Invariant differential operators.: Volume 1, Noncompact semisimple lie algebras and groups /
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. T...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [Germany] ; Boston [Massachusetts] :
De Gruyter,
2016.
|
Schriftenreihe: | De Gruyter studies in mathematical physics ;
Volume 35. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents:IntroductionLie Algebras and GroupsReal Semisimple Lie AlgebrasInvariant Differential OperatorsCase of the Anti-de Sitter GroupConformal Case in 4DKazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant EquationsInvariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie AlgebrasMultilinear Invariant Differential Operators from New Generalized Verma ModulesBibliographyAuthor IndexSubject Index. |
Beschreibung: | 1 online resource (422 pages) : illustrations. |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 3110427648 9783110427646 9783110427653 3110427656 |
ISSN: | 2194-3532 ; 2194-3532 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn960717582 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 161010t20162016gw a ob 001 0 eng d | ||
040 | |a IDEBK |b eng |e rda |e pn |c IDEBK |d N$T |d OCLCF |d OCLCQ |d COCUF |d CCO |d LOA |d STF |d K6U |d SNK |d DKU |d AUW |d INTCL |d IGB |d D6H |d WRM |d OCLCO |d OCLCQ |d VTS |d AGLDB |d INT |d MNU |d OCLCQ |d G3B |d LVT |d S8J |d S9I |d OCLCQ |d OCLCA |d AUD |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCO |d OCLCQ | ||
019 | |a 1164781849 |a 1259274692 | ||
020 | |a 3110427648 |q (electronic bk.) | ||
020 | |a 9783110427646 |q (electronic bk.) | ||
020 | |a 9783110427653 |q (electronic bk.) | ||
020 | |a 3110427656 |q (electronic bk.) | ||
020 | |z 311042780X | ||
020 | |z 311043542X | ||
020 | |z 9783110435429 | ||
020 | |z 9783110427806 |q (EPUB) | ||
024 | 7 | |a 10.1515/9783110427646 |2 doi | |
035 | |a (OCoLC)960717582 |z (OCoLC)1164781849 |z (OCoLC)1259274692 | ||
037 | |a 956125 |b MIL | ||
050 | 4 | |a QA252.3 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.55 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Dobrev, V. K., |e author. | |
245 | 1 | 0 | |a Invariant differential operators. |n Volume 1, |p Noncompact semisimple lie algebras and groups / |c Vladimir K. Dobrev. |
264 | 1 | |a Berlin [Germany] ; |a Boston [Massachusetts] : |b De Gruyter, |c 2016. | |
264 | 4 | |c ©2016 | |
300 | |a 1 online resource (422 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a De Gruyter Studies in Mathematical Physics, |x 2194-3532 ; |v Volume 35 | |
504 | |a Includes bibliographical references and indexes. | ||
505 | 0 | 0 | |t Frontmatter -- |t Preface -- |t Contents -- |t 1. Introduction -- |t 2. Lie Algebras and Groups -- |t 3. Real Semisimple Lie Algebras -- |t 4. Invariant Differential Operators -- |t 5. Case of the Anti-de Sitter Group -- |t 6. Conformal Case in 4D -- |t 7. Kazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations -- |t 8. Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras -- |t 9. Multilinear Invariant Differential Operators from New Generalized Verma Modules -- |t Bibliography -- |t Author Index -- |t Subject Index -- |t Backmatter |
520 | |a With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents:IntroductionLie Algebras and GroupsReal Semisimple Lie AlgebrasInvariant Differential OperatorsCase of the Anti-de Sitter GroupConformal Case in 4DKazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant EquationsInvariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie AlgebrasMultilinear Invariant Differential Operators from New Generalized Verma ModulesBibliographyAuthor IndexSubject Index. | ||
546 | |a In English. | ||
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 0 | |a Lie groups. |0 http://id.loc.gov/authorities/subjects/sh85076786 | |
650 | 0 | |a Differential invariants. |0 http://id.loc.gov/authorities/subjects/sh85037920 | |
650 | 0 | |a Differential operators. |0 http://id.loc.gov/authorities/subjects/sh85037921 | |
650 | 0 | |a Quantum groups. |0 http://id.loc.gov/authorities/subjects/sh90005801 | |
650 | 0 | |a Superalgebras. |0 http://id.loc.gov/authorities/subjects/sh94002765 | |
650 | 6 | |a Algèbres de Lie. | |
650 | 6 | |a Groupes de Lie. | |
650 | 6 | |a Invariants différentiels. | |
650 | 6 | |a Opérateurs différentiels. | |
650 | 6 | |a Groupes quantiques. | |
650 | 6 | |a Superalgèbres. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Differential invariants |2 fast | |
650 | 7 | |a Differential operators |2 fast | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 7 | |a Lie groups |2 fast | |
650 | 7 | |a Quantum groups |2 fast | |
650 | 7 | |a Superalgebras |2 fast | |
758 | |i has work: |a Noncompact semisimple lie algebras and groups Invariant differential operators Volume 1 (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH6KTFYPGKbtdMwG8bC4YK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Dobrev, Vladimir K. |t Invariant differential operators. Volume 1, Noncompact semisimple lie algebras and groups. |d Berlin, [Germany] ; Boston, [Massachusetts] : De Gruyter, ©2016 |h xii, 408 pages |k De Gruyter studies in mathematical physics ; Volume 35 |x 2194-3532 |z 9783110435429 |
830 | 0 | |a De Gruyter studies in mathematical physics ; |v Volume 35. |0 http://id.loc.gov/authorities/names/no2012028823 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1354458 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 1354458 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis34465649 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn960717582 |
---|---|
_version_ | 1816882365451993088 |
adam_text | |
any_adam_object | |
author | Dobrev, V. K. |
author_facet | Dobrev, V. K. |
author_role | aut |
author_sort | Dobrev, V. K. |
author_variant | v k d vk vkd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 |
callnumber-search | QA252.3 |
callnumber-sort | QA 3252.3 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface -- Contents -- 1. Introduction -- 2. Lie Algebras and Groups -- 3. Real Semisimple Lie Algebras -- 4. Invariant Differential Operators -- 5. Case of the Anti-de Sitter Group -- 6. Conformal Case in 4D -- 7. Kazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations -- 8. Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras -- 9. Multilinear Invariant Differential Operators from New Generalized Verma Modules -- Bibliography -- Author Index -- Subject Index -- Backmatter |
ctrlnum | (OCoLC)960717582 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05256cam a2200781Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn960717582</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">161010t20162016gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">CCO</subfield><subfield code="d">LOA</subfield><subfield code="d">STF</subfield><subfield code="d">K6U</subfield><subfield code="d">SNK</subfield><subfield code="d">DKU</subfield><subfield code="d">AUW</subfield><subfield code="d">INTCL</subfield><subfield code="d">IGB</subfield><subfield code="d">D6H</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">INT</subfield><subfield code="d">MNU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">LVT</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">AUD</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1164781849</subfield><subfield code="a">1259274692</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110427648</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110427646</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110427653</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110427656</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">311042780X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">311043542X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110435429</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110427806</subfield><subfield code="q">(EPUB)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110427646</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960717582</subfield><subfield code="z">(OCoLC)1164781849</subfield><subfield code="z">(OCoLC)1259274692</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">956125</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA252.3</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dobrev, V. K.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant differential operators.</subfield><subfield code="n">Volume 1,</subfield><subfield code="p">Noncompact semisimple lie algebras and groups /</subfield><subfield code="c">Vladimir K. Dobrev.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [Germany] ;</subfield><subfield code="a">Boston [Massachusetts] :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (422 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematical Physics,</subfield><subfield code="x">2194-3532 ;</subfield><subfield code="v">Volume 35</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Contents --</subfield><subfield code="t">1. Introduction --</subfield><subfield code="t">2. Lie Algebras and Groups --</subfield><subfield code="t">3. Real Semisimple Lie Algebras --</subfield><subfield code="t">4. Invariant Differential Operators --</subfield><subfield code="t">5. Case of the Anti-de Sitter Group --</subfield><subfield code="t">6. Conformal Case in 4D --</subfield><subfield code="t">7. Kazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations --</subfield><subfield code="t">8. Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras --</subfield><subfield code="t">9. Multilinear Invariant Differential Operators from New Generalized Verma Modules --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Author Index --</subfield><subfield code="t">Subject Index --</subfield><subfield code="t">Backmatter</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents:IntroductionLie Algebras and GroupsReal Semisimple Lie AlgebrasInvariant Differential OperatorsCase of the Anti-de Sitter GroupConformal Case in 4DKazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant EquationsInvariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie AlgebrasMultilinear Invariant Differential Operators from New Generalized Verma ModulesBibliographyAuthor IndexSubject Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076786</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential invariants.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037920</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential operators.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037921</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90005801</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Superalgebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh94002765</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Invariants différentiels.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Opérateurs différentiels.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes quantiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Superalgèbres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential invariants</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential operators</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Superalgebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Noncompact semisimple lie algebras and groups Invariant differential operators Volume 1 (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH6KTFYPGKbtdMwG8bC4YK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dobrev, Vladimir K.</subfield><subfield code="t">Invariant differential operators. Volume 1, Noncompact semisimple lie algebras and groups.</subfield><subfield code="d">Berlin, [Germany] ; Boston, [Massachusetts] : De Gruyter, ©2016</subfield><subfield code="h">xii, 408 pages</subfield><subfield code="k">De Gruyter studies in mathematical physics ; Volume 35</subfield><subfield code="x">2194-3532</subfield><subfield code="z">9783110435429</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematical physics ;</subfield><subfield code="v">Volume 35.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2012028823</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1354458</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1354458</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis34465649</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn960717582 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:27:27Z |
institution | BVB |
isbn | 3110427648 9783110427646 9783110427653 3110427656 |
issn | 2194-3532 ; 2194-3532 |
language | English |
oclc_num | 960717582 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (422 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematical physics ; |
series2 | De Gruyter Studies in Mathematical Physics, |
spelling | Dobrev, V. K., author. Invariant differential operators. Volume 1, Noncompact semisimple lie algebras and groups / Vladimir K. Dobrev. Berlin [Germany] ; Boston [Massachusetts] : De Gruyter, 2016. ©2016 1 online resource (422 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda De Gruyter Studies in Mathematical Physics, 2194-3532 ; Volume 35 Includes bibliographical references and indexes. Frontmatter -- Preface -- Contents -- 1. Introduction -- 2. Lie Algebras and Groups -- 3. Real Semisimple Lie Algebras -- 4. Invariant Differential Operators -- 5. Case of the Anti-de Sitter Group -- 6. Conformal Case in 4D -- 7. Kazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations -- 8. Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras -- 9. Multilinear Invariant Differential Operators from New Generalized Verma Modules -- Bibliography -- Author Index -- Subject Index -- Backmatter With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents:IntroductionLie Algebras and GroupsReal Semisimple Lie AlgebrasInvariant Differential OperatorsCase of the Anti-de Sitter GroupConformal Case in 4DKazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant EquationsInvariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie AlgebrasMultilinear Invariant Differential Operators from New Generalized Verma ModulesBibliographyAuthor IndexSubject Index. In English. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Differential invariants. http://id.loc.gov/authorities/subjects/sh85037920 Differential operators. http://id.loc.gov/authorities/subjects/sh85037921 Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Superalgebras. http://id.loc.gov/authorities/subjects/sh94002765 Algèbres de Lie. Groupes de Lie. Invariants différentiels. Opérateurs différentiels. Groupes quantiques. Superalgèbres. MATHEMATICS Algebra Intermediate. bisacsh Differential invariants fast Differential operators fast Lie algebras fast Lie groups fast Quantum groups fast Superalgebras fast has work: Noncompact semisimple lie algebras and groups Invariant differential operators Volume 1 (Text) https://id.oclc.org/worldcat/entity/E39PCH6KTFYPGKbtdMwG8bC4YK https://id.oclc.org/worldcat/ontology/hasWork Print version: Dobrev, Vladimir K. Invariant differential operators. Volume 1, Noncompact semisimple lie algebras and groups. Berlin, [Germany] ; Boston, [Massachusetts] : De Gruyter, ©2016 xii, 408 pages De Gruyter studies in mathematical physics ; Volume 35 2194-3532 9783110435429 De Gruyter studies in mathematical physics ; Volume 35. http://id.loc.gov/authorities/names/no2012028823 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1354458 Volltext |
spellingShingle | Dobrev, V. K. Invariant differential operators. De Gruyter studies in mathematical physics ; Frontmatter -- Preface -- Contents -- 1. Introduction -- 2. Lie Algebras and Groups -- 3. Real Semisimple Lie Algebras -- 4. Invariant Differential Operators -- 5. Case of the Anti-de Sitter Group -- 6. Conformal Case in 4D -- 7. Kazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations -- 8. Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras -- 9. Multilinear Invariant Differential Operators from New Generalized Verma Modules -- Bibliography -- Author Index -- Subject Index -- Backmatter Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Differential invariants. http://id.loc.gov/authorities/subjects/sh85037920 Differential operators. http://id.loc.gov/authorities/subjects/sh85037921 Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Superalgebras. http://id.loc.gov/authorities/subjects/sh94002765 Algèbres de Lie. Groupes de Lie. Invariants différentiels. Opérateurs différentiels. Groupes quantiques. Superalgèbres. MATHEMATICS Algebra Intermediate. bisacsh Differential invariants fast Differential operators fast Lie algebras fast Lie groups fast Quantum groups fast Superalgebras fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076782 http://id.loc.gov/authorities/subjects/sh85076786 http://id.loc.gov/authorities/subjects/sh85037920 http://id.loc.gov/authorities/subjects/sh85037921 http://id.loc.gov/authorities/subjects/sh90005801 http://id.loc.gov/authorities/subjects/sh94002765 |
title | Invariant differential operators. |
title_alt | Frontmatter -- Preface -- Contents -- 1. Introduction -- 2. Lie Algebras and Groups -- 3. Real Semisimple Lie Algebras -- 4. Invariant Differential Operators -- 5. Case of the Anti-de Sitter Group -- 6. Conformal Case in 4D -- 7. Kazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations -- 8. Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras -- 9. Multilinear Invariant Differential Operators from New Generalized Verma Modules -- Bibliography -- Author Index -- Subject Index -- Backmatter |
title_auth | Invariant differential operators. |
title_exact_search | Invariant differential operators. |
title_full | Invariant differential operators. Volume 1, Noncompact semisimple lie algebras and groups / Vladimir K. Dobrev. |
title_fullStr | Invariant differential operators. Volume 1, Noncompact semisimple lie algebras and groups / Vladimir K. Dobrev. |
title_full_unstemmed | Invariant differential operators. Volume 1, Noncompact semisimple lie algebras and groups / Vladimir K. Dobrev. |
title_short | Invariant differential operators. |
title_sort | invariant differential operators noncompact semisimple lie algebras and groups |
topic | Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Differential invariants. http://id.loc.gov/authorities/subjects/sh85037920 Differential operators. http://id.loc.gov/authorities/subjects/sh85037921 Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Superalgebras. http://id.loc.gov/authorities/subjects/sh94002765 Algèbres de Lie. Groupes de Lie. Invariants différentiels. Opérateurs différentiels. Groupes quantiques. Superalgèbres. MATHEMATICS Algebra Intermediate. bisacsh Differential invariants fast Differential operators fast Lie algebras fast Lie groups fast Quantum groups fast Superalgebras fast |
topic_facet | Lie algebras. Lie groups. Differential invariants. Differential operators. Quantum groups. Superalgebras. Algèbres de Lie. Groupes de Lie. Invariants différentiels. Opérateurs différentiels. Groupes quantiques. Superalgèbres. MATHEMATICS Algebra Intermediate. Differential invariants Differential operators Lie algebras Lie groups Quantum groups Superalgebras |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1354458 |
work_keys_str_mv | AT dobrevvk invariantdifferentialoperatorsvolume1 |