model /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">3.</subfield><subfield code="t">Mean-field Gross-Pitaevskii equations /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Ground state /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">4.</subfield><subfield code="t">Excitation spectra /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">4.0.</subfield><subfield code="t">Spin structure factor and magnetic fluctuations /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Trapped gas /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Relation to Josephson dynamics /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">5.</subfield><subfield code="t">Soliton and vortex dimers /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">6.</subfield><subfield code="t">Tight-binding model for gases in optical lattices /</subfield><subfield code="r">A. Recati --</subfield><subfield code="g">1.</subfield><subfield code="t">Motivation /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">2.</subfield><subfield code="t">One-dimensional Bose gases /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">3.</subfield><subfield code="t">Creating a non-equilibrium state /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">4.</subfield><subfield code="t">Probing the quantum state /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Density ripples /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="r">Schweigler --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Phase correlation functions /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Full distribution functions /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">5.</subfield><subfield code="t">Generalized Gibbs ensemble /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">T. Schweigler /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">J. Schmiedmayer --</subfield><subfield code="g">6.</subfield><subfield code="t">Dynamics beyond prethermalization /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Recurrences /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Imbalanced splitting /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">7.</subfield><subfield code="t">Application: Interferometry with squeezed states /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">8.</subfield><subfield code="t">Conclusion /</subfield><subfield code="r">B. Rauer /</subfield><subfield code="r">J. Schmiedmayer /</subfield><subfield code="r">T. Langen /</subfield><subfield code="r">T. Schweigler --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">T. Grass --</subfield><subfield code="g">2.</subfield><subfield code="t">Crash course on entanglement /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">T. Grass --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Bipartite pure states: Schmidt decomposition /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">J. Tura --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Bipartite mixed states: Separable and entangled states /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">T. Grass --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Entanglement criteria /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">T. Grass --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Entanglement measures /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">T. Grass --</subfield><subfield code="g">2.5.</subfield><subfield code="t">von Neumann entropy /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">T. Grass --</subfield><subfield code="g">3.</subfield><subfield code="t">Entanglement in many-body systems /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">T. Grass --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Computational complexity /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">M. Lewen-Stein.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Note continued:</subfield><subfield code="g">3.2.</subfield><subfield code="t">Entanglement of a generic state /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">4.</subfield><subfield code="t">Area laws /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Quantum area laws in 1D /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Higher-dimensional systems /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">4.2.1.</subfield><subfield code="t">Area laws for mutual information-classical and quantum Gibbs states /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">R. Agusiak --</subfield><subfield code="g">4.3.</subfield><subfield code="t">world according to tensor networks /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">5.</subfield><subfield code="t">Non-locality in many-body systems /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Probabilities and correlations-DIQIP approach /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Detecting non-locality in many-body systems with two-body correlators /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Permutational invariance /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">T. Grass --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Symmetric two-body Bell inequalities: example /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">5.5.</subfield><subfield code="t">Many-body symmetric states /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">M. Lewen-Stein /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">R. Agusiak --</subfield><subfield code="g">6.</subfield><subfield code="t">Conclusions /</subfield><subfield code="r">J. Tura /</subfield><subfield code="r">A.B. Sainz /</subfield><subfield code="r">A. Acin /</subfield><subfield code="r">R. Agusiak /</subfield><subfield code="r">T. Grass /</subfield><subfield code="r">M. Lewen-Stein --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">2.</subfield><subfield code="t">Exchange and statistics /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Braid group, representations, and exchange statistics /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Physical requirements for non-Abelian anyons /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">3.</subfield><subfield code="t">Majorana fermions as non-Abelian anyons /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">4.</subfield><subfield code="t">Majorana fermions in Kitaev wire /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">5.</subfield><subfield code="t">Majorana fermions in systems of cold atoms /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Braiding Majorana fermions in wires setup /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Physics behind the braiding /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Demonstration of non-Abelian statistics /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">6.</subfield><subfield code="t">Using Majorana fermions for quantum computation /</subfield><subfield code="r">M.A. Baranov --</subfield><subfield code="g">7.</subfield><subfield code="t">Summary /</subfield><subfield code="r">M.A. Baranov.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum statistics</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Low temperatures</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Statistique quantique</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Basses températures</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Energy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low temperatures</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum statistics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">proceedings (reports)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings.</subfield><subfield code="2">lcgft</subfield><subfield code="0">http://id.loc.gov/authorities/genreForms/gf2014026068</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Actes de congrès.</subfield><subfield code="2">rvmgf</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Inguscio, M.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ketterle, Wolfgang,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stringari, S.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roati, G.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Società italiana di fisica,</subfield><subfield code="e">issuing body.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79145388</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Materia quantistica ultrafredda (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG4wwjQYcYtTWkDvrvPpvb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">International School of Physics "Enrico Fermi" (191st : 2014 : Varenna, Italy).</subfield><subfield code="t">Materia quantistica ultrafredda.</subfield><subfield code="d">Amsterdam, Netherlands ; Washington, DC : IOS Press ; Bologna, Italy : Società Italiana di Fisica, 2016</subfield><subfield code="w">(DLC) 2016949853</subfield></datafield><datafield tag="811" ind1="2" ind2=" "><subfield code="a">International School of Physics "Enrico Fermi."</subfield><subfield code="t">Proceedings of the International School of Physics "Enrico Fermi" ;</subfield><subfield code="v">course 191.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42019799</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1429448</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Baker and Taylor</subfield><subfield code="b">BTCP</subfield><subfield code="n">BK0019972651</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1429448</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis36905223</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13287854</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | proceedings (reports) aat Conference papers and proceedings fast Conference papers and proceedings. lcgft http://id.loc.gov/authorities/genreForms/gf2014026068 Actes de congrès. rvmgf |
genre_facet | proceedings (reports) Conference papers and proceedings Conference papers and proceedings. Actes de congrès. |
id | ZDB-4-EBA-ocn963257720 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:31Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2016156041 http://id.loc.gov/authorities/names/n79145388 |
isbn | 9781614996941 1614996946 |
issn | 1879-8195 ; |
language | English |
oclc_num | 963257720 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 570 pages). |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | IOS Press ; Società Italiana di Fisica, |
record_format | marc |
series2 | Rendiconti della Scuola internazionale di fisica "Enrico Fermi", |
spelling | International School of Physics "Enrico Fermi" (191st : 2014 : Varenna, Italy) http://id.loc.gov/authorities/names/no2016156041 Materia quantistica ultrafredda : Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / a cura di M. Inguscio, W. Ketterle e S. Stringari, direttori del corso, e di G. Roati = Quantum matter at ultralow temperatures : Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014 / edited by M. Inguscio, W. Ketterle and S. Stringari, director of the course, and G. Roati. Quantum matter at ultralow temperatures : Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014 Amsterdam, Netherlands ; Washington, DC : IOS Press ; Bologna, Italy : Società Italiana di Fisica, 2016. 1 online resource (xv, 570 pages). text txt rdacontent computer c rdamedia online resource cr rdacarrier text file rda Rendiconti della Scuola internazionale di fisica "Enrico Fermi", 1879-8195 ; CXCI Corso = Proceedings of the International School of Physics "Enrico Fermi" ; course 191 Includes bibliographical references. Online resource; title from PDF title page (IOS, viewed November 18, 2016). Machine generated contents note: 1. Magnetism and quantum physics / J. Dalibard -- 1.1. Gauge invariance / J. Dalibard -- 1.2. Cyclotron motion and Landau levels / J. Dalibard -- 1.3. Aharonov-Bohm effect / J. Dalibard -- 1.4. Rotating gases / J. Dalibard -- 2. Geometric phases and gauge fields for free atoms / J. Dalibard -- 2.1. Berry's phase / J. Dalibard -- 2.2. Adiabatic following of a dressed state / J. Dalibard -- 2.3. two-level case / J. Dalibard -- 2.4. Validity of the adiabatic approximation / J. Dalibard -- 2.5. Spontaneous emission and recoil heating / J. Dalibard -- 3. Non-Abelian potentials and spin-orbit coupling / J. Dalibard -- 3.1. Non-Abelian potentials in quantum optics / J. Dalibard -- 3.2. Tripod configuration and 2D spin-orbit coupling / J. Dalibard -- 3.3. 1D version of spin-orbit coupling / J. Dalibard -- 4. Gauge fields on a lattice / J. Dalibard -- 4.1. Tight-binding model / J. Dalibard -- 4.2. Hofstadter butterfly / J. Dalibard -- 4.3. Chern number for an energy band / J. Dalibard -- 5. Generation of lattice gauge fields via shaking or modulation / J. Dalibard -- 5.1. Rapid shaking of a lattice / J. Dalibard -- 5.2. Resonant shaking/modulation / J. Dalibard -- 6. Generation of lattice gauge fields via internal atomic transitions / J. Dalibard -- 6.1. Laser-assisted tunneling in a 1D ladder / J. Dalibard -- 6.2. Lattice with artificial dimension / J. Dalibard -- 6.3. Laser-induced tunneling in a 2D lattice / J. Dalibard -- 6.4. Optical flux lattices / J. Dalibard -- 7. Conclusion / J. Dalibard -- Appendix A. Landau levels / J. Dalibard -- Eigenstates with the Landau gauge / J. Dalibard -- Probability current in a Landau state / J. Dalibard -- Eigenstates with the symmetric gauge / J. Dalibard -- Appendix B. Topology in the square lattice / J. Dalibard -- Band structure and periodicity in reciprocal space / J. Dalibard -- Constant force and unitary transformation / J. Dalibard -- Bloch oscillations and adiabatic following / J. Dalibard -- velocity operator and its matrix elements / J. Dalibard -- Berry curvature / J. Dalibard -- Conduction from a filled band and Chern number / J. Dalibard -- Chern number is an integer / J. Dalibard -- 1. Feshbach resonances / W. Zwerger -- 1.1. Two-body scattering / W. Zwerger -- 1.2. Feshbach resonances / W. Zwerger -- 1.3. Three-body losses / W. Zwerger -- 1.4. Unitary bosons and the Efimov effect / W. Zwerger -- 2. Tan relations / W. Zwerger -- 2.1. Thermodynamic relations / W. Zwerger -- 2.2. Quantitative results for the contact / W. Zwerger -- 2.3. Closed-channel fraction / W. Zwerger -- 2.4. Single-channel model and zero-range limit / W. Zwerger -- 2.5. Short-distance correlations / W. Zwerger -- 3. Unitary fermions: universality and scale invariance / W. Zwerger -- 3.1. Quantum critical point and universality / W. Zwerger -- 3.2. Thermodynamics of the unitary Fermi gas / W. Zwerger -- 3.3. Luttinger-Ward theory / W. Zwerger -- 3.4. Scale invariance / W. Zwerger -- 3.5. Broken scale invariance and conformal anomaly in 2D / W. Zwerger -- 4. RF-spectroscopy and transport / W. Zwerger -- 4.1. RF-spectroscopy / W. Zwerger -- 4.2. Quantum limited viscosity and spin diffusion / W. Zwerger -- 1. Introduction / M.W. Zwierlein -- 2. Universal thermodynamics / M.W. Zwierlein -- 2.1. Thermodynamics of trapped gases / M.W. Zwierlein -- 2.1.1. Zero-temperature equation of state / M.W. Zwierlein -- 2.1.2. Viral theorem for the trapped gas at unitarity / M.W. Zwierlein -- 2-2. General thermodynamic relations / M.W. Zwierlein -- 2.2.1. Obtaining the pressure from density profiles / M.W. Zwierlein -- 2.2.2. "Magic formula" for harmonic trapping / M.W. Zwierlein -- 2.3. Universal thermodynamics of the unitary Fermi gas / M.W. Zwierlein -- 2.3.1. Compressibility equation of state / M.W. Zwierlein -- 2.3.2. Specific heat versus temperature-the Lambda transition in a gas / M.W. Zwierlein -- 2.3.3. Chemical potential, energy and free energy / M.W. Zwierlein -- 2.3.4. Entropy, density and pressure / M.W. Zwierlein -- 2.3.5. Importance of cross-validation with theory / M.W. Zwierlein -- 2.3.6. Further applications of the "fit-free" method / M.W. Zwierlein -- 2.4. Equation of state in the BEC-BCS crossover-The contact / M.W. Zwierlein -- 2.4.1. Energy of molecular Bose-Einstein condensates / M.W. Zwierlein -- 2.4.2. Energy of weakly interacting Fermi gas / M.W. Zwierlein -- 2.4.3. Near unitarity / M.W. Zwierlein -- 2.4.4. Pressure relation / M.W. Zwierlein -- 2.4.5. General Virial theorem / M.W. Zwierlein -- 2.5. Equation of state in the BEC-BCS crossover Experiments / M.W. Zwierlein -- 2.5.1. Equation of state from density profiles / M.W. Zwierlein -- 2.5.2. Momentum distribution / M.W. Zwierlein -- 2.5.3. Radiofrequency spectroscopy / M.W. Zwierlein -- 2.5.4. Photoassociation / M.W. Zwierlein -- 2.5.5. Bragg spectroscopy / M.W. Zwierlein -- 2.5.6. Temperature dependence of the homogeneous contact / M.W. Zwierlein -- 2.5.7. Collective oscillations / M.W. Zwierlein -- 2.5.8. Condensation energy / M.W. Zwierlein -- 2.6. normal state above Tc: Pseudo-gap phase, Fermi liquid, or Fermi gas? / M.W. Zwierlein -- 3. Fermionic superfluidity with spin imbalance / M.W. Zwierlein -- 3.1. Chandrasekhar-Clogston limit / M.W. Zwierlein -- 3.2. Phase separation / M.W. Zwierlein -- 3.3. Limit of high imbalance-the Fermi polaron / M.W. Zwierlein -- 3.4. Fermi liquid of polarons / M.W. Zwierlein -- 3.5. Thermodynamics of spin-imbalanced Fermi mixtures / M.W. Zwierlein -- 3.5.1. Equation of state at unitarity / M.W. Zwierlein -- 3.6. Prospects for observing the FFLO state / M.W. Zwierlein -- 4. Conclusion and perspectives / M.W. Zwierlein -- 1. Basic properties / G. Edward Marti / D.M. Stamper-Kurn -- 1.1. quantum fluids landscape / G. Edward Marti / D.M. Stamper-Kurn -- 1.2. Atomic species / G. Edward Marti / D.M. Stamper-Kurn -- 1.2.1. Alkali atoms / G. Edward Marti / D.M. Stamper-Kurn -- 1.2.2. High-spin atoms / G. Edward Marti / D.M. Stamper-Kurn -- 1.2.3. Stability against dipolar relaxation / G. Edward Marti / D.M. Stamper-Kurn -- 1.3. Rotationally symmetric interactions / G. Edward Marti / D.M. Stamper-Kurn -- 2. Magnetic order of spinor Bose-Einstein condensates / G. Edward Marti / D.M. Stamper-Kurn -- 2.1. Bose-Einstein magnetism in a non-interacting spinor gas / G. Edward Marti / D.M. Stamper-Kurn -- 2.2. Spin-dependent s-wave interactions in more recognizable form / G. Edward Marti / D.M. Stamper-Kurn -- 2.3. Ground states in the mean-field and single-mode approximations / G. Edward Marti / D.M. Stamper-Kurn -- 2.4. Mean-field ground states under applied magnetic fields / G. Edward Marti / D.M. Stamper-Kurn -- 2.5. Experimental evidence for magnetic order of ferromagnetic and anti-ferromagnetic F=1 spinor condensates / G. Edward Marti / D.M. Stamper-Kurn -- 2.6. Correlations in the exact many-body ground state of the F=1 spinor gas / G. Edward Marti / D.M. Stamper-Kurn -- 3. Imaging spinor condensates / G. Edward Marti / D.M. Stamper-Kurn -- 3.1. Stern-Gerlach imaging / G. Edward Marti / D.M. Stamper-Kurn -- 3.2. Dispersive birefringent imaging / G. Edward Marti / D.M. Stamper-Kurn -- 3.2.1. Circular birefringent imaging / G. Edward Marti / D.M. Stamper-Kurn -- 3.3. Projective imaging / G. Edward Marti / D.M. Stamper-Kurn -- 3.3.1. Absorptive spin-sensitive in situ imaging (ASSISI) / G. Edward Marti / D.M. Stamper-Kurn -- 3.3.2. Noise in dispersive imaging and ASSISI / G. Edward Marti / D.M. Stamper-Kurn -- 3.4. Spin-spin correlations and magnetic susceptibility / G. Edward Marti / D.M. Stamper-Kurn -- 3.5. Multi-axis imaging and topological invariants / G. Edward Marti / D.M. Stamper-Kurn -- 3.5.1. Multi-axis imaging of ferromagnetic structures / G. Edward Marti / D.M. Stamper-Kurn -- 3.5.2. Magnetization curvature / G. Edward Marti / D.M. Stamper-Kurn -- 4. Spin dynamics / G. Edward Marti / D.M. Stamper-Kurn -- 4.1. Microscopic spin dynamics / G. Edward Marti / D.M. Stamper-Kurn -- 4.2. Mean-field picture of collective spin dynamics / G. Edward Marti / D.M. Stamper-Kurn -- 4.3. Spin-mixing instability / G. Edward Marti / D.M. Stamper-Kurn -- 4.3.1. Experiments in the single-mode regime / G. Edward Marti / D.M. Stamper-Kurn -- 4.3.2. Quantum quenches in spatially extended spinor Bose-Einstein condensates / G. Edward Marti / D.M. Stamper-Kurn -- 5. Magnetic excitations / G. Edward Marti / D.M. Stamper-Kurn -- 5.1. Quasiparticles of a spin-1 spinor condensate / G. Edward Marti / D.M. Stamper-Kurn -- 5.2. Linearized Schrodinger equation / G. Edward Marti / D.M. Stamper-Kurn -- 5.2.1. Ferromagnetic F=1 condensate / G. Edward Marti / D.M. Stamper-Kurn -- 5.2.2. Polar F=1 condensate / G. Edward Marti / D.M. Stamper-Kurn -- 5.3. Making and detecting magnons / G. Edward Marti / D.M. Stamper-Kurn -- 5.4. Magnon propagation / G. Edward Marti / D.M. Stamper-Kurn -- 5.5. Magnon contrast interferometry and recoil frequency / G. Edward Marti / D.M. Stamper-Kurn -- 6. Conclusion / G. Edward Marti / D.M. Stamper-Kurn -- 1. Introduction / I. Bloch -- 2. Bose and Fermi Hubbard models / I. Bloch -- 2.1. Bose-Hubbard model / I. Bloch -- 2.2. Fermi-Hubbard model / I. Bloch -- 3. Quantum magnetism with ultracold atoms in optical lattices / I. Bloch -- 3.1. Superexchange spin interactions / I. Bloch -- 3.1.1. Superexchange interactions in a double well / I. Bloch. Note continued: 3.1.2. Superexchange interactions on a lattice / I. Bloch -- 3.2. Resonating valence bond states in a plaquette / I. Bloch -- 4. Site-resolved imaging / I. Bloch -- 5. Thermometry at the limit of individual thermal excitations / I. Bloch -- 6. Single-site-resolved addressing of individual atoms / I. Bloch -- 7. Quantum gas microscopy-new possibilities for cold quantum gases / I. Bloch -- 7.1. Using quantum gas microscopes to probe quantum magnetism / I. Bloch -- 7.2. Long-range-interacting quantum magnets / I. Bloch -- 8. Outlook / I. Bloch -- 1. Introduction / F. Grusdt / E. Demler -- 2. Derivation of the Frohlich Hamiltonian / F. Grusdt / E. Demler -- 2.1. Microscopic Hamiltonian: Impurity in a BEC / F. Grusdt / E. Demler -- 2.2. Frohlich Hamiltonian in a BEC / F. Grusdt / E. Demler -- 2.3. Microscopic derivation of the Frohlich model / F. Grusdt / E. Demler -- 2.4. Characteristic scales and the polaronic coupling constant / E. Demler / F. Grusdt -- 2.5. Lippmann-Schwinger equation / F. Grusdt / E. Demler -- 3. Overview of common theoretical approaches / F. Grusdt / E. Demler -- 3.1. Perturbative approaches s / F. Grusdt / E. Demler -- 3.1.1. Rayleigh-Schrodinger perturbation theory / F. Grusdt / E. Demler -- 3.1.2. Green's function perturbation theory and self-consistent Born / F. Grusdt / E. Demler -- 3.2. Exact solution for infinite mass / F. Grusdt / E. Demler -- 3.3. Lee-Low-Pines treatment / F. Grusdt / E. Demler -- 3.4. Weak coupling mean-field theory / F. Grusdt / E. Demler -- 3.4.1. Self-consistency equation / F. Grusdt / E. Demler -- 3.4.2. Polaron energy / F. Grusdt / E. Demler -- 3.4.3. Polaron mass / F. Grusdt / E. Demler -- 3.5. Strong coupling Landau-Pekar approach / F. Grusdt / E. Demler -- 3.5.1. Polaron energy / F. Grusdt / E. Demler -- 3.5.2. Polaron mass / F. Grusdt / E. Demler -- 3.6. Feynman path integral approach / F. Grusdt / E. Demler -- 3.6.1. Jensen-Feynman variational principle / F. Grusdt / E. Demler -- 3.6.2. Feynman's trial action / F. Grusdt / E. Demler -- 3.6.3. Polaron mass / F. Grusdt / E. Demler -- 3.7. Monte Carlo approaches / F. Grusdt / E. Demler -- 4. Renormalization group approach>> / F. Grusdt / E. Demler -- 4.1. Frohlich model and renormalized coupling constants / F. Grusdt / E. Demler -- 4.2. Renormalization group formalism for the Frohlich model / F. Grusdt / E. Demler -- 4.2.1. Dimensional analysis / F. Grusdt / E. Demler -- 4.2.2. Formulation of the RG / F. Grusdt / E. Demler -- 4.2.3. RG flow equations / F. Grusdt / E. Demler -- 4.2.4. Solutions of RG flow equations / F. Grusdt / E. Demler -- 4.3. Polaron ground state energy in the renormalization group approach / F. Grusdt / E. Demler -- 4.3.1. Logarithmic UV divergence of the polaron energy / F. Grusdt / E. Demler -- 4.4. Ground state polaron properties from RG / F. Grusdt / E. Demler -- 4.4.1. Polaron mass / F. Grusdt / E. Demler -- 4.4.2. Phonon number / F. Grusdt / E. Demler -- 4.4.3. Quasiparticle weight / F. Grusdt / E. Demler -- 4.5. Gaussian variational approach / F. Grusdt / E. Demler -- 5. UV regularization and log-divergence / E. Demler / F. Grusdt -- 5.1. Regularization of the power-law divergence / E. Demler / F. Grusdt -- 5.2. Explanation of the logarithmic divergence / E. Demler / F. Grusdt -- 6. Results for experimentally relevant parameters / E. Demler / F. Grusdt -- 6.1. Experimental considerations / E. Demler / F. Grusdt -- 6.1.1. Conditions for the Frohlich model / E. Demler / F. Grusdt -- 6.1.2. Experimentally achievable coupling strengths / E. Demler / F. Grusdt -- 6.2. RF spectroscopy / E. Demler / F. Grusdt -- 6.2.1. Basic theory of RF spectroscopy / E. Demler / F. Grusdt -- 6.2.2. Basic properties of RF spectra / E. Demler / F. Grusdt -- 6.3. Properties of polarons / E. Demler / F. Grusdt -- 6.3.1. Polaronic mass / E. Demler / F. Grusdt -- 6.3.2. Phonon number / E. Demler / F. Grusdt -- 6.3.3. Quasiparticle weight / E. Demler / F. Grusdt -- 7. Example of a dynamical problem: Bloch oscillations of Bose polarons / E. Demler / F. Grusdt -- 7.1. Time-dependent mean-field approach / E. Demler / F. Grusdt -- 7.1.1. Equations of motion-Dirac's time-dependent variational principle / E. Demler / F. Grusdt -- 7.2. Bloch oscillations of polarons in lattices / E. Demler / F. Grusdt -- 7.2.1. Model / E. Demler / F. Grusdt -- 7.2.2. Time-dependent mean-field description / E. Demler / F. Grusdt -- 7.2.3. Adiabatic approximation and polaron dynamics / E. Demler / F. Grusdt -- 7.2.4. Polaron transport properties / E. Demler / F. Grusdt -- 8. Outlook / E. Demler / F. Grusdt -- Appendix A / E. Demler / F. Grusdt -- A.1. Lee-Low-Pines formalism in a lattice / E. Demler / F. Grusdt -- A.1.1. Coupling constant and relation to experiments / E. Demler / F. Grusdt -- A.1.2. Time-dependent Lee-Low-Pines transformation in the lattice / E. Demler / F. Grusdt -- A.2. Renormalized impurity mass / E. Demler / F. Grusdt -- A.3. Polaron properties from the RG-derivations / E. Demler / F. Grusdt -- A.3.1. Polaron phonon number / E. Demler / F. Grusdt -- A.3.2. Polaron momentum / E. Demler / F. Grusdt -- A.3.3. Quasiparticle weight / E. Demler / F. Grusdt -- 1. Introduction / T. Giamarchi -- 2. Why one dimension / T. Giamarchi -- 3. 1D basics / T. Giamarchi -- 3.1. What are one-dimensional systems? / T. Giamarchi -- 3.2. Some realizations with cold atoms or CM / T. Giamarchi -- 3.3. Universal physics in one dimension (Luttinger liquid) / T. Giamarchi -- 3.4. Fermions and spins / T. Giamarchi -- 3.5. Luttinger parameters / T. Giamarchi -- 4. Experimental tests of TLL / T. Giamarchi -- 4.1. Magnetic insulators / T. Giamarchi -- 4.2. Cold atomic systems / T. Giamarchi -- 4.3. Other experimental features of 1d: Fractionalization of excitations / T. Giamarchi -- 5. TLL and beyond / T. Giamarchi -- 5.1. Effect of a lattice: Mott transition / T. Giamarchi -- 5.2. Disorder / T. Giamarchi -- 6. Wishes and open problems / T. Giamarchi -- 1. Introduction / T. Pfau / J. Balewski -- 2. Electron-atom scattering / T. Pfau / J. Balewski -- 2.1. Fermi pseudopotential / T. Pfau / J. Balewski -- 2.2. Higher-order contributions / T. Pfau / J. Balewski -- 3. Rydberg spectroscopy / T. Pfau / J. Balewski -- 3.1. Ultracold but thermal gases / T. Pfau / J. Balewski -- 3.2. Bose-Einstein condensates / T. Pfau / J. Balewski -- 4. Lifetime of Rydberg atoms in dense gases / T. Pfau / J. Balewski -- 4.1. Dependence on principal quantum number and density / T. Pfau / J. Balewski -- 4.2. Possible decay processes / T. Pfau / J. Balewski -- 4.3. Dependence on spectral position / T. Pfau / J. Balewski -- 5. Conclusion / T. Pfau / J. Balewski -- 1. Introduction / A. Recati -- 2. Model / A. Recati -- 3. Mean-field Gross-Pitaevskii equations / A. Recati -- 3.1. Ground state / A. Recati -- 4. Excitation spectra / A. Recati -- 4.0. Spin structure factor and magnetic fluctuations / A. Recati -- 4.1. Trapped gas / A. Recati -- 4.2. Relation to Josephson dynamics / A. Recati -- 5. Soliton and vortex dimers / A. Recati -- 6. Tight-binding model for gases in optical lattices / A. Recati -- 1. Motivation / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 2. One-dimensional Bose gases / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 3. Creating a non-equilibrium state / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 4. Probing the quantum state / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 4.1. Density ripples / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 4.2. Phase correlation functions / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 4.3. Full distribution functions / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 5. Generalized Gibbs ensemble / B. Rauer / T. Schweigler / T. Langen / J. Schmiedmayer -- 6. Dynamics beyond prethermalization / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 6.1. Recurrences / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 6.2. Imbalanced splitting / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 7. Application: Interferometry with squeezed states / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 8. Conclusion / B. Rauer / J. Schmiedmayer / T. Langen / T. Schweigler -- 1. Introduction / J. Tura / A.B. Sainz / M. Lewen-Stein / R. Agusiak / A. Acin / T. Grass -- 2. Crash course on entanglement / J. Tura / A.B. Sainz / M. Lewen-Stein / R. Agusiak / A. Acin / T. Grass -- 2.1. Bipartite pure states: Schmidt decomposition / A. Acin / M. Lewen-Stein / R. Agusiak / A.B. Sainz / T. Grass / J. Tura -- 2.2. Bipartite mixed states: Separable and entangled states / J. Tura / A.B. Sainz / M. Lewen-Stein / R. Agusiak / A. Acin / T. Grass -- 2.3. Entanglement criteria / J. Tura / A.B. Sainz / M. Lewen-Stein / R. Agusiak / A. Acin / T. Grass -- 2.4. Entanglement measures / J. Tura / A.B. Sainz / M. Lewen-Stein / R. Agusiak / A. Acin / T. Grass -- 2.5. von Neumann entropy / J. Tura / A.B. Sainz / M. Lewen-Stein / R. Agusiak / A. Acin / T. Grass -- 3. Entanglement in many-body systems / J. Tura / A.B. Sainz / M. Lewen-Stein / R. Agusiak / A. Acin / T. Grass -- 3.1. Computational complexity / J. Tura / A.B. Sainz / T. Grass / R. Agusiak / A. Acin / M. Lewen-Stein. Note continued: 3.2. Entanglement of a generic state / A. Acin / R. Agusiak / T. Grass / J. Tura / A.B. Sainz / M. Lewen-Stein -- 4. Area laws / A. Acin / R. Agusiak / T. Grass / A.B. Sainz / J. Tura / M. Lewen-Stein -- 4.1. Quantum area laws in 1D / J. Tura / A.B. Sainz / T. Grass / R. Agusiak / A. Acin / M. Lewen-Stein -- 4.2. Higher-dimensional systems / J. Tura / A.B. Sainz / T. Grass / R. Agusiak / A. Acin / M. Lewen-Stein -- 4.2.1. Area laws for mutual information-classical and quantum Gibbs states / A.B. Sainz / J. Tura / T. Grass / M. Lewen-Stein / A. Acin / R. Agusiak -- 4.3. world according to tensor networks / A. Acin / R. Agusiak / T. Grass / A.B. Sainz / J. Tura / M. Lewen-Stein -- 5. Non-locality in many-body systems / A. Acin / R. Agusiak / T. Grass / A.B. Sainz / J. Tura / M. Lewen-Stein -- 5.1. Probabilities and correlations-DIQIP approach / J. Tura / A.B. Sainz / T. Grass / R. Agusiak / A. Acin / M. Lewen-Stein -- 5.2. Detecting non-locality in many-body systems with two-body correlators / J. Tura / A.B. Sainz / A. Acin / R. Agusiak / T. Grass / M. Lewen-Stein -- 5.3. Permutational invariance / R. Agusiak / A. Acin / M. Lewen-Stein / J. Tura / A.B. Sainz / T. Grass -- 5.4. Symmetric two-body Bell inequalities: example / A.B. Sainz / J. Tura / T. Grass / R. Agusiak / A. Acin / M. Lewen-Stein -- 5.5. Many-body symmetric states / A.B. Sainz / J. Tura / T. Grass / M. Lewen-Stein / A. Acin / R. Agusiak -- 6. Conclusions / J. Tura / A.B. Sainz / A. Acin / R. Agusiak / T. Grass / M. Lewen-Stein -- 1. Introduction / M.A. Baranov -- 2. Exchange and statistics / M.A. Baranov -- 2.1. Braid group, representations, and exchange statistics / M.A. Baranov -- 2.2. Physical requirements for non-Abelian anyons / M.A. Baranov -- 3. Majorana fermions as non-Abelian anyons / M.A. Baranov -- 4. Majorana fermions in Kitaev wire / M.A. Baranov -- 5. Majorana fermions in systems of cold atoms / M.A. Baranov -- 5.1. Braiding Majorana fermions in wires setup / M.A. Baranov -- 5.2. Physics behind the braiding / M.A. Baranov -- 5.3. Demonstration of non-Abelian statistics / M.A. Baranov -- 6. Using Majorana fermions for quantum computation / M.A. Baranov -- 7. Summary / M.A. Baranov. Quantum statistics Congresses. Low temperatures Congresses. Statistique quantique Congrès. Basses températures Congrès. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh Low temperatures fast Quantum statistics fast proceedings (reports) aat Conference papers and proceedings fast Conference papers and proceedings. lcgft http://id.loc.gov/authorities/genreForms/gf2014026068 Actes de congrès. rvmgf Inguscio, M., editor. Ketterle, Wolfgang, editor. Stringari, S., editor. Roati, G., editor. Società italiana di fisica, issuing body. http://id.loc.gov/authorities/names/n79145388 has work: Materia quantistica ultrafredda (Text) https://id.oclc.org/worldcat/entity/E39PCG4wwjQYcYtTWkDvrvPpvb https://id.oclc.org/worldcat/ontology/hasWork Print version: International School of Physics "Enrico Fermi" (191st : 2014 : Varenna, Italy). Materia quantistica ultrafredda. Amsterdam, Netherlands ; Washington, DC : IOS Press ; Bologna, Italy : Società Italiana di Fisica, 2016 (DLC) 2016949853 International School of Physics "Enrico Fermi." Proceedings of the International School of Physics "Enrico Fermi" ; course 191. http://id.loc.gov/authorities/names/n42019799 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1429448 Volltext |
spellingShingle | Materia quantistica ultrafredda : Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / Magnetism and quantum physics / Gauge invariance / Cyclotron motion and Landau levels / Aharonov-Bohm effect / Rotating gases / Geometric phases and gauge fields for free atoms / Berry's phase / Adiabatic following of a dressed state / two-level case / Validity of the adiabatic approximation / Spontaneous emission and recoil heating / Non-Abelian potentials and spin-orbit coupling / Non-Abelian potentials in quantum optics / Tripod configuration and 2D spin-orbit coupling / 1D version of spin-orbit coupling / Gauge fields on a lattice / Tight-binding model / Hofstadter butterfly / Chern number for an energy band / Generation of lattice gauge fields via shaking or modulation / Rapid shaking of a lattice / Resonant shaking/modulation / Generation of lattice gauge fields via internal atomic transitions / Laser-assisted tunneling in a 1D ladder / Lattice with artificial dimension / Laser-induced tunneling in a 2D lattice / Optical flux lattices / Conclusion / Appendix A. Landau levels / Eigenstates with the Landau gauge / Probability current in a Landau state / Eigenstates with the symmetric gauge / Appendix B. Topology in the square lattice / Band structure and periodicity in reciprocal space / Constant force and unitary transformation / Bloch oscillations and adiabatic following / velocity operator and its matrix elements / Berry curvature / Conduction from a filled band and Chern number / Chern number is an integer / Feshbach resonances / Two-body scattering / Three-body losses / Unitary bosons and the Efimov effect / Tan relations / Thermodynamic relations / Quantitative results for the contact / Closed-channel fraction / Single-channel model and zero-range limit / Short-distance correlations / Unitary fermions: universality and scale invariance / Quantum critical point and universality / Thermodynamics of the unitary Fermi gas / Luttinger-Ward theory / Scale invariance / Broken scale invariance and conformal anomaly in 2D / RF-spectroscopy and transport / RF-spectroscopy / Quantum limited viscosity and spin diffusion / Introduction / Universal thermodynamics / Thermodynamics of trapped gases / Zero-temperature equation of state / Viral theorem for the trapped gas at unitarity / General thermodynamic relations / Obtaining the pressure from density profiles / "Magic formula" for harmonic trapping / Universal thermodynamics of the unitary Fermi gas / Compressibility equation of state / Specific heat versus temperature-the Lambda transition in a gas / Chemical potential, energy and free energy / Entropy, density and pressure / Importance of cross-validation with theory / Further applications of the "fit-free" method / Equation of state in the BEC-BCS crossover-The contact / Energy of molecular Bose-Einstein condensates / Energy of weakly interacting Fermi gas / Near unitarity / Pressure relation / General Virial theorem / Equation of state in the BEC-BCS crossover Experiments / Equation of state from density profiles / Momentum distribution / Radiofrequency spectroscopy / Photoassociation / Bragg spectroscopy / Temperature dependence of the homogeneous contact / Collective oscillations / Condensation energy / normal state above Tc: Pseudo-gap phase, Fermi liquid, or Fermi gas? / Fermionic superfluidity with spin imbalance / Chandrasekhar-Clogston limit / Phase separation / Limit of high imbalance-the Fermi polaron / Fermi liquid of polarons / Thermodynamics of spin-imbalanced Fermi mixtures / Equation of state at unitarity / Prospects for observing the FFLO state / Conclusion and perspectives / Basic properties / quantum fluids landscape / Atomic species / Alkali atoms / High-spin atoms / Stability against dipolar relaxation / Rotationally symmetric interactions / Magnetic order of spinor Bose-Einstein condensates / Bose-Einstein magnetism in a non-interacting spinor gas / Spin-dependent s-wave interactions in more recognizable form / Ground states in the mean-field and single-mode approximations / Mean-field ground states under applied magnetic fields / Experimental evidence for magnetic order of ferromagnetic and anti-ferromagnetic F=1 spinor condensates / Correlations in the exact many-body ground state of the F=1 spinor gas / Imaging spinor condensates / Stern-Gerlach imaging / Dispersive birefringent imaging / Circular birefringent imaging / Projective imaging / Absorptive spin-sensitive in situ imaging (ASSISI) / Noise in dispersive imaging and ASSISI / Spin-spin correlations and magnetic susceptibility / Stamper-Kurn -- Multi-axis imaging and topological invariants / Multi-axis imaging of ferromagnetic structures / Magnetization curvature / Spin dynamics / Microscopic spin dynamics / Mean-field picture of collective spin dynamics / Spin-mixing instability / Experiments in the single-mode regime / Quantum quenches in spatially extended spinor Bose-Einstein condensates / Magnetic excitations / Quasiparticles of a spin-1 spinor condensate / Linearized Schrodinger equation / Ferromagnetic F=1 condensate / Polar F=1 condensate / Making and detecting magnons / Magnon propagation / Magnon contrast interferometry and recoil frequency / Bose and Fermi Hubbard models / Bose-Hubbard model / Fermi-Hubbard model / Quantum magnetism with ultracold atoms in optical lattices / Superexchange spin interactions / Superexchange interactions in a double well / Superexchange interactions on a lattice / Resonating valence bond states in a plaquette / Site-resolved imaging / Thermometry at the limit of individual thermal excitations / Single-site-resolved addressing of individual atoms / Quantum gas microscopy-new possibilities for cold quantum gases / Using quantum gas microscopes to probe quantum magnetism / Long-range-interacting quantum magnets / Outlook / Derivation of the Frohlich Hamiltonian / Microscopic Hamiltonian: Impurity in a BEC / Frohlich Hamiltonian in a BEC / Microscopic derivation of the Frohlich model / Characteristic scales and the polaronic coupling constant / Lippmann-Schwinger equation / Overview of common theoretical approaches / Perturbative approaches s / Rayleigh-Schrodinger perturbation theory / Green's function perturbation theory and self-consistent Born / Exact solution for infinite mass / Lee-Low-Pines treatment / Weak coupling mean-field theory / Self-consistency equation / Polaron energy / Polaron mass / Strong coupling Landau-Pekar approach / Feynman path integral approach / Jensen-Feynman variational principle / Feynman's trial action / Monte Carlo approaches / Renormalization group approach>> / Frohlich model and renormalized coupling constants / Renormalization group formalism for the Frohlich model / Dimensional analysis / Formulation of the RG / RG flow equations / Solutions of RG flow equations / Polaron ground state energy in the renormalization group approach / Logarithmic UV divergence of the polaron energy / Ground state polaron properties from RG / Phonon number / Quasiparticle weight / Gaussian variational approach / UV regularization and log-divergence / Regularization of the power-law divergence / Explanation of the logarithmic divergence / Results for experimentally relevant parameters / Experimental considerations / Conditions for the Frohlich model / Experimentally achievable coupling strengths / RF spectroscopy / Basic theory of RF spectroscopy / Basic properties of RF spectra / Properties of polarons / Polaronic mass / Example of a dynamical problem: Bloch oscillations of Bose polarons / Time-dependent mean-field approach / Equations of motion-Dirac's time-dependent variational principle / Bloch oscillations of polarons in lattices / Model / Time-dependent mean-field description / Adiabatic approximation and polaron dynamics / Polaron transport properties / Appendix A / Lee-Low-Pines formalism in a lattice / Coupling constant and relation to experiments / Time-dependent Lee-Low-Pines transformation in the lattice / Renormalized impurity mass / Polaron properties from the RG-derivations / Polaron phonon number / Polaron momentum / Why one dimension / 1D basics / What are one-dimensional systems? / Some realizations with cold atoms or CM / Universal physics in one dimension (Luttinger liquid) / Fermions and spins / Luttinger parameters / Experimental tests of TLL / Magnetic insulators / Cold atomic systems / Other experimental features of 1d: Fractionalization of excitations / TLL and beyond / Effect of a lattice: Mott transition / Disorder / Wishes and open problems / Electron-atom scattering / Fermi pseudopotential / Higher-order contributions / Rydberg spectroscopy / Ultracold but thermal gases / Bose-Einstein condensates / Lifetime of Rydberg atoms in dense gases / Dependence on principal quantum number and density / Possible decay processes / Dependence on spectral position / Mean-field Gross-Pitaevskii equations / Ground state / Excitation spectra / Spin structure factor and magnetic fluctuations / Trapped gas / Relation to Josephson dynamics / Soliton and vortex dimers / Tight-binding model for gases in optical lattices / Motivation / One-dimensional Bose gases / Creating a non-equilibrium state / Probing the quantum state / Density ripples / Phase correlation functions / Full distribution functions / Generalized Gibbs ensemble / Dynamics beyond prethermalization / Recurrences / Imbalanced splitting / Application: Interferometry with squeezed states / Crash course on entanglement / Bipartite pure states: Schmidt decomposition / Bipartite mixed states: Separable and entangled states / Entanglement criteria / Entanglement measures / von Neumann entropy / Entanglement in many-body systems / Computational complexity / Entanglement of a generic state / Area laws / Quantum area laws in 1D / Higher-dimensional systems / Area laws for mutual information-classical and quantum Gibbs states / world according to tensor networks / Non-locality in many-body systems / Probabilities and correlations-DIQIP approach / Detecting non-locality in many-body systems with two-body correlators / Permutational invariance / Symmetric two-body Bell inequalities: example / Many-body symmetric states / Conclusions / Exchange and statistics / Braid group, representations, and exchange statistics / Physical requirements for non-Abelian anyons / Majorana fermions as non-Abelian anyons / Majorana fermions in Kitaev wire / Majorana fermions in systems of cold atoms / Braiding Majorana fermions in wires setup / Physics behind the braiding / Demonstration of non-Abelian statistics / Using Majorana fermions for quantum computation / Summary / Quantum statistics Congresses. Low temperatures Congresses. Statistique quantique Congrès. Basses températures Congrès. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh Low temperatures fast Quantum statistics fast |
subject_GND | http://id.loc.gov/authorities/genreForms/gf2014026068 |
title | Materia quantistica ultrafredda : Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / |
title_alt | Quantum matter at ultralow temperatures : Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014 Magnetism and quantum physics / Gauge invariance / Cyclotron motion and Landau levels / Aharonov-Bohm effect / Rotating gases / Geometric phases and gauge fields for free atoms / Berry's phase / Adiabatic following of a dressed state / two-level case / Validity of the adiabatic approximation / Spontaneous emission and recoil heating / Non-Abelian potentials and spin-orbit coupling / Non-Abelian potentials in quantum optics / Tripod configuration and 2D spin-orbit coupling / 1D version of spin-orbit coupling / Gauge fields on a lattice / Tight-binding model / Hofstadter butterfly / Chern number for an energy band / Generation of lattice gauge fields via shaking or modulation / Rapid shaking of a lattice / Resonant shaking/modulation / Generation of lattice gauge fields via internal atomic transitions / Laser-assisted tunneling in a 1D ladder / Lattice with artificial dimension / Laser-induced tunneling in a 2D lattice / Optical flux lattices / Conclusion / Appendix A. Landau levels / Eigenstates with the Landau gauge / Probability current in a Landau state / Eigenstates with the symmetric gauge / Appendix B. Topology in the square lattice / Band structure and periodicity in reciprocal space / Constant force and unitary transformation / Bloch oscillations and adiabatic following / velocity operator and its matrix elements / Berry curvature / Conduction from a filled band and Chern number / Chern number is an integer / Feshbach resonances / Two-body scattering / Three-body losses / Unitary bosons and the Efimov effect / Tan relations / Thermodynamic relations / Quantitative results for the contact / Closed-channel fraction / Single-channel model and zero-range limit / Short-distance correlations / Unitary fermions: universality and scale invariance / Quantum critical point and universality / Thermodynamics of the unitary Fermi gas / Luttinger-Ward theory / Scale invariance / Broken scale invariance and conformal anomaly in 2D / RF-spectroscopy and transport / RF-spectroscopy / Quantum limited viscosity and spin diffusion / Introduction / Universal thermodynamics / Thermodynamics of trapped gases / Zero-temperature equation of state / Viral theorem for the trapped gas at unitarity / General thermodynamic relations / Obtaining the pressure from density profiles / "Magic formula" for harmonic trapping / Universal thermodynamics of the unitary Fermi gas / Compressibility equation of state / Specific heat versus temperature-the Lambda transition in a gas / Chemical potential, energy and free energy / Entropy, density and pressure / Importance of cross-validation with theory / Further applications of the "fit-free" method / Equation of state in the BEC-BCS crossover-The contact / Energy of molecular Bose-Einstein condensates / Energy of weakly interacting Fermi gas / Near unitarity / Pressure relation / General Virial theorem / Equation of state in the BEC-BCS crossover Experiments / Equation of state from density profiles / Momentum distribution / Radiofrequency spectroscopy / Photoassociation / Bragg spectroscopy / Temperature dependence of the homogeneous contact / Collective oscillations / Condensation energy / normal state above Tc: Pseudo-gap phase, Fermi liquid, or Fermi gas? / Fermionic superfluidity with spin imbalance / Chandrasekhar-Clogston limit / Phase separation / Limit of high imbalance-the Fermi polaron / Fermi liquid of polarons / Thermodynamics of spin-imbalanced Fermi mixtures / Equation of state at unitarity / Prospects for observing the FFLO state / Conclusion and perspectives / Basic properties / quantum fluids landscape / Atomic species / Alkali atoms / High-spin atoms / Stability against dipolar relaxation / Rotationally symmetric interactions / Magnetic order of spinor Bose-Einstein condensates / Bose-Einstein magnetism in a non-interacting spinor gas / Spin-dependent s-wave interactions in more recognizable form / Ground states in the mean-field and single-mode approximations / Mean-field ground states under applied magnetic fields / Experimental evidence for magnetic order of ferromagnetic and anti-ferromagnetic F=1 spinor condensates / Correlations in the exact many-body ground state of the F=1 spinor gas / Imaging spinor condensates / Stern-Gerlach imaging / Dispersive birefringent imaging / Circular birefringent imaging / Projective imaging / Absorptive spin-sensitive in situ imaging (ASSISI) / Noise in dispersive imaging and ASSISI / Spin-spin correlations and magnetic susceptibility / Stamper-Kurn -- Multi-axis imaging and topological invariants / Multi-axis imaging of ferromagnetic structures / Magnetization curvature / Spin dynamics / Microscopic spin dynamics / Mean-field picture of collective spin dynamics / Spin-mixing instability / Experiments in the single-mode regime / Quantum quenches in spatially extended spinor Bose-Einstein condensates / Magnetic excitations / Quasiparticles of a spin-1 spinor condensate / Linearized Schrodinger equation / Ferromagnetic F=1 condensate / Polar F=1 condensate / Making and detecting magnons / Magnon propagation / Magnon contrast interferometry and recoil frequency / Bose and Fermi Hubbard models / Bose-Hubbard model / Fermi-Hubbard model / Quantum magnetism with ultracold atoms in optical lattices / Superexchange spin interactions / Superexchange interactions in a double well / Superexchange interactions on a lattice / Resonating valence bond states in a plaquette / Site-resolved imaging / Thermometry at the limit of individual thermal excitations / Single-site-resolved addressing of individual atoms / Quantum gas microscopy-new possibilities for cold quantum gases / Using quantum gas microscopes to probe quantum magnetism / Long-range-interacting quantum magnets / Outlook / Derivation of the Frohlich Hamiltonian / Microscopic Hamiltonian: Impurity in a BEC / Frohlich Hamiltonian in a BEC / Microscopic derivation of the Frohlich model / Characteristic scales and the polaronic coupling constant / Lippmann-Schwinger equation / Overview of common theoretical approaches / Perturbative approaches s / Rayleigh-Schrodinger perturbation theory / Green's function perturbation theory and self-consistent Born / Exact solution for infinite mass / Lee-Low-Pines treatment / Weak coupling mean-field theory / Self-consistency equation / Polaron energy / Polaron mass / Strong coupling Landau-Pekar approach / Feynman path integral approach / Jensen-Feynman variational principle / Feynman's trial action / Monte Carlo approaches / Renormalization group approach>> / Frohlich model and renormalized coupling constants / Renormalization group formalism for the Frohlich model / Dimensional analysis / Formulation of the RG / RG flow equations / Solutions of RG flow equations / Polaron ground state energy in the renormalization group approach / Logarithmic UV divergence of the polaron energy / Ground state polaron properties from RG / Phonon number / Quasiparticle weight / Gaussian variational approach / UV regularization and log-divergence / Regularization of the power-law divergence / Explanation of the logarithmic divergence / Results for experimentally relevant parameters / Experimental considerations / Conditions for the Frohlich model / Experimentally achievable coupling strengths / RF spectroscopy / Basic theory of RF spectroscopy / Basic properties of RF spectra / Properties of polarons / Polaronic mass / Example of a dynamical problem: Bloch oscillations of Bose polarons / Time-dependent mean-field approach / Equations of motion-Dirac's time-dependent variational principle / Bloch oscillations of polarons in lattices / Model / Time-dependent mean-field description / Adiabatic approximation and polaron dynamics / Polaron transport properties / Appendix A / Lee-Low-Pines formalism in a lattice / Coupling constant and relation to experiments / Time-dependent Lee-Low-Pines transformation in the lattice / Renormalized impurity mass / Polaron properties from the RG-derivations / Polaron phonon number / Polaron momentum / Why one dimension / 1D basics / What are one-dimensional systems? / Some realizations with cold atoms or CM / Universal physics in one dimension (Luttinger liquid) / Fermions and spins / Luttinger parameters / Experimental tests of TLL / Magnetic insulators / Cold atomic systems / Other experimental features of 1d: Fractionalization of excitations / TLL and beyond / Effect of a lattice: Mott transition / Disorder / Wishes and open problems / Electron-atom scattering / Fermi pseudopotential / Higher-order contributions / Rydberg spectroscopy / Ultracold but thermal gases / Bose-Einstein condensates / Lifetime of Rydberg atoms in dense gases / Dependence on principal quantum number and density / Possible decay processes / Dependence on spectral position / Mean-field Gross-Pitaevskii equations / Ground state / Excitation spectra / Spin structure factor and magnetic fluctuations / Trapped gas / Relation to Josephson dynamics / Soliton and vortex dimers / Tight-binding model for gases in optical lattices / Motivation / One-dimensional Bose gases / Creating a non-equilibrium state / Probing the quantum state / Density ripples / Phase correlation functions / Full distribution functions / Generalized Gibbs ensemble / Dynamics beyond prethermalization / Recurrences / Imbalanced splitting / Application: Interferometry with squeezed states / Crash course on entanglement / Bipartite pure states: Schmidt decomposition / Bipartite mixed states: Separable and entangled states / Entanglement criteria / Entanglement measures / von Neumann entropy / Entanglement in many-body systems / Computational complexity / Entanglement of a generic state / Area laws / Quantum area laws in 1D / Higher-dimensional systems / Area laws for mutual information-classical and quantum Gibbs states / world according to tensor networks / Non-locality in many-body systems / Probabilities and correlations-DIQIP approach / Detecting non-locality in many-body systems with two-body correlators / Permutational invariance / Symmetric two-body Bell inequalities: example / Many-body symmetric states / Conclusions / Exchange and statistics / Braid group, representations, and exchange statistics / Physical requirements for non-Abelian anyons / Majorana fermions as non-Abelian anyons / Majorana fermions in Kitaev wire / Majorana fermions in systems of cold atoms / Braiding Majorana fermions in wires setup / Physics behind the braiding / Demonstration of non-Abelian statistics / Using Majorana fermions for quantum computation / Summary / |
title_auth | Materia quantistica ultrafredda : Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / |
title_exact_search | Materia quantistica ultrafredda : Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / |
title_full | Materia quantistica ultrafredda : Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / a cura di M. Inguscio, W. Ketterle e S. Stringari, direttori del corso, e di G. Roati = Quantum matter at ultralow temperatures : Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014 / edited by M. Inguscio, W. Ketterle and S. Stringari, director of the course, and G. Roati. |
title_fullStr | Materia quantistica ultrafredda : Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / a cura di M. Inguscio, W. Ketterle e S. Stringari, direttori del corso, e di G. Roati = Quantum matter at ultralow temperatures : Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014 / edited by M. Inguscio, W. Ketterle and S. Stringari, director of the course, and G. Roati. |
title_full_unstemmed | Materia quantistica ultrafredda : Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / a cura di M. Inguscio, W. Ketterle e S. Stringari, direttori del corso, e di G. Roati = Quantum matter at ultralow temperatures : Proceedings of the International School of Physics "Enrico Fermi, " course 191 : Varenna on Lake Como, Villa Monastero, 7-15 July 2014 / edited by M. Inguscio, W. Ketterle and S. Stringari, director of the course, and G. Roati. |
title_short | Materia quantistica ultrafredda : |
title_sort | materia quantistica ultrafredda rendiconti della scuola internazionale di fisica enrico fermi cxci corso varenna sul lago di como villa monastero 7 15 luglio 2014 |
title_sub | Rendiconti della Scuola internazionale di fisica "Enrico Fermi, " CXCI Corso ; Varenna sul Lago di Como, Villa Monastero, 7-15 Luglio 2014 / |
topic | Quantum statistics Congresses. Low temperatures Congresses. Statistique quantique Congrès. Basses températures Congrès. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh Low temperatures fast Quantum statistics fast |
topic_facet | Quantum statistics Congresses. Low temperatures Congresses. Statistique quantique Congrès. Basses températures Congrès. SCIENCE Energy. SCIENCE Mechanics General. SCIENCE Physics General. Low temperatures Quantum statistics proceedings (reports) Conference papers and proceedings Conference papers and proceedings. Actes de congrès. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1429448 |
work_keys_str_mv | AT internationalschoolofphysicsenricofermivarennaitaly materiaquantisticaultrafreddarendicontidellascuolainternazionaledifisicaenricofermicxcicorsovarennasullagodicomovillamonastero715luglio2014 AT ingusciom materiaquantisticaultrafreddarendicontidellascuolainternazionaledifisicaenricofermicxcicorsovarennasullagodicomovillamonastero715luglio2014 AT ketterlewolfgang materiaquantisticaultrafreddarendicontidellascuolainternazionaledifisicaenricofermicxcicorsovarennasullagodicomovillamonastero715luglio2014 AT stringaris materiaquantisticaultrafreddarendicontidellascuolainternazionaledifisicaenricofermicxcicorsovarennasullagodicomovillamonastero715luglio2014 AT roatig materiaquantisticaultrafreddarendicontidellascuolainternazionaledifisicaenricofermicxcicorsovarennasullagodicomovillamonastero715luglio2014 AT societaitalianadifisica materiaquantisticaultrafreddarendicontidellascuolainternazionaledifisicaenricofermicxcicorsovarennasullagodicomovillamonastero715luglio2014 AT internationalschoolofphysicsenricofermivarennaitaly quantummatteratultralowtemperaturesproceedingsoftheinternationalschoolofphysicsenricofermicourse191varennaonlakecomovillamonastero715july2014 AT ingusciom quantummatteratultralowtemperaturesproceedingsoftheinternationalschoolofphysicsenricofermicourse191varennaonlakecomovillamonastero715july2014 AT ketterlewolfgang quantummatteratultralowtemperaturesproceedingsoftheinternationalschoolofphysicsenricofermicourse191varennaonlakecomovillamonastero715july2014 AT stringaris quantummatteratultralowtemperaturesproceedingsoftheinternationalschoolofphysicsenricofermicourse191varennaonlakecomovillamonastero715july2014 AT roatig quantummatteratultralowtemperaturesproceedingsoftheinternationalschoolofphysicsenricofermicourse191varennaonlakecomovillamonastero715july2014 AT societaitalianadifisica quantummatteratultralowtemperaturesproceedingsoftheinternationalschoolofphysicsenricofermicourse191varennaonlakecomovillamonastero715july2014 |