Transformation Groups and Lie Algebras.:
This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
BeiJing :
Higher Education Press Limited Company,
2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter. Read. |
Beschreibung: | 1 online resource (197 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9787894236449 7894236446 |
Internformat
MARC
LEADER | 00000cam a2200000 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn960759219 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 161112s2013 cc ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d MERUC |d OCLCQ |d YDX |d EZ9 |d OCLCO |d OCLCF |d OCLCQ |d CNNOR |d OCLCO |d K6U |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9787894236449 | ||
020 | |a 7894236446 | ||
020 | |z 9787040367416 | ||
035 | |a (OCoLC)960759219 | ||
050 | 4 | |a Internet Access |b AEGMCT | |
082 | 7 | |a 512.55 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Ibragimov, Nail H. | |
245 | 1 | 0 | |a Transformation Groups and Lie Algebras. |
260 | |a BeiJing : |b Higher Education Press Limited Company, |c 2013. | ||
300 | |a 1 online resource (197 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Part I Local Transformation Groups; Chapter 1 Preliminaries; 1.1 Changes of frames of reference and point transformations; 1.2 Introduction of transformation groups; 1.3 Some useful groups; Exercises to Chapter 1; Chapter 2 One-parameter groups and their invariants; 2.1 Local groups of transformations; 2.2 Invariants; 2.3 Invariant equations; Exercises to Chapter 2; Chapter 3 Groups admitted by differential equations; 3.1 Preliminaries; 3.2 Prolongation of group transformations; 3.3 Prolongation of group generators; 3.4 First definition of symmetry groups. | |
505 | 8 | |a 3.5 Second definition of symmetry groupsExercises to Chapter 3; Chapter 4 Lie algebras of operators; 4.1 Basic definitions; 4.2 Basic properties; 4.3 Isomorphism and similarity; 4.4 Low-dimensional Lie algebras; 4.5 Lie algebras and multi-parameter groups; Exercises to Chapter 4; Chapter 5 Galois groups via symmetries; 5.1 Preliminaries; 5.2 Symmetries of algebraic equations; 5.3 Construction of Galois groups; Assignment to Part I; Part II Approximate Transformation Groups; 36741-00_chapter06; Chapter 6 Preliminaries; 6.1 Motivation; 6.2 A sketch on Lie transformation groups. | |
505 | 8 | |a 6.3 Approximate Cauchy problemChapter 7 Approximate transformations; 7.1 Approximate transformations defined; 7.2 Approximate one-parameter groups; 7.3 Infinitesimal description; Exercises to Chapter 7; Chapter 8 Approximate symmetries; 8.1 Definition of approximate symmetries; 8.2 Calculation of approximate symmetries; 8.3 Examples; Exercises to Chapter 8; Chapter 9 Applications; 9.1 Integration of equations with a small parameter usingapproximate symmetries; 9.2 Approximately invariant solutions; 9.3 Approximate conservation laws; Assignment to Part II; Bibliography; Index. | |
520 | |a This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter. Read. | ||
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 0 | |a Transformation groups. |0 http://id.loc.gov/authorities/subjects/sh85136917 | |
650 | 6 | |a Algèbres de Lie. | |
650 | 6 | |a Groupes de transformations. | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 7 | |a Transformation groups |2 fast | |
758 | |i has work: |a Transformation groups and lie algebras (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFJhBtwRJWmkfGrxgb7rbd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Ibragimov, Nail H. |t Transformation Groups and Lie Algebras. |d BeiJing : Higher Education Press Limited Company, ©2013 |z 9787040367416 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=933694 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4713819 | ||
938 | |a YBP Library Services |b YANK |n 15117401 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn960759219 |
---|---|
_version_ | 1816882365499179008 |
adam_text | |
any_adam_object | |
author | Ibragimov, Nail H. |
author_facet | Ibragimov, Nail H. |
author_role | |
author_sort | Ibragimov, Nail H. |
author_variant | n h i nh nhi |
building | Verbundindex |
bvnumber | localFWS |
callnumber-label | INTERNET ACCESS |
callnumber-raw | Internet Access AEGMCT |
callnumber-search | Internet Access AEGMCT |
callnumber-sort | INTERNET _ACCESS AEGMCT |
collection | ZDB-4-EBA |
contents | Part I Local Transformation Groups; Chapter 1 Preliminaries; 1.1 Changes of frames of reference and point transformations; 1.2 Introduction of transformation groups; 1.3 Some useful groups; Exercises to Chapter 1; Chapter 2 One-parameter groups and their invariants; 2.1 Local groups of transformations; 2.2 Invariants; 2.3 Invariant equations; Exercises to Chapter 2; Chapter 3 Groups admitted by differential equations; 3.1 Preliminaries; 3.2 Prolongation of group transformations; 3.3 Prolongation of group generators; 3.4 First definition of symmetry groups. 3.5 Second definition of symmetry groupsExercises to Chapter 3; Chapter 4 Lie algebras of operators; 4.1 Basic definitions; 4.2 Basic properties; 4.3 Isomorphism and similarity; 4.4 Low-dimensional Lie algebras; 4.5 Lie algebras and multi-parameter groups; Exercises to Chapter 4; Chapter 5 Galois groups via symmetries; 5.1 Preliminaries; 5.2 Symmetries of algebraic equations; 5.3 Construction of Galois groups; Assignment to Part I; Part II Approximate Transformation Groups; 36741-00_chapter06; Chapter 6 Preliminaries; 6.1 Motivation; 6.2 A sketch on Lie transformation groups. 6.3 Approximate Cauchy problemChapter 7 Approximate transformations; 7.1 Approximate transformations defined; 7.2 Approximate one-parameter groups; 7.3 Infinitesimal description; Exercises to Chapter 7; Chapter 8 Approximate symmetries; 8.1 Definition of approximate symmetries; 8.2 Calculation of approximate symmetries; 8.3 Examples; Exercises to Chapter 8; Chapter 9 Applications; 9.1 Integration of equations with a small parameter usingapproximate symmetries; 9.2 Approximately invariant solutions; 9.3 Approximate conservation laws; Assignment to Part II; Bibliography; Index. |
ctrlnum | (OCoLC)960759219 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04313cam a2200505 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn960759219</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">161112s2013 cc ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">EZ9</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CNNOR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9787894236449</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">7894236446</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9787040367416</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960759219</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Internet Access</subfield><subfield code="b">AEGMCT</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ibragimov, Nail H.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transformation Groups and Lie Algebras.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">BeiJing :</subfield><subfield code="b">Higher Education Press Limited Company,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (197 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Part I Local Transformation Groups; Chapter 1 Preliminaries; 1.1 Changes of frames of reference and point transformations; 1.2 Introduction of transformation groups; 1.3 Some useful groups; Exercises to Chapter 1; Chapter 2 One-parameter groups and their invariants; 2.1 Local groups of transformations; 2.2 Invariants; 2.3 Invariant equations; Exercises to Chapter 2; Chapter 3 Groups admitted by differential equations; 3.1 Preliminaries; 3.2 Prolongation of group transformations; 3.3 Prolongation of group generators; 3.4 First definition of symmetry groups.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5 Second definition of symmetry groupsExercises to Chapter 3; Chapter 4 Lie algebras of operators; 4.1 Basic definitions; 4.2 Basic properties; 4.3 Isomorphism and similarity; 4.4 Low-dimensional Lie algebras; 4.5 Lie algebras and multi-parameter groups; Exercises to Chapter 4; Chapter 5 Galois groups via symmetries; 5.1 Preliminaries; 5.2 Symmetries of algebraic equations; 5.3 Construction of Galois groups; Assignment to Part I; Part II Approximate Transformation Groups; 36741-00_chapter06; Chapter 6 Preliminaries; 6.1 Motivation; 6.2 A sketch on Lie transformation groups.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3 Approximate Cauchy problemChapter 7 Approximate transformations; 7.1 Approximate transformations defined; 7.2 Approximate one-parameter groups; 7.3 Infinitesimal description; Exercises to Chapter 7; Chapter 8 Approximate symmetries; 8.1 Definition of approximate symmetries; 8.2 Calculation of approximate symmetries; 8.3 Examples; Exercises to Chapter 8; Chapter 9 Applications; 9.1 Integration of equations with a small parameter usingapproximate symmetries; 9.2 Approximately invariant solutions; 9.3 Approximate conservation laws; Assignment to Part II; Bibliography; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter. Read.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Transformation groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85136917</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de transformations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transformation groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Transformation groups and lie algebras (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFJhBtwRJWmkfGrxgb7rbd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ibragimov, Nail H.</subfield><subfield code="t">Transformation Groups and Lie Algebras.</subfield><subfield code="d">BeiJing : Higher Education Press Limited Company, ©2013</subfield><subfield code="z">9787040367416</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=933694</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4713819</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15117401</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn960759219 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:27Z |
institution | BVB |
isbn | 9787894236449 7894236446 |
language | English |
oclc_num | 960759219 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (197 pages) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Higher Education Press Limited Company, |
record_format | marc |
spelling | Ibragimov, Nail H. Transformation Groups and Lie Algebras. BeiJing : Higher Education Press Limited Company, 2013. 1 online resource (197 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Part I Local Transformation Groups; Chapter 1 Preliminaries; 1.1 Changes of frames of reference and point transformations; 1.2 Introduction of transformation groups; 1.3 Some useful groups; Exercises to Chapter 1; Chapter 2 One-parameter groups and their invariants; 2.1 Local groups of transformations; 2.2 Invariants; 2.3 Invariant equations; Exercises to Chapter 2; Chapter 3 Groups admitted by differential equations; 3.1 Preliminaries; 3.2 Prolongation of group transformations; 3.3 Prolongation of group generators; 3.4 First definition of symmetry groups. 3.5 Second definition of symmetry groupsExercises to Chapter 3; Chapter 4 Lie algebras of operators; 4.1 Basic definitions; 4.2 Basic properties; 4.3 Isomorphism and similarity; 4.4 Low-dimensional Lie algebras; 4.5 Lie algebras and multi-parameter groups; Exercises to Chapter 4; Chapter 5 Galois groups via symmetries; 5.1 Preliminaries; 5.2 Symmetries of algebraic equations; 5.3 Construction of Galois groups; Assignment to Part I; Part II Approximate Transformation Groups; 36741-00_chapter06; Chapter 6 Preliminaries; 6.1 Motivation; 6.2 A sketch on Lie transformation groups. 6.3 Approximate Cauchy problemChapter 7 Approximate transformations; 7.1 Approximate transformations defined; 7.2 Approximate one-parameter groups; 7.3 Infinitesimal description; Exercises to Chapter 7; Chapter 8 Approximate symmetries; 8.1 Definition of approximate symmetries; 8.2 Calculation of approximate symmetries; 8.3 Examples; Exercises to Chapter 8; Chapter 9 Applications; 9.1 Integration of equations with a small parameter usingapproximate symmetries; 9.2 Approximately invariant solutions; 9.3 Approximate conservation laws; Assignment to Part II; Bibliography; Index. This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter. Read. Includes bibliographical references and index. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Transformation groups. http://id.loc.gov/authorities/subjects/sh85136917 Algèbres de Lie. Groupes de transformations. Lie algebras fast Transformation groups fast has work: Transformation groups and lie algebras (Text) https://id.oclc.org/worldcat/entity/E39PCFJhBtwRJWmkfGrxgb7rbd https://id.oclc.org/worldcat/ontology/hasWork Print version: Ibragimov, Nail H. Transformation Groups and Lie Algebras. BeiJing : Higher Education Press Limited Company, ©2013 9787040367416 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=933694 Volltext |
spellingShingle | Ibragimov, Nail H. Transformation Groups and Lie Algebras. Part I Local Transformation Groups; Chapter 1 Preliminaries; 1.1 Changes of frames of reference and point transformations; 1.2 Introduction of transformation groups; 1.3 Some useful groups; Exercises to Chapter 1; Chapter 2 One-parameter groups and their invariants; 2.1 Local groups of transformations; 2.2 Invariants; 2.3 Invariant equations; Exercises to Chapter 2; Chapter 3 Groups admitted by differential equations; 3.1 Preliminaries; 3.2 Prolongation of group transformations; 3.3 Prolongation of group generators; 3.4 First definition of symmetry groups. 3.5 Second definition of symmetry groupsExercises to Chapter 3; Chapter 4 Lie algebras of operators; 4.1 Basic definitions; 4.2 Basic properties; 4.3 Isomorphism and similarity; 4.4 Low-dimensional Lie algebras; 4.5 Lie algebras and multi-parameter groups; Exercises to Chapter 4; Chapter 5 Galois groups via symmetries; 5.1 Preliminaries; 5.2 Symmetries of algebraic equations; 5.3 Construction of Galois groups; Assignment to Part I; Part II Approximate Transformation Groups; 36741-00_chapter06; Chapter 6 Preliminaries; 6.1 Motivation; 6.2 A sketch on Lie transformation groups. 6.3 Approximate Cauchy problemChapter 7 Approximate transformations; 7.1 Approximate transformations defined; 7.2 Approximate one-parameter groups; 7.3 Infinitesimal description; Exercises to Chapter 7; Chapter 8 Approximate symmetries; 8.1 Definition of approximate symmetries; 8.2 Calculation of approximate symmetries; 8.3 Examples; Exercises to Chapter 8; Chapter 9 Applications; 9.1 Integration of equations with a small parameter usingapproximate symmetries; 9.2 Approximately invariant solutions; 9.3 Approximate conservation laws; Assignment to Part II; Bibliography; Index. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Transformation groups. http://id.loc.gov/authorities/subjects/sh85136917 Algèbres de Lie. Groupes de transformations. Lie algebras fast Transformation groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076782 http://id.loc.gov/authorities/subjects/sh85136917 |
title | Transformation Groups and Lie Algebras. |
title_auth | Transformation Groups and Lie Algebras. |
title_exact_search | Transformation Groups and Lie Algebras. |
title_full | Transformation Groups and Lie Algebras. |
title_fullStr | Transformation Groups and Lie Algebras. |
title_full_unstemmed | Transformation Groups and Lie Algebras. |
title_short | Transformation Groups and Lie Algebras. |
title_sort | transformation groups and lie algebras |
topic | Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Transformation groups. http://id.loc.gov/authorities/subjects/sh85136917 Algèbres de Lie. Groupes de transformations. Lie algebras fast Transformation groups fast |
topic_facet | Lie algebras. Transformation groups. Algèbres de Lie. Groupes de transformations. Lie algebras Transformation groups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=933694 |
work_keys_str_mv | AT ibragimovnailh transformationgroupsandliealgebras |